REACTIVE SEPARATION FOR DIMETHYLNAPHTHALENE ISOMERIZATION

ŝ.

Natthakorn Kraikul

A Dissertation Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University

1. 1.

2007

502042

÷

Reactive Separation for Dimethylnaphthalene Isomerization **Thesis Title:** Natthakorn Kraikul By: Petrochemical Technology **Program:** Assoc. Prof. Pramoch Rangsunvigit **Thesis Advisors:** Dr. Santi Kulprathipanja

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Doctor of Philosophy.

Nantayo Janum College Director

(Assoc. Prof. Nantaya Yanumet)

Thesis Committee:

A. Or

(Prof. Somchai Osuwan)

kulnzah;

(Dr. Santi Kulprathipanja)

Promoch Ry

(Assoc. Prof. Pramoch Rangsunvigit)

Fourello

(Assoc. Prof. Thirasak Rirksomboon)

Simtrala

(Prof. Jumras Limtrakul)

ABSTRACT

4791002063: Petrochemical Technology Program Natthakorn Kraikul: Reactive Separation for Dimethylnaphthalene Isomerization. Thesis Advisors: Assoc. Prof. Pramoch Rangsunvigit and Dr. Santi Kulprathipanja, 106 pp.
Keywords: Dimethylnaphthalene/ Isomerization/ Adsorption/ Reactive Separation/ Zeolite

Polyethylene naphthalate (PEN) is one of the engineering plastics with superior properties suitable for utilizing in many innovative applications. However, its widespread utilizations are still limited by its relatively high cost. One of the factors bolstering the polymer price is the price of 2,6-dimethylnaphthalene (2,6-DMN), which is a precursor for the polymer synthesis. Commercially, 2,6-DMN is synthesized using the BP Amoco process, in which a complex synthesis route with a thermodynamical limitation and freeze crystallization are employed. As a result, the low availability and high utility used for the production of 2,6-DMN entail its high cost. In this study, attempts to demonstrate a non-energy intensive alternative for producing the chemical were made. Catalytic isomerization of 1,5- to 2,6-DMN and adsorptive separation were of interest. Insight studies to understand both systems were individually performed. It was found that the maximum yield of the isomerization can be achieved at significantly lower temperatures and the adsorptive purification of 2,6-DMN can be accomplished in a rejective system by using toluene as a media. The combinations of the isomerization and adsorption were also demonstrated in two different approaches and their potential to produce high purity 2,6-DMN have been proven under different operating conditions. For instance, performing the isomerization in equilibrium is suitable for the system that connects the adsorption unit right after the isomerization with the selected adsorbent, catalyst and desorbent, while the reactive adsorption should be carried out at the appropriate temperatures below the equilibrium.

บทคัดย่อ

ณัฐกร ไกรกุล : การแยกแบบเกิดปฏิกิริยาของปฏิกิริยาการเปลี่ยนไอโซเมอร์ของได เมทธิลแนพธาลีน (Reactive Separation for DimethyInaphthalene Isomerization) อ. ที่ปรึกษา : รศ. คร. ปราโมช รังสรรค์วิจิตร และ คร. สันติ กุลประทีปัญญา 106 หน้า

์ โพลีเอทธิลีนแนพทาเลท (พีอีเอ็น) เป็นหนึ่งในพลาสติกวิศวกรรมที่มีคุณสมบัติคืมาก ้เหมาะสำหรับนำมาใช้กับงานสมัยใหม่มากมาย อย่างไรก็ตามการใช้งานอย่างแพร่หลายของ พลาสติกคังกล่าวยังคงถูกจำกัดค้วยราคาที่สูง หนึ่งในตัวแปรที่ทำให้ราคาของพลาสติกคังกล่าวสูง ้คือราคาของ 2,6-ไคเมทธิลแนฟทาลีน (2,6-คีเอ็มเอ็น) ซึ่งเป็นสารตั้งต้นในการผลิตพีอีเอ็น ในทาง การค้า 2.6-คีเอ็มเอ็นผลิต โดยกระบวนการของบริษัทบีพีอะมอ โค ซึ่งมีกระบวนการสังเคราะห์ที่ ซับซ้อนและมีข้อจำกัดทางอุณหพลศาสตร์ นอกจากนี้ยังต้องใช้กระบวนการตกผลึกแบบเยือกแข็ง ในการทำให้สารคังกล่าวมีความบริสุทธิ์สูงขึ้น ส่งผลให้ปริมาณ 2,6-คีเอ็มเอ็นที่ผลิตได้ต่ำ ใช้ พลังงานมากในการผลิต ทำให้สารคังกล่าวมีราคาสูง ในงานวิจัยนี้เสนอทางเลือกในการผลิต 2,6-้ดีเอ็มเอ็นที่ประหยัดพลังงาน โดยศึกษาปฏิกิริยาการเปลี่ยนไอโซเมอร์ด้วยสารเร่งปฏิกิริยาจาก 1,5-ไปสู่ 2,6-คีเอ็มเอ็นและการแขก 2,6-คีเอ็มเอ็นด้วยวิธีดูคซับ จากการศึกษาพบว่าผลผลิตสูงสุดของ ้ปฏิกิริยาการเปลี่ยนไอโซเมอร์สามารถทำได้ที่อุณหภูมิต่ำลงอย่างมีนัยสำคัญ และการแยกด้วยวิธี ดูดซับสามารถทำได้ในระบบรีเจ็คทีพเมื่อใช้โทลูอื่นเป็นตัวกลาง ในส่วนของการรวมกระบวนการ เปลี่ยนไอโซเมอร์และกระบวนการดูคซับเข้าด้วยกัน พบว่าระบบตั้งกล่าวสามารถผลิตสาร 2,6-้คีเอ็มเอ็นที่มีความบริสุทธิ์สูงได้อย่างมีประสิทธิภาพ โคยระบบที่มีการติดตั้งหน่วยดูคซับต่อจาก หน่วยปฏิกิริยาการเปลี่ยนไอโซเมอร์โคยใช้ตัวคูคซับ สารเร่งปฏิกิริยา และตัวปลคปล่อยที่ถูกเลือก ้ไว้นั้นควรทำที่สภาวะสมคุลของปฏิกิริยาการเปลี่ยนไอโซเมอร์ ในขณะที่ระบบการดูคซับแบบ ้เกิดปฏิกิริยาควรทำที่อุณหภูมิที่เหมาะสมซึ่งอยู่ต่ำกว่าสภาวะสมดุล

ACKNOWLEDGEMENTS

This thesis would have not been possible without the assistance of the followings to whom I would like to express my whole-hearted appreciation.

First of all, I would like to acknowledge the scholarship and financial support to my Ph.D. program from the Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program (Grant No. PHD/0147/2547). The supports enlighten my life with many fruitful experiences more than just the degree.

I would like to thank to the person who offered me the best opportunity ever, Dr. Santi Kulprathipanja. He bought my vision to be global, and taught me not only the way to do research but also the way to live. I also wish to forward my thanks to his wife, Ms. Apinya Kulprathipanja, who always does me an unconditional generosity which makes my working abroad not be the most difficulty there.

Special gratitude is expressed to Assoc. Prof. Pramoch Rangsanvigit for his kindly selecting me for his approved Ph.D. grant, providing me lots of opportunities to think and do work, and always suggesting me with his valuable advice.

I especially extend my appreciation to Prof. Somchai Osuwan, Assoc. Prof. Thirasak Rirksomboon and Prof. Jumras Limtrakul for their kindness being as a chair committee.

I also would like to thank people who did me favors during my working at UOP LLC (USA), particularly for Ms. Chunqing Liu who always takes care me like I was at home, Ms. Wanda Crocker who facilitated any official processes for my working there, and Mr. Darryl M. Johnson and Mr. Jim Priegnitz who did assist my laboratory at the company.

Special thanks are exhibited to all of my teachers for all of based knowledge and useful skills they have established to me, The Petroleum and Petrochemical College, Chulalongkorn University for the great opportunity offering me a Ph.D. degree with an effective and memorable environments, and also my PPC friends.

Last but not least, I would like to express my deep grateful to my family for their supports, love and understandings.

...

TABLE OF CONTENTS

PAGE

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	x
List of Figures	xii

CHAPTER

Ι	INTRODUCTION	1
II	LITERATURE SURVEY	2
	2.1 Importance of 2,6-Dimethylnaphthalene (2,6-DMN)	2
	2.2 The BP Amoco Process for 2,6-DMN Production	3
	2.3 Isomerization of Dimethylnaphthalene	7
	2.4 Purification of 2,6-Dimethylnaphtthalene	10
	2.5 Reactive Separation	11
	2.5.1 Reactive Adsorption	12
	2.5.1.1 Batch Chromatographic Reactor (BCR)	13
	2.5.1.2 True Moving Bed Chromatographic	
	Reactor (TMBCR)	14
	2.5.1.3 Simulated Moving Bed Chromato-	
	graphic Reactor (TMBCR)	15
III	EXPERIMENTAL	17
	3.1 Materials	17

3.2	Study on Catalytic Melt Isomerization (Without	18
	Solvent)	

	3.3	Study on Catalytic Isomerization in toluene Media	19
	3.4	Study on the Adsorption of DMN over Ion-	
		exchanged Faujasite Zeolites	19
	3.5	Study on the Combinations of Catalytic Isomerization	
		and Adsorption	21
IV	ISO	MERIZATION OF 1,5- TO 2,6-DIMETHYL-	
	NAI	PHTHALENE AND ITS THERMODYNAMIC	
	ASP	PECTS	24
	4.1	Abstract	24
	4.2	Introduction	24
	4.3	Experimental	26
		4.3.1 Catalyst Preparation	26
		4.3.2 Experimental Apparatus	26
		4.3.2.1 Reactor	26
		4.3.2.2 Analytical Method	26
		4.3.3 Experimental Procedure	27
	4.4	Results and Discussion	30
		4.4.1 Effect of Catalyst Amount	30
		4.4.2 Effect of Catalyst Type	30
		4.4.3 Effect of Reaction Temperature	31
		4.4.4 Thermodynamic Study	33
	4.5	Conclusions	39
	4.6	Acknowledgements	39
	4.7	Nomenclature	40
	4.8	References	41

CHAPTER

 \mathbf{V}

PAGE

V	UNE	EXPECTED ROLES OF TOLUENE IN THE	
	САТ	ALYTIC ISOMERIZATION OF 1,5- TO 2,6-	
	DIM	ETHYLNAPHTHALENE	43
	5.1	Abstract	43
	5.2	Introduction	43
	5.3	Experimental	44
	5.4	Results and Discussion	46
		5.4.1 Effect of Feed Flow Rate	46
		5.4.2 Effect of Reaction Temperature	47
		5.4.3 Effect of Feed Concentration	49
		5.4.4 Chemical Equilibrium Consideration for the	
		Catalytic Isomerization in Toluene	50
	5.5	Conclusions	56
	5.6	Acknowledgements	56
	5.7	References	56
VI	STU	UDY ON THE ADSORPTION OF 1,5-, 1,6- AND	
	2,6-	DIMETHYLNAPHTHALENE ON A SERIES	
	OF	ALKALINE AND ALKALINE EARTH ION	
	EX	CHANGED FAUJASITE ZEOLITES	58
	6.1	Abstract	58

0.1	Abstract	20
6.2	Introduction	58
6.3	Experimental	
6.4	Results and Discussion	64
	6.4.1 Effect of Temperature	64
	6.4.2 Effect of Exchanged Cation of the Faujasite	
	Zeolites	67
	6.4.3 Breakthrough Study	71
6.5	Conclusions	74

viii

i

CHAPTER		PAGE
	6.6 Acknowledgements	74
	6.7 References	74
VII	INTEGRATIONS OF CATALYTIC	
	ISOMERIZATION TO ADSORPTIVE SEPARATION	
	FOR THE PRODUCTION OF HIGH PURITY 2,6-	
	DIMETHYLNAPHTHALENE	77
	7.1 Abstract	77
	7.2 Introduction	78
	7.3 Experimental	80
	7.4 Results and Discussion	82
	7.4.1 Isomerization Study	82
	7.4.2 Adsorption Study	85
	7.4.3 Study on the Production of 2,6-DMN by	
	Subsequent Adsorption After Isomerization	86
	7.4.4 Study on the Production of 2,6-DMN Using the	
	Reactive Adsorption Technique	88
	7.5 Conclusions	95
	7.6 Acknowledgements	96
	7.7 Nomenclatures	96
	7.8 References	96
VIII	CONCLUSIONS AND RECOMMENDATIONS	98
	REFERENCES	100
	CURRICULUM VITAE	104

LIST OF TABLES

TABLE

CHAPTER II

2.1	Theoretical weight percentage yield of 2,6-naphthalene	2
	dicarboxylic (2,6-NDA) from the oxidation of different	
	dialkylnaphthalenes (Lillwitz, 2001)	
2.2	Kinetic diameters and physical properties of the DMNs in	
	the 2,6-triad (Pu et al., 1996; Takagawa and Shigematsu,	
	2000)	10

CHAPTER III

3.1	Chemical composition of the alkaline and alkaline earth		
	exchanged faujasite zeolites used as adsorbents	17	

CHAPTER IV

Composition of DMNs distributed in the 2,6-triad	34
Thermodynamic properties in the isomerization reactions	
in the 2,6-triad	38
Summary of liquid DMNs thermodynamic properties at 25°C	
and 1 atm	38
	Composition of DMNs distributed in the 2,6-triad Thermodynamic properties in the isomerization reactions in the 2,6-triad Summary of liquid DMNs thermodynamic properties at 25°C and 1 atm

CHAPTER V

5.1	Equilibrium compositions and equilibrium constants of the	
	solvent and solvent-free system	53

CHAPTER VI

6.1	Chemical composition, ionic radius and Sanderson's inter-	
	mediate electronegativity (S_{int}) of the alkaline and alkaline	63
	earth exchanged faujasite zeolites used as adsorbents	

6.2	Kinetic diameter and barrier energy of diffusion through	
	FAU pore of 1,5-, 1,6- and 2,6-DMN	66
6.3	Total adsorption capacity and adsorption selectivity of the	
	selected potential adsorbent calculated form breakthrough	
	experiment with 1 h ⁻¹ LHSV	73

LIST OF FIGURES

FIGURE

PAGE

CHAPTER II

2.1	Overview of 2,6-DMN production process options (Chem	
	Systems, 2000).	3
2.2	Company-specific block diagram for 2,6-DMN production	
	(Chem Systems, 2000).	4
2.3	Chemistry of the BP Amoco's 2,6-DMN synthesis process	5
	(Chem Systems, 2000; Lillwitz, 2001).	
2.4	2,6-Dimethylnaphthalene by BP Amoco process: reaction	
	and recovery (Chem Systems, 2000).	6
2.5	2,6-Dimethylnaphthalene by BP Amoco process:	
	isomerization and crystallization (Chem Systems, 2000).	6
2.6	Schemes of dimethylnaphthalene isomers and their	
	classifications.	8
2.7	Proposed intermediate from the migration between (a) the	
	adjacent beta positions and (b) the naphthalene nucleuses.	9
2.8	Schematic diagram representing isomerizations among 10	
	DMN isomers (Modified from Millini, 2004).	9
2.9	Various in situ separation functions integrated into the	
	reactor (Krishna, 2002).	12
2.10	Operating principle of the batch chromatographic reactor	
	(Fricke and Schmidt-Traub, 2003).	13
2.11	Schematic represents for the TMB chromatographic reactor	
	(Fricke and Schmidt-Traub, 2003).	15
2.12	Schematic represents for the SMB chromatographic reactor	
	(Fricke and Schmidt-Traub, 2003).	16

1.0

CHAPTER III

3.1	Experimental set up for catalytic isomerization, adsorption	
	and reactive adsorption studies using the pulse test	20
	technique.	
3.2	Experimental set up for study the production of 2,6-DMN by	
	connecting the adsorbers subsequently to the reactor.	23

CHAPTER IV

4.1	Schematic diagram representing isomerizations among 10	
	DMN isomers (Modified from [13]).	25
4.2	DMNs distribution and selectivity in the 2,6-triad as a	
	function of catalyst amount (wt%) at 265°C, 1 atm and 1	
	hour of reaction time.	32
4.3	DMNs distribution and selectivity towards the 2,6-triad as a	
	function of catalyst type at 265°C, 1 atm and 1 hour of	
	reaction time (MN: methylnaphthalene, DMN:	
	dimethylnaphthalene, PMN: polymethyl-naphthalene).	32
4.4	DMNs distribution and selectivity in the 2,6-triad as a	
	function of temperature under 1 atm, 1 hour of reaction time,	
	and 3 wt% of H-beta catalyst.	33
4.5	Evaluation of equilibrium constants, $K_{equilibrium}$, as a function	
	of temperature for the reactions in the 2,6-triad.	35
4.6	Evaluation of 1,6-DMN/1,5-DMN and 2,6-DMN / 1,6-DMN	
	ratios(at 1 hour of reaction time) and equilibrium constant as	
	a function of temperature for the reactions in the 2,6-triad.	35
4.7	Equilibrium constants represented in the Van't Hoff	
	coordinates for DMN isomerization in the 2,6-triad.	37

PAGE

CHAPTER V

5.1	DMN distribution profiles as a function of LHSV: 180°C,	
	10% 1,5-DMN in toluene, and H-beta catalyst.	
		46
5.2	DMNs distribution within the 2,6-triad as a function of	
	temperature (°C) from (a) solvent-free system and (b) 10%	
	1,5- DMN/toluene system: $30 h^{-1}$ LHSV and H-beta catalyst.	47
5.3	Relative concentration profiles of the products from the 10	
	wt% 1,5- DMN/toluene isomerization with 30 h ⁻¹ LHSV and	
	H-beta catalyst as a function of temperature; (a) of the	
	products in the isomerized stream and (b) of the species in	
	the 2,6-triad.	48
5.4	Correlation between the required temperature to reach	
	equilibrium of 1,5- to 2,6-DMN isomerization and DMN	
	concentration: 30 h^{-1} LHSV and H-beta catalyst.	50
5.5	Evaluation of equilibrium constants, K_{i-j} , as a function of	
	temperature for the isomerizations in the 2,6-triad with ^a and	
	without the presence of the solvent: (a) from [4], filled	
	symbols indicate the calculated $K_{1,6-2,6}$ values while opened	
	symbols indicate that of calculated $K_{1,5-1,6}$ from the 1 wt.%	
	1,5-DMN system (\blacksquare , \Box),10 wt.% 1,5-DMN system (\blacklozenge , \diamondsuit),	
	20 wt.% 1,5-DMN system (\blacktriangle , \triangle) and 30 wt.% 1,5-DMN	
	system (\bullet , \bigcirc).	51
5.6	Proposed enthalpy diagram of the 1,5-DMN to 2,6-DMN	
	isomerization in solvent-free and toluene systems.	53
5.7	DMNs distribution within the 2,6-triad as a function of	
	temperature (°C) of (a) 1,5-DMN, (b) 1,6-DMN and (c) 2,6-	
	DMN: 20% 1,5-DMN/toluene system over H-beta catalyst.	54

55

5.8	1,5- and 1,6-DMN distribution within the 2,6-triad as a
	function of1,5-DMN conversion from (a) solvent-free and
	(b) toluene system over H-beta catalyst in which their
	thermodynamic equilibrium are from 265 and 180°C,
	respectively.

CHAPTER VI

6.1	Experimental setup for the pulse test and breakthrough	
	study.	61
6.2	Pulse test results of 1,5-, 16,- and 2,6-DMN with their	
	equilibrium composition on NaY, 1 h ⁻¹ LHSV at different	
	temperatures.	65
6.3	Adsorption selectivity of 1,6-DMN and 1,5-DMN respected	
	to2,6-DMN as a function of temperature on NaY, 1 h ⁻¹	
	LHSV.	66
6.4	Pulse test results of 1,5-, 16,- and 2,6-DMN with a series of	
	alkaline and alkaline earth ion-exchanged faujasite zeolites,	
	1 h ⁻¹ LHSV, 180°C.	68
6.5	Net retention volume as a function of the strength of the	
	adsorbent acidity, S_{int} , of (a) 2,6-DMN, (A) 1,6-DMN and	
	(•) 1,5-DMN on (a) alkaline-X, (b) alkaline-Y, (c) alkaline	
	earth-X and(d) alkaline earth-Y at 1 h ⁻¹ LHSV and 180°C.	69
6.6	Adsorption selectivity as a function of the strength of the	
	adsorbent acidity, S_{int} , of (a) alkaline-X, (b) alkaline-Y, (c)	
	alkaline earth-X and (d) alkaline earth-Y at 1 h^{-1} LHSV and	
	180°C.	71
6.7	Breakthrough curves of 1,5-, 16,- and 2,6-DMN on NaY, 1	72
	h ⁻¹ LHSV at (a) 160°C and (b) 180°C.	

....

· .

PAGE

xvi

CHAPTER VII

7.1	Schematic diagram of the isomerization and crystallization	
	for producing 2,6-dimethylnaphthalene by BP Amoco	
	process (redrawn from [2]).	80
7.2	Experimental set up for isomerization, adsorption and	
	reactive adsorption studies using the pulse test technique.	81
7.3	Experimental set up for study the production of 2,6-DMN by	
	connecting the adsorbers subsequently to the reactor.	83
7.4	DMN distribution as a function of temperature from	
	experimental pulse test of 10 wt% 1,5-DMN through the H-	
	beta catalyst with 15 h ⁻¹ LHSV.	83
7.5	Variation with LHSV of (a) DMNs distribution and (b)	
	calculated ratios between 2 DMN isomers from the pulse test	
	of 10 wt%1,5-DMN through H-beta catalyst at 160°C.	84
7.6	Pulse test results of the equilibrium 1,5-, 1,6- and 2,6-DMN	
	mixture over different quantities of NaY at 180°C, 1 h ⁻¹	
	LHSV.	85
7.7	Pulse test results of 10 wt% 1,5-DMN through 45 mL of	
	NaY after 3 mL of H-beta (a) before and after re-injecting	
	the 1,5- and 1,6-DMN rich stream to the reactor and adsorber	
	for (b) 1 cycle, (c) 2 cycles and (d) 4 cycles at 160° C, 15 h ⁻¹	
	LHSV based on the catalyst volume (corresponding to 1 h^{-1}	
	based on the adsorbent volume).	87
7.8	DMN concentration profiles from the continuously feeding a	
	30 mL of the feedstock to 45 mL of NaY after 3 mL of H-	
	beta before the desorbent with 15 h^{-1} LHSV based on the	
	catalyst volume(corresponding to 1 h ⁻¹ based on the	
	adsorbent volume).	88

FIGURE

7.9	Proposed scheme for a continuous production of high purity	
	2,6- DMN by using adsorption after catalytic isomerization.	89
7.10	Pulse test results of 10 wt% 1,5-DMN through a physically	
	mixed bed of H-Beta and NaY (3:45) with 15 h ⁻¹ LHSV	
	based on the catalyst volume (corresponding to $1 h^{-1}$ based	
	on the adsorbent volume) at (a) 140, (b) 150, (c) 160, (d) 170	
	and (e) 200°C.	90
7.11	Variation with temperature of (a) DMN distribution in the	
	2,6-triad and (b) calculated ratio between 2 DMN isomers	
	from experimental pulse test of 10 wt% 1,5-DMN through a	
	physically mixed bed of H-Beta and NaY (3:45) with 15 h ⁻¹	
	LHSV based on the catalyst volume (corresponding to $1 h^{-1}$	
	based on the adsorbent volume).	91
7.12	Pulse test results of 10 wt% 1,5-DMN through a physically	
	mixed bed of H-Beta and NaY (3:45) at 160°C with LHSV	
	of (a) 10, (b) 15 and (c) 30 h^{-1} based on the catalyst volume.	93
7.13	Variation with LHSV of (a) DMN distribution in the 2,6-	
	triad and (b) calculated ratio between 2 DMN isomers from	
	experimental pulse test of 10 wt% 1,5-DMN through a	
	physically mixed bed of H-Beta and NaY $(3:45)$ at 160° C.	93
7.14	Pulse test results of 10 wt% 1,5-DMN through a physically	
	mixed bed of H-Beta and NaY with a ratio of (a) 1:45 and	
	(b) 3:45 at 160°C, 15 h ⁻¹ LHSV based on the catalyst	
	volume(corresponding to 1 h ⁻¹ based on the adsorbent	
	volume).	94

PAGE

FIGURE

. .

PAGE

7.15	Variation with H-beta : NaY ratio of (a) DMN distribution in	
	the 2,6-triad and (b) calculated ratio between 2 DMN	
	isomers from experimental pulse test of 10 wt% 1,5-DMN at	
	160°C, 15 h ⁻¹ LHSV based on the catalyst volume	
	(corresponding to 1 h^{-1} based on the adsorbent volume).	94
7.16	Proposed scheme for a continuous production of high purity	
	2,6- DMN by SMB reactor based the reactive adsorption	
	technique.	95