REFERENCES

- Allen, L.T., Tosetto, M., Miller, I.S., O'Connor, D.P., Penney, S.C., Lynchb, I., Keenan, A.K., Pennington, S.R., Dawson, K.A., and Gallagher, W.M. (2006) Surface-induced changes in protein adsorption and implications for cellular phenotypic responses to surface interaction. <u>Biomaterials</u>, 27, 3096–3108.
- Campbell, N. A., Reece, J. B., Urry, L. A., Cain M.L., Wasserman, S.A., Minorsky,
 P. V., and Jackson R. B. (2009) <u>Biology</u> San Francisco: Benjamin Cummings.
- De Oliveira, R.R.L., Albuquerque, D.A.C., Cruz, T.G.S., Yamji, F.M. and Leite, F.L.
 (2012) Measurement of the Nanoscale Roughness by Atomic Force Microscopy: Basic Principles and Applications. <u>Atomic Force Microscopy</u>, Brazil: Victor Bellittto.
- Hatano, K., Inoue, H., Kojo, H., Matsunaga, T., Tsujiwa, T., Uchiyama, C., and Uchida. Y. (1999) Effect of Surface Roughness on Proliferation and Alkaline Phosphatase Expression of Rat Calvarial Cells Cultured on Polystyrene. <u>Bone</u>. 25(4), 439–445.
- Hutmacher, D.W. (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials, 21, 2529-2543.
- Jiang, S., Ji, X., An, L., and Jiang, B. (2001) Crystallization behavior of PCL in hybrid confined environment. <u>Polymer</u>, 42, 3901-3907.
- K-hasuwan, P., Pavasant, P., and Supaphol, P. (2011) Effect of the Surface Topography of Electrospun Poly(ε-caprolactone)/Poly(3-hydroxbuterate-co-3-hydroxyvalerate) Fibrous Substrates on Cultures Bone Cell Behavior. <u>Langmuir</u>. 27, 10938-10946.
- Kim, J. and Yoon, J. (2002) Protein adsorption on polymer particles. In: Hubbard A (ed) Encyclopedia of Surface and Colloid Science. New York: Marcel Dekker.
- Mattanavee, W., Suwantong, O., Puthong, S., Bunaprasert, T., Hoven, V.P., and Supaphol, P. (2009) Immobilization of biomolecules on surface of electrospun polycaprolactone fibrous scaffolds for tissue engineering. <u>Applied materials and interfaces</u>, 1(5), 1076–1085.

- Ponik, S. M., & Pavalko, F.M. (2004) Formation of focal adhesions on fibronectin promotes fluid shear stress induction of COX-2 and PGE₂ release in MC3T3-E1 osteoblasts. Journal of Applied Physiology. 97, 135-142.
- Salmerón-Sánchez, M., and Altankov, G. (2010) Cell-Protein-Material interaction in tissue engineering. Tissue Engineering, InTech, Rijeka, Croatia.77-103.
- Sangsanoh, P., Waleetorncheepsawat, S., Suwantong, O., Wutticharoenmongkol, P.,
 Weeranantanapan, O., Chuenjitbuntaworn, B., Cheepsunthorn, P., Pavasant,
 P., and Supaphol. P. (2007) In Vitro Biocompatibility of Schwann Cells on
 Surfaces of Biocompatible Polymeric Electrospun Fibrous and Solution-Cast
 Film Scaffolds. <u>Biomacromolecules</u>, 8, 1587-1594.
- Wyre, R.M. and Downes, S. (2002) The role of protein adsorption on chondrocyte adhesion to a heterocyclic methacrylate polymer system. <u>Biomaterials</u>, 23, 357–364.
- Yu, Y., Ying, P.Q., and Jin, G. (2004) Competitive Adsorption between Bovine Serum Albumin and Collagen Observed by Atomic Force Microscope. <u>Chinese Chemical Letters</u>, 15(12), 1465-1468.

APPENDICES

Appendix A Bicinchoninic Acid Assay (BCA assay)

Standard no.	BSA concentration (µg/ml)	Average net absorbance
1	0	0.0000
2	2.5	0.0070
3	5	0.0053
4	10	0.0250
5	25	0.0622
6	50	0.1292
7	100	0.2790

 Table A1
 The absorbance of Bovine Serum Albumin (BSA) standard in PBS

Figure A1 The calibration curve of BSA standard in PBS.

Table A2 The adsorption isotherm of the adsorbed bovine serum albumin on theneat PCL films (diameter = 1.5 cm) casted from chloroform at equilibrium proteinconcentration

Equilibrium protein	Neat PCL film casted from chloroform	
concentration (µg/ml)	Amount of protein adsorbed (µg/cm ²)	
198	1.23 <u>+</u> 0.23	
397	1.58 <u>+</u> 0.12	
597	2.31 <u>+</u> 0.67	
797	2.08 <u>+</u> 0.27	
995	3.86 <u>+</u> 0.27	
1492	5.33 <u>+</u> 0.27	
1990	6.18 <u>+</u> 0.27	
2988	7.72 ± 0.61	

Table A3 The adsorption isotherm of the adsorbed bovine serum albumin on the neat PCL films (diameter = 1.5 cm) casted from 40:60 (v/v) EtOH/THF at equilibrium protein concentration

Equilibrium protein	Neat PCL film casted from 40:60 (v/v) EtOH/THF	
concentration (µg/ml)	Amount of protein adsorbed (µg/cm ²)	
195	3.78 ± 0.40	
395	3.70 <u>+</u> 0.58	
593	4.55 <u>+</u> 0.35	
791	5.56 <u>+</u> 0.54	
990	6.33 <u>+</u> 0.46	
1489	7.03 <u>+</u> 0.23	
1987	8.73 <u>+</u> 0.75	
2987	8.88 <u>+</u> 0.84	

Table A4 The adsorption isotherm of the adsorbed bovine serum albumin on themodified PCL films (diameter = 1.5 cm) casted from chloroform at equilibriumprotein concentration

Equilibrium protein	Modified PCL film casted from chloroform	
concentration (µg/ml)	Amount of protein adsorbed (µg/cm ²)	
191	5.87 <u>+</u> 1.57	
391	5.67 <u>+</u> 1.01	
590	6.67 ± 0.27	
789	7.41 <u>+</u> 0.58	
986	9.35 ± 1.61	
1486	8.98 ± 0.88	
1982	11.38 ± 2.07	
2984	10.51 <u>+</u> 1.16	

Table A5 The adsorption isotherm of the adsorbed bovine serum albumin on the modified PCL films (diameter = 1.5 cm) casted from 40:60 (v/v) EtOH/THF at equilibrium protein concentration

Equilibrium protein	Modified PCL film casted from 40:60 (v/v) EtOH/THF	
concentration (µg/ml)	Amount of protein adsorbed (µg/cm ²)	
190	6.25 <u>+</u> 1.42	
391	6.10 <u>+</u> 1.16	
589	7.18 ± 1.23	
787	8.58 <u>+</u> 1.75	
987	8.60 <u>+</u> 0.23	
1484	10.66 <u>+</u> 1.11	
1982	11.88 ± 1.32	
2958	27.51 <u>+</u> 1.14	

Appendix B Experimental Data of Biological Characterizations

Table B1 Indirect cytotoxicity evaluation of the materials casted from chloroformshown by the percent viability of cells by MTT assay

Matarials	% viability of MC3T3-E1 cells (relative to TCPS)		
	1 d	3 d	7 d
Control	100 ± 6	100 ± 4	100 <u>+</u> 13
Neat	112 <u>+</u> 2	96 <u>+</u> 3	106 <u>+</u> 13
Adsorbed collagen			
(100 μg/mL)	84 <u>+</u> 11	<u>85 ± 6</u>	<u>96 ± 8</u>
Pre-adsorbed BSA			
(200 μg/mL)	102 <u>+</u> 2	<u>99 + 2</u>	87 <u>+</u> 11
Pre-adsorbed BSA			
(1500 μg/mL)	<u>96 ± 15</u>	96 <u>+</u> 6	100 <u>+</u> 14
Pre-adsorbed BSA			
(3000 μg/mL)	111 <u>+</u> 20	97 <u>+</u> 2	95 <u>+</u> 4
Adsorbed BSA			
(3000 μg/mL)	117 ± 6	110 ± 6	102 ± 5

Matariala	% viability of MC3T3-E1 cells (relative to TCPS)		
	1 d	3 d	7 d
Control	100 ± 6	100 ± 4	100 <u>+</u> 13
Neat	106 <u>+</u> 9	112 <u>+</u> 3	86 <u>+</u> 9
Adsorbed collagen			
(100 μg/mL)	92 <u>+</u> 10	115 <u>+</u> 6	84 <u>+</u> 2
Pre-adsorbed BSA			
(200 μg/mL)	<u>87 ± 8</u>	97 <u>+</u> 5	91 <u>+</u> 10
Pre-adsorbed BSA			
(1500 μg/mL)	<u>89 ± 3</u>	106 <u>+</u> 3	91 <u>+</u> 6
Pre-adsorbed BSA			
(3000 μg/mL)	86 <u>+</u> 7	103 <u>+</u> 11	109 <u>+</u> 7
Adsorbed BSA			
(3000 μg/mL)	100 ± 6	100 <u>+</u> 4	100 ± 13

Table B2 Indirect cytotoxicity evaluation of the materials casted from 40:60 (v/v)EtOH/THF shown by the percent viability of cells by MTT assay

Matariala	% viability of MC3T3-E1 cells (relative to TCPS at 1 d)			
	4 hrs	4 hrs	4 hrs	
Control	69 <u>+</u> 4	100 <u>+</u> 5	154 <u>+</u> 12	
Neat	27 <u>+</u> 3	71 <u>+</u> 4	110 <u>+</u> 7	
Adsorbed				
collagen				
(100 μg/mL)	45 <u>+</u> 5	69 <u>+</u> 2	120 ± 6	
Pre-adsorbed				
BSA				
(200 μg/mL)	<u>30 + 12</u>	<u>99 + 4</u>	128 ± 3	
Pre-adsorbed				
BSA				
(1500 µg/mL)	<u>43 + 9</u>	<u>94 ± 6</u>	<u>127 + 14</u>	
Pre-adsorbed				
BSA				
(3000 µg/mL)	41 <u>+</u> 11	<u>93 ± 2</u>	125 <u>+</u> 6	
Adsorbed				
BSA				
(3000 µg/mL)	<u>67 + 9</u>	<u>91 ± 9</u>	129 <u>+</u> 11	

Table B3 Attachment and proliferation of MC3T3-E1 that were cultured on thematerials casted from chloroform at seeding time for 4 hrs, 1 d and 3 d.

Matarials	% viability of MC3T3-E1 cells (relative to TCPS at 1 d)			
	4 hrs	4 hrs	4 hrs	
Control	69 <u>+</u> 5	100 ± 5	154 <u>+</u> 12	
Neat	45 <u>+</u> 2	88 <u>+</u> 5	242 <u>+</u> 22	
Adsorbed				
collagen				
(100 µg/mL)	<u>58 +</u> 7	105 ± 9	<u>233 + 21</u>	
Pre-adsorbed				
BSA				
(200 µg/mL)	63 ± 15	101 ± 6	<u>209 + 9</u>	
Pre-adsorbed				
BSA				
(1500 µg/mL)	62 <u>+</u> 10	<u>101 ± 8</u>	<u>227 + 20</u>	
Pre-adsorbed				
BSA				
(3000 µg/mL)	<u>61 ± 10</u>	<u>108 ± 8</u>	<u>244 + 32</u>	
Adsorbed				
BSA				
(3000 µg/mL)	73 <u>+</u> 11	109 ± 6	365 <u>+</u> 22	

Table B4 Attachment and proliferation of MC3T3-E1 that were cultured on thematerials casted from 40:60 EtOH/THF at seeding time for 4 hrs, 1 d and 3 d.

Table B5 ALP activities of MC3T3-E1 that were cultured on the materials castedfrom chloroform and 40:60 EtOH/THF at seeding time for 7 d.

	ALP activity (µmole/µg.min)	
Surface	Chloroform	40:60 (v/v) EtOH/THF
TCPS	1.94 <u>+</u> 0.14	1.94 ± 0.14
Neat PCL	0.71 <u>+</u> 0.02	0.78 ± 0.01
Adsorbed collagen (100 µg/mL)	0.72 ± 0.03	0.82 ± 0.02
Pre-adsorbed BSA (200 µg/mL)	0.74 <u>+</u> 0.03	0.80 ± 0.01
Pre-adsorbed BSA (1500 µg/mL)	0.75 ± 0.03	0.81 ± 0.01
Pre-adsorbed BSA (3000 µg/mL)	0.78 ± 0.01	0.79 ± 0.03
Adsorbed BSA (3000 µg/mL)	0.78 ± 0.02	0.84 ± 0.00

CURRICULUM VITAE

Name: Ms. Khwanjai Anujarawat

Date of Birth: March 24, 1984

Nationality: Thai

University Education:

2001–2004 Bachelor Degree of Chemistry, Faculty of Science, Burapha University, Bangkok, Thailand

Work Experience:

2005-Present Position:	Scientist
Company name:	Research and Development Centre Thai
	Rubber Industry at Mahidol University

Proceeding:

 Anujarawat, K.; and Supaphol, P. (2013, April 23) Role of Surface Topography and Protein Adsorption on Film Scaffolds on Bone Cells Behavior. <u>Proceedings of the 19th PPC Symposium on Petroleum,</u> <u>Petrochemicals, and Polymers, Bangkok, Thailand.</u>

Presentations:

- Anujarawat, K.; and Supaphol, P. (2013, March 11-15) Role of Surface Topography and Protein Adsorption on Polycaprolactone Scaffolds on Bone Cells Behavior. Paper presented at <u>POLYCHAR 21 World Forum on Advance</u> <u>Materials</u>, Gwangju, Republic of Korea.
- Anujarawat, K. and Supaphol, P. (2013, April 23) Role of Surface Topography and Protein Adsorption on Film Scaffolds on Bone Cells Behavior. Paper presented at <u>Proceedings of the 19th PPC Symposium on Petroleum</u>, <u>Petrochemicals, and Polymers</u>, Bangkok, Thailand.