REFERENCES

Newton, C. and Chen, C. (1980). Second law analysis in cryogenic process. <u>Energy</u> Volume: 5, pp. 899-904.

•

- Kanoğlu, M. (2002). Exergy analysis of multistage cascade refrigeration cycle used for natural gas liquefaction. <u>International Journal of Energy Research</u>, 26, 763-774
- Remeljej, C.W. and Hoadley, A.F.A. (2004). An exergy analysis of small-scale liquefied natural gas liquefaction processes. <u>Energy</u>, 31, 2005-2019.
- Gundersen, T., Aspelund, A. and Barton, P. (2009). An Overall of New Methodologies for the Design of Cryogenic process with an emphasis on LNG. <u>Proceedings of the 1st Annual Gas Processing Symposium</u>, 104-112.
- Dhole, V.R. and Linnhoff, B. (1994). Overall Design of Low Temperature Processes. <u>Computers Chemical Engineering</u>, 18, S105-S111.
- Marmolejo-Correa, D. and Gundersen, T. (2012). A comparison of exergy efficiency definitions with focus on low temperature processes. <u>Energy</u>, 44, 477-489.
- Aspelund, A., Gundersen, T., Myklebust, J., Nowak, M.P. and Tomasgard, A. (2009). An optimization-simulation model for a simple LNG process. <u>Computers and Chemical Engineering</u>, 34, 1606-1617.
- Alabdulkarem, A., Mortazavi, A., Hwang, Y., Radermacher, R. and Rogers, P. (2011). Optimization of propane pre-cooled mixed refrigerant LNG plant. <u>Applied Thermal Engineering</u>, 31, 091-1098.
- Aspelund, A. and Gundersen, T. (2007). A new Process Synthesis Methodology utilizing Pressure Exergy in Subambient Processes. <u>Proceeding of the 17th</u> <u>European Symposium on Computer Aided Process Engineering</u>, 24, 1133-1138.
- Mahabadipour, H. and Gharbi, H. (2013). Development and comparison of two expander cycles used in refrigeration system of olefin plant based on exergy analysis. <u>Applied Thermal Engineering</u>, 50, 771-780.

- Vidal, A., Best, R., Rivero, R. and Cervantes, J. (2006). Analysis of a combined power and refrigeration cycle by the exergy method. <u>Energy</u>, 31, 3401-3414.
- Marmolejo-Correa, D. and Gundersen, T. (2013). New Graphical Representation of Exergy Applied to Low Temperature Process Design. <u>Industrial and</u> <u>Engineering Chemistry Research</u>, 52, 7145-7156.
- Marmolejo-Correa, D. and Gundersen, T. (2012). A new procedure for the design of LNG processes by combining Exergy and Pinch Analyses. <u>Proceeding of</u> <u>the 25TH International Conference on Efficiency, Cost, Optimization,</u> <u>Simulation and Environmental Impact of Energy Systems, Perugia, Italy.</u>
- Marmolejo-Correa, D. and Gundersen, T. (2012). A new graphical representation of exergy applied to low temperature process design. <u>Proceeding of the 11TH</u> <u>International Symposium on Process Systems Engineering</u>, 2, 1180-1184, DOI: 10.1016/B978-0-444-59506-5.50067-5.
- Marmolejo-Correa, D. and Gundersen, T. (2012). A new graphical exergy targeting representation for processes operating above and below ambient temperature. Proceeding of the 22nd European Symposium on Computer Aided Process Engineering, London, UK, 557-561.
- Marmolejo-Correa, D. and Gundersen, T. (2011). Low Temperature Process
 Design: Challenges and Approaches for using Exergy Efficiencies.
 <u>Proceeding of the 21st European Symposium on Computer Aided Process</u>
 <u>Engineering</u>, 2, 1909-1913, DOI: 10.1016/B978-0-444-54298-4.50160-4.
- Aspelund, A., Berstad, D.O., Gundersen, T. (2007). An Extended Pinch Analysis and Design procedure utilizing pressure based exergy for subambient cooling. <u>Applied Thermal Engineering</u>, 27(16), 2633-2649.
- Linnhoff, B. and Dhole, V.R. (1992). Shaftwork targets for low-temperature process design. <u>Chemical Engineering Science</u>, 47(8), 2081-2091.
- Yee, T.F., and Grossmann, I.E. (1990). Simultaneous optimization models for heat integration. II. Heat exchanger network synthesis. <u>Computers and Chemical</u> <u>Engineering</u>, 14(10), 1165-1184.

- Linnhoff, B., Towsend, D.W., Boland, D., Hewitt, G.F., Thomas, B.E.A., Guy, A.R. and Marsland, R.H. (1982). A User Guide on Process Integration for the Efficient Use of Energy. <u>The Institution of Chemical Engineers</u>, Rugby.
- Hackl, R. and Harvey, S. (2012). Total Site Analysis (TSA) and Exergy Analysis for Shaft Work and Associated Steam and Electricity Savings in Low Temperature Processes in Industrial Clusters. <u>Chemical Engineering</u> <u>Transactions</u>, 29, 73-78, DOI: 10.3303/CET1229013.
- Pereira, C. and Lequisiga, D. (2014). Technical Evaluation of C₃-MR and Cascade Cycle on Natural Gas Liquefaction Process. <u>International Journal of</u> <u>Chemical Engineering and Applications</u>, 5, 451-456, DOI: 10.7763/IJCEA.2014.V5.427.

0

o

APPENDICES

1

Appendix A HEN Synthesis

SETS

I hot streams

/H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18/

- J cold streams / C1,C2,C3,C4,C5,C6,C7,C8,C9 /
- K location / firstlocation,location2*location26,lastlocation /
- CU cold utility / CU1,CU2,CU3,CU4,CU5,CU6,CU7,CU8,CU9,CU10/

;

.

SCALARS

OMEGA	upper bound for heat exchange /999999/
GAMMA	upper bound for temperature difference /999999/
EMAT	exchanger minimum approach temperature /3/
CHU	unit cost for hot utility /1000/
CF	fixed charge for exchangers /99000/
CW	unit cost for power consumption /200000/
	0

PARAMETERS

TOUTH(I) outlet temperature of cold stream

1	H1	271.634
	H2	249.582
	H3	236.977
	H4	207.45
	H5	186.17
	H6	183.036
	H7	148.15
	H8	129.446
	H9	118.15

0

.

- H10 298.58
- H11 271.79
- H12 249.58
- H13 237.15
- : H14 207.416
- H15 186.214
- H16 182.579
- H17 147.941
- H18 129.501 /

TINC(J) inlet temperature of cold stream

- / C1 268.793
 - C2 246.57
 - C3 234.198
 - C4 204.446
 - C5 183.188
 - C6 179.915
 - C7 144.942
 - C8 126.521
 - C9 111.587 /

TOUTC(J) outlet temperature of cold stream

- / C1 269.293
 - C2 247.07
 - C3 234.698
 - C4 204.946
 - C5 183.688
 - C6 180.415
 - C7 145.442
 - C8 127.021
 - C9 112.087

FH(I) heat capacity of hot stream

/

/ H1 263.3583

H2 272.9911

H3 286.2356

H4 351.4749

H5 1480.733

H6 1276.324

H7 461.5032

H8 374.2515

H9 354.1076

H10 22399

H11 13446.61

H12 12558.84

- H13 3152.466
- H14 2504.468
- H15 2901.974
- H16 1036.471
- H17 410.6263

H18 149.4232 /

FC(J) heat capacity of cold stream

C1 396200

1

- C2 320063
- C3 258800
- C4 221200
- C5 172800
- C6 65600
- C7 62400
- C8 23300
- C9 7830 /

FW(I,J) heat capacity of work

TCUIN(CU) inlet temperature of cold utility

/ CU1 295 CU2 268 CU3 246

CU4	234	
CU5	204	
CU6	183	
CU7	180	
CU8	145	
CU9	127	
CU10	111	1

TCUOUT(CU) outlet temperature of cold utility

		,	-	
1	CU1	300		
	CU2	269		
	CU3	247		
	CU4	235		
	CU5	205		
	CU6	184		
	CU7	181		
	CU8	146		
	CU9	128		
	CU10	112	1	
CC	U(CU) u	nit cost	for cold utilit	y
/	CUI	22		
	CU2	140		
	CU3	160		
	CU4	180		
	CU5	300		
	CU6	400		
	CU7	450		
	CU8	500		
	CU9	600		
	CU10	700	/	

;

FW(I,J) =0;

FW('H10','C1') = 851.636;

÷

FW('H11','C2') = 621.772; FW('H12','C3') = 450.434; FW('H13','C4') = 388.078; FW('H14','C5') = 263.583; FW('H15','C6') = 88.14; FW('H16','C7') = 230.15; FW('H16','C7') = 55.29; FW('H18','C9') = 21.027;

VARIABLES

TINH(I)	inlet temperature of hot stream
0	objective function
W	Shaft Work Requirement

;

POSITIVE VARIABLES

dt(I,J,K)	temperature approach for match ij at the left of stage k
dtcu(I,CU)	temperature approach for match hot stream i and cold utility
dthu(J)	temperature approach for match cold stream j and hot utility
q(I,J,K)	heat exchanged between hot stream i and cold stream j at

stage k

qcu(I,CU)	heat exchanged between hot stream i and cold utility
qhu(J)	heat exchanged between cold stream j and hot utility
tH(I,K)	temperature of hot stream i at location k
tC(J,K)	temperature of cold stream j at location k

;

;

BINARY VARIABLE

z(I,J,K)	Binary variable of HEX Process to Process
zcu(I,CU)	Binary variable of cold utility
zhu(J)	Binary variable of hot utility

TINH.fx('H1') = 303.15;TINH.fx('H2') = 271.634;TINH.fx('H3') = 249.582;TINH.fx('H4') = 236.977;TINH.fx('H4') = 207.45;TINH.fx('H6') = 186.17;TINH.fx('H6') = 183.036;TINH.fx('H8') = 148.15;TINH.fx('H9') = 129.446;

TINH.lo('H10') = 299; TINH.lo('H11') = 272; TINH.lo('H12') = 250; TINH.lo('H13') = 240; TINH.lo('H14') = 208; TINH.lo('H14') = 187; TINH.lo('H15') = 187; TINH.lo('H16') = 183; TINH.lo('H17') = 148; TINH.lo('H18') = 130;

TINH.up('H10') = 308.951; TINH.up('H11') = 285.491; TINH.up('H12') = 260.839; TINH.up('H13') = 281.75; TINH.up('H14') = 248.822; TINH.up('H14') = 198.068; TINH.up('H15') = 198.068; TINH.up('H16') = 232.016; TINH.up('H17') = 184.059; TINH.up('H18') = 162.963;

O

86

o

EQUATIONS

;

σ

OHB_H(I)	overall heat balance for each hot stream
OHB_C(J)	overall heat balance for each cold stream
SHB_H(I,K)	heat balance at each stage for hot stream
SHB_C(J,K)	heat balance at each stage for cold stream
TINHASSGN(I)	assignment of inlet temperature of hot stream i
TINCASSGN(J)	assignment of inlet temperature of cold stream j
FH1(I,K)	feasibility of temperature at each stage for hot stream
FH2(I)	feasibility of temperature at last stage for hot stream
FC1(J,K)	feasibility of temperature at each stage for cold stream
FC2(J)	feasibility of temperature at first stage for cold stream
HULOAD(I)	hot utility load
CULOAD(J)	cold utility load
HECOUNTI(I,J,I	K) count heat exchanger
HECOUNT2(I,C	U) count hot utility
HECOUNT3(J)	count cold utility
APPTEMPL(I,J,F	() approach temperature at the left of stage k
APPTEMPR(I,J,I	() approach temperature at the right of stage k
APPTEMPCU(I,	CU) approach temperature at cold utility of hot stream i
APPTEMPHU(J)	approach temperature at hot utility of cold stream j
APPTEMPLIMI	(I,J,K) limiting temperature approach
APPTEMPCUM	N (I,CU) approach temperature at cold utility
CONSTMATCH	define match of cold utility
CONSTMATCH	C define match of hot utility
OBJFN	objective function
SHAFTWORK	shaft work requirement

* Overall Energy balance.... $OHB_H(I) \dots (TINH(I)-TOUTH(I))$ *FH(I) = e = SUM((J,K),q(I,J,K))+SUM(CU,qcu(I,CU)); $OHB_C(J) \dots (TOUTC(J)-TINC(J))$ *FC(J) = e = SUM((I,K),q(I,J,K))+qhu(J);

-

* Heat balance at each stage..... SHB_H(I,K) $(ORD(K) \ NE \ CARD(K)) \ .. \ (tH(I,K)-tH(I,K+1))*FH(I) = e=$ SUM(J,q(I,J,K)); SHB_C(J,K) $(ORD(K) \ NE \ CARD(K)) \ .. \ (tC(J,K)-tC(J,K+1))*FC(J) = e=$ SUM(I,q(I,J,K));

* Assignment Temperature.....
TINHASSGN(I) .. TINH(I) =e= tH(I,'firstlocation');
TINCASSGN(J) .. TINC(J) =e= tC(J,'lastlocation');

* Feasible Temperature.... FH1(I,K) $(ORD(K) NE CARD(K)) \dots tH(I,K) = g = tH(I,K+1);$ FH2(I) ... TOUTH(I) = I = tH(I,'lastlocation'); FC1(J,K) $(ORD(K) NE CARD(K)) \dots tC(J,K) = g = tC(J,K+1);$ FC2(J) ... TOUTC(J) = g = tC(J,'firstlocation');

* Heat&Cold utility..... HULOAD(I) .. (tH(I,'lastlocation')-TOUTH(I))*FH(I) =e= SUM(CU,qcu(I,CU)); CULQAD(J) .. (TOUTC(J)-tC(J,'firstlocation'))*FC(J) =e= qhu(J);

* Counting existing heat exchanger at each stage.....
HECOUNT1(I,J,K)\$(ORD(K) NE CARD(K)) .. q(I,J,K)-OMEGA*z(I,J,K) =I= 0;
HECOUNT2(I,CU).. qcu(I,CU)-OMEGA*zcu(I,CU) =I= 0;
HECOUNT3(J) .. qhu(J)-OMEGA*zhu(J) =I= 0;

* Calculation of approach temperature..... APPTEMPL(I,J,K)(ORD(K) NE CARD(K))... dt(I,J,K) = I = tH(I,K) - tC(J,K) + GAMMA*(1-z(I,J,K));APPTEMPR(I,J,K)(ORD(K) NE CARD(K))... dt(I,J,K+1) = I = tH(I,K+1) - tC(J,K+1) + GAMMA*(1-z(I,J,K));

```
APPTEMPCU(I,CU)..dtcu(I,CU)=I=tH(I,'lastlocation')-TCUOUT(CU)+GAMMA*(1-zcu(I,CU));APPTEMPHU(J)..dthu(J)=I=TOUTC(J)-tC(J,'firstlocation')+GAMMA*(1-zhu(J));APPTEMPLIMIT(I,J,K)$(ORD(K) NE CARD(K))..dt(I,J,K)GRD(K)NE CARD(K))..dt(I,J,K)g=EMAT;CONSTMATCH..SUM((I,CU),zcu(I,CU))=I=0;
```

```
* Objective Function......

OBJFN .. O =e=

SUM((I,CU),CCU(CU)*qcu(I,CU))+CHU*SUM(J,qhu(J))+CF*SUM((I,J,K),z(I,J,K

))+SUM((I,CU),CF*zcu(I,CU))+CF*SUM(J,zhu(J))+

CW*SUM((I,J),FW(I,J)*(TINH(I)-TOUTC(J)));

SHAFTWORK .. W =e= SUM((I,J),FW(I,J)*(TINH(I)-TOUTC(J)));

;

MODEL STAGEMODEL SYNHEAT model /ALL/;

SOLVE STAGEMODEL USING MIP MINIMISING O;

DISPLAY z.1,zcu.1,zhu.1,tH.1,tC.1,q.1,qcu.1,qhu.1,O.1,W.1,FW;
```

Appendix B The Multistage Cascade Refrigeration of LNG Process Flowsheet and Stream Condition in PROII

	T _s	T _t	Ps	Pt	F
	(°C)	(°C)	(atm)	₍ atm)	(kg/s)
H11	12.34	-1.36	4.48	4.48	458.692
H12	8.6	-1.36	16.5	16.5	332.718
H13	30	-1.52	39.47	39.47	108.733
H14	35.8	25.43	9.5	9.5	652.143
H21	-12.31	-23.57	2.12	2.12	334.604
H22	-1.36	-23.63	16.5	16.5	332.718
H23	-1.52	-23.57	39.47	39.47	108.733
H31	-23.63	-36	16.5	16.5	332.718
H32	-24.33	-35.57	6.02	6.02	216.771
H33	-23.57	-36.17	39.47	39.47	108.733
H41	-35.57	-65.73	6.02	6.02	216.771
H42	-36.17	-65,7	39.47	39.47	108.733
H51	-75.08	-86.94	2.454	2.454	73.108
H52	-41.13	-86.9	35.5	35.5	136.283
H53	-65.7	-86.98	39.47	39.47	108.733
H61	-86.9	-90.57	35.5	35.5	136.283
H62	-8 6.98	-90.11	39.47	39.47	108.733
H71	-89.09	-125.21	9.402	9.402	29.39
H72	-110.19	-125	3.536	3.536	9.16
H73	-90.11	-125	39.47	39.47	108.733
H81	-125	-143.65	3.536	3.536	9.16
H82	-125	-143.7	39.47	39.47	108.733
H91	-143.7	-155	39.47	39.47	108.733
C1	-4.36	-4.36	4.08	4.08	652.143
C2	-26.58	-26.58	1.89	1.89	458.692
C3	-38.95	-38.95	1.15	1.15	334.604
C4	-68.7	-68.7	5.37	5.37	332.718
C5	-89.96	-89.9	2.12	2.12	216.771
C6	-93.24	-93.24	1.8	1.8	73.108
C7	-128.21	-128.21	8.15	8.15	136.283
C8	-146.63	-146.6	2.94	2.94	29.39
C9	-161.56	-161.56	1	1	9.16

	Ts	T _t	P _s	Pt	F
	(°C)	(°C)	(atm)	₍ atm)	(kg/s)
H11	12.351	-1.373	4.48	4.48	425.756
H12	9.858	-1.36	16.5	16.5	307.808
H13	30	-1.36	39.47	39.47	108.733
H14	36.204	25.43	9.5	9.5	607.524
H21	-12.301	-23.563	2.12	2.12	309.773
H22	-1.36	-23.56	16.5	16.5	307.808
H23	-1.36	-23,55	39.47	39.47	108.733
H31	-23.56	-35.269	16.5	16.5	307.808
H32	-22.799	-36	6.02	6.02	198.524
H33	-23.55	-36	39.47	39.47	108.733
H41	-36	-65.734	6.02	6.02	198.524
H42	-36	-65.7	39.47	39.47	108.733
H51	-50.197	-86,936	2.454	2.454	84.691
H52	-64.411	-86,9	25	25	84.346
H53	-65.7	-86.93	39.47	39.47	108.733
H61	-86.9	-101.024	25	25	84.346
H62	-86.93	-101	39.47	39.47	108.733
H71	-89.117	-125.21	9.402	9.402	29.393
H72	-115.271	-125	3.536	3.536	9.043
H73	-101	-125	39.47	39.47	108.733
H81	-125	-143.66	3.536	3.536	9.043
H82	-125	-143.6	39.47	39.47	108.733
H91	-143.6	-155	39.47	39.47	108.733
C1	-4.36	-4.35	4.08	4.08	607.524
C2	-26.58	-26.57	1.89	1.89	425.756
C3	-38.95	-38.94	1.15	1.15	309.773
C4	-68.7	-68.7	5.37	5.37	307.808
C5	-89.96	-89.95	2.12	2.12	198.524
C6	-104.028	-104.018	1	1	84.691
C7	-128.208	-128.198	8.15	8.15	84.346
C8	-146.63	-146.62	2.94	2.94	29.393
<u>C9</u>	-157.981	-157.98	1.33	1.33	9.043

Ø

Table B2 The condition of multistage cascade refrigeration of LNG process fromresult of Shaft work targeting technique

Table B3The condition of multistage cascade refrigeration of LNG process fromresult of the Extended Pinch Analysis and Design Methodology and novel exergydiagram

	Ts	Tt	Ps	P _t	F
	(°C)	(°C)	(at m)	₍ atm)	(kg/s)
H11	12.351	-1.363	4.48	4.48	407.099
H12	0.674	-1.36	14.78	14.78	275.825
H13	30	-1.516	39.47	39.47	108.733
H14	35.932	25.43	9.5	9.5	561.128
H21	-9.612	-23.563	2.12	2.12	297.343
H22	-1.36	-23.681	14.78	14.78	275.825
H23	-1.516	-23.568	39.47	39.47	108.733
H31	-23.681	-39.011	14.78	14.78	275.825
H32	-23.906	-40.219	6.02	6.02	189.251
H33	-23.568	-38.882	39.47	39.47	108.733
H41	-40.219	-65.724	6.02	6.02	189.251
H42	-38.882	-65.7	39.47	39.47	108.733
H51	-50,286	-86.936	2.45	2.45	79.392
H52	-65.443	-86.9	25	25	77.968
H53	-65.7	-86.988	39.47	39.47	108.733
H61	-86.9	-101.024	25	25	77.968
H62	-86.988	-101.181	39.47	39.47	108.733
• H71	-89.122	-125.21	9.402	9.402	27.722
H72	-121.905	-125	3.536	3.536	8.086
H73	-101.181	-125	39.47	39.47	108.733
H81	-125	-144.515	3.536	3.536	8.086
H82	-125	-143.704	39.47	39.47	108.733
H91	-143.704	-155.325	39.47	2.2	108.733
C 1	-4.36	-4.36	4.08	4.08	561.128
C2	-26.58	-26.58	1.89	1.89	407.099
C3	-42.19	-42.19	1	1	297.343
C4	-68.7	-68.7	5.37	5.37	275.825
C5	-89.96	-89.96	2.12	2.12	189.251
C 6	-104.028	-104.028	1	1	79.392
C7	-128.208	-128.208	8.15	8.15	77.968
C8	-146.63	-146.63	2.94	2.94	27.722
<u>C9</u>	-157.032	-157.032	1.43	1.43	8.086

σ

-

Figure B1 The multistage cascade refrigeration of LNG process in PROII.

Appendix C HEN Retrofit

Model of HEN Retrofit for Case 1 (new exchangers \geq 20)

SETS

I hot streams

/H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18/

J cold streams / C1,C2,C3,C4,C5,C6,C7,C8,C9 /

.

- K location / firstlocation,location2*location26,lastlocation /
- CU cold utility / CU1,CU2,CU3,CU4,CU5,CU6,CU7,CU8,CU9,CU10/

;

SCALARS

OMEGA	upper bound for heat exchange /999999/
GAMMA	upper bound for temperature difference /999999/
EMAT	exchanger minimum approach temperature /3/
CHU	unit cost for hot utility /1000/
CF	fixed charge for exchangers /99000000/
CW	unit cost for power consumption /200000/

o ;

PARAMETERS

TOUTH(I) outlet temperature of cold stream

1	H1	271.634
	H2	249.582
	H3	236.977
	H4	207.45
	H5	186.17
	H6	183.036
	H7	148.15
	H8	129.446
	H9	118.15

- H10 298.58
- H11 271.79
- H12 249.58
- H13 237.15
- H14 207.416
- H15 186.214
- H16 182.579
- H17 147.941
- H18 129.501 /

 $TINC(J) \quad inlet \ temperature \ of \ cold \ stream$

- / C1 268.793
 - C2 246.57
 - C3 234.198
 - C4 204.446
 - C5 183.188
 - C6 179.915
 - C7 144.942
 - C8 126.521
 - C9 111.587 /

 $\ensuremath{\text{TOUTC}}(J)$ outlet temperature of cold stream

- / C1 269.293
 - C2 247.07
 - C3 234.698
 - C4 204.946
 - C5 183.688
 - C6 180.415
 - C7 145.442
 - C8 127.021
 - C9 112.087 /
- FH(I) heat capacity of hot stream
- / H1 263.3583
 - H2 272.9911

- H3 286.2356
- H4 351.4749
- H5 1480.733

.

- H6 1276.324
- H7 461.5032
- H8 374.2515
- H9 354.1076
- H10 22399
- H11 13446.61
- H12 12558.84
- H13 3152.466
- H14 2504.468
- H15 2901.974
- H16 1036.471
- H17 410.6263
- H18 149.4232 /

FC(J) heat capacity of cold stream

- / C1 396200
 - C2 320063
 - C3 258800
 - C4 221200
 - C5 172800
 - C6 65600
 - C7 62400
 - C8 23300
 - C9 7830 /

FW(I,J) heat capacity of work

TCUIN(CU) inlet temperature of cold utility

/ CU1 295 CU2 268 CU3 246 .

Ø

CU4	234	
CU5	204	
CU6	183	
CU7	180	
CU8	145	
CU9	127	
CU10	111	

mperature of cold utility IT(CU) +1

1

σ

ICI	JUUI(C	(U) outlet temperature
/	CUI	300
	CU2	269
	CU3	247
	CU4	235
	CU5	205
	CU6	184
	CU7	181
	CU8	146
	CU9	128
	CU10	112 /
CC	U(CU) u	nit cost for cold utility
1	CU1	22
	CU2	140
	CU3	160
	CU4	180
	CU5	300
	CU6	400
	CU7	450
	CU8	500
	CU9	600
	CU10	700 /

;

FW(I,J) =0;

FW('H10','C1') = 851.636;

FW('H11','C2') = 621.772; FW('H12','C3') = 450.434; FW('H13','C4') = 388.078; FW('H14','C5') = 263.583; FW('H15','C6') = 88.14; FW('H16','C7') = 230.15; FW('H16','C7') = 55.29;FW('H18','C9') = 21.027;

 $ex_z(I,J,K);$

ex z(I,J,K) = 0;ex_z('H11','C1','firstlocation')= 1; ex z('H15','C1','firstlocation')= 1; ex_z('H1','C1','firstlocation')= 1; ex z('H2', 'C2', 'location2') = 1;ex_z('H12','C2','location2')= 1; ex_z('H15','C2','location2')= 1; ex z('H17', 'C3', 'location3') = 1;ex z('H15', 'C3', 'location3') = 1;ex z('H3', 'C3', 'location3') = 1;ex z('H4', 'C4', 'location4') = 1;ex z('H17', 'C4', 'location4') = 1;ex_z('H20','C5','location5')= 1; ex z('H18','C5','location5') = 1;ex z('H5', 'C5', 'location5') = 1;ex z('H6', 'C6', 'location6') = 1;ex z('H20','C6','location6') = 1;ex z('H7', 'C7', 'location7') = 1;ex z('H23','C7','location7')= 1; ex z('H21','C7','location7') = 1; $ex_{z}('H23', 'C8', 'location8') = 1;$ ex_z('H8','C8','location8')= 1;

σ

o.

ex_z('H9','C9','location9')= 1;

VARIABLES

TİNH(I)	inlet temperature of hot stream
0	objective function
W	Shaft Work Requirement

;

POSITIVE VARIABLES

dt(I,J,K)	temperature approach for match ij at the left of stage k
dtcu(I,CU)	temperature approach for match hot stream i and cold utility
dthu(J)	temperature approach for match cold stream j and hot utility
q(I,J,K)	heat exchanged between hot stream i and cold stream j at
k	

stage k

qcu(I,CU)	heat exchanged between hot stream i and cold utility
qhu(J)	heat exchanged between cold stream j and hot utility
tH(I,K)	temperature of hot stream i at location k
tC(J,K)	temperature of cold stream j at location k

0

BINARY VARIABLE

z(I,J,K)	Binary variable of HEX Process to Process
zcu(I,CU)	Binary variable of cold utility
zhu(J)	Binary variable of hot utility

;

σ

;

TINH.fx('H1') = 303.15; TINH.fx('H2') = 271.634; TINH.fx('H3') = 249.582; TINH.fx('H4') = 236.977; TINH.fx('H5') = 207.45; TINH.fx('H6') = 186.17; TINH.fx('H7') = 183.036; TINH.fx('H8') = 148.15; TINH.fx('H9') = 129.446;

TINH.lo('H10') = 299; TINH.lo('H11') = 272; TINH.lo('H12') = 250; TINH.lo('H12') = 240; TINH.lo('H13') = 240; TINH.lo('H14') = 208; TINH.lo('H15') = 187; TINH.lo('H15') = 187; TINH.lo('H16') = 183; TINH.lo('H17') = 148; TINH.lo('H18') = 130;

TINH.up('H10') = 308.951; TINH.up('H11') = 285.491; TINH.up('H12') = 260.839; TINH.up('H13') = 281.75; TINH.up('H14') = 248.822; TINH.up('H14') = 198.068; TINH.up('H15') = 198.068; TINH.up('H16') = 232.016; TINH.up('H17') = 184.059; TINH.up('H18') = 162.963;

EQUATIONS

OHB_H(I)	overall heat balance for each hot stream
OHB_C(J)	overall heat balance for each cold stream
SHB_H(I,K)	heat balance at each stage for hot stream
SHB_C(J,K)	heat balance at each stage for cold stream
TINHASSGN(I)	assignment of inlet temperature of hot stream i
TINCASSGN(J)	assignment of inlet temperature of cold stream j

FH1(I,K)feasibility of temperature at each stage for hot stream FH2(I)feasibility of temperature at last stage for hot stream FC1(J,K) feasibility of temperature at each stage for cold stream FC2(J) feasibility of temperature at first stage for cold stream HULOAD(I) hot utility load cold utility load CULOAD(J)HECOUNT1(I,J,K) count heat exchanger HECOUNT2(I,CU) count hot utility HECOUNT3(J) count cold utility approach temperature at the left of stage k APPTEMPL(1,J,K) approach temperature at the right of stage k APPTEMPR(I,J,K) APPTEMPCU(I,CU) approach temperature at cold utility of hot stream i APPTEMPHU(J) approach temperature at hot utility of cold stream j APPTEMPLIMIT(I,J,K) limiting temperature approach APPTEMPCUMIN (I,CU) approach temperature at cold utility CONSTMATCH define match of cold utility CONSTMATCHC define match of hot utility newmatchz(I,J,K)**OBJFN** objective function SHAFTWORK shaft work requirement

:

* Overall Energy balance.... OHB_H(I) .. (TINH(I)-TOUTH(I))*FH(I) =e= SUM((J,K),q(I,J,K))+SUM(CU,qcu(I,CU));OHB_C(J) .. (TOUTC(J)-TINC(J))*FC(J) =e= SUM((I,K),q(I,J,K))+qhu(J);

* Heat balance at each stage..... SHB_H(I,K) $(ORD(K) \ NE \ CARD(K)) \ .. \ (tH(I,K)-tH(I,K+1))*FH(I) = e=$ SUM(J,q(I,J,K)); SHB_C(J,K) $(ORD(K) \ NE \ CARD(K)) \ .. \ (tC(J,K)-tC(J,K+1))*FC(J) = e=$ SUM(I,q(I,J,K)); * Assignment Temperature.....
TINHASSGN(I) .. TINH(I) =e= tH(I,'firstlocation');
TINCASSGN(J) .. TINC(J) =e= tC(J,'lastlocation');

* Feasible Temperature.... FH1(I,K) $(ORD(K) NE CARD(K)) \dots tH(I,K) = g= tH(I,K+1);$ FH2(I) .. TOUTH(I) = = tH(I,'lastlocation'); FC1(J,K) $(ORD(K) NE CARD(K)) \dots tC(J,K) = g= tC(J,K+1);$ FC2(J) .. TOUTC(J) = g= tC(J,'firstlocation');

* Heat&Cold utility..... HULOAD(I) .. (tH(I,'lastlocation')-TOUTH(I))*FH(I) =e= SUM(CU,qcu(I,CU)); CULOAD(J) .. (TOUTC(J)-tC(J,'firstlocation'))*FC(J) =e= qhu(J);

* Counting existing heat exchanger at each stage.....
HECOUNT1(I,J,K)\$(ORD(K) NE CARD(K)) ... q(I,J,K)-OMEGA*z(I,J,K) =I= 0;
HECOUNT2(I,CU)... qcu(I,CU)-OMEGA*zcu(I,CU) =I= 0;
HECOUNT3(J) ... qhu(J)-OMEGA*zhu(J) =I= 0;

* Calculation of approach temperature $APPTEMPL(I,J,K) (ORD(K) NE CARD(K)) \dots dt(I,J,K) = l = l$ tH(I,K)tC(J,K)+GAMMA*(1-z(I,J,K)); $APPTEMPR(I,J,K) (ORD(K) NE CARD(K)) \dots dt(I,J,K+1) = I = tH(I,K+1)$ tC(J,K+1)+GAMMA*(1-z(I,J,K));APPTEMPCU(I,CU). tH(I,'lastlocation')dtcu(I,CU) =]= TCUOUT(CU)+GAMMA*(1-zcu(I,CU)); APPTEMPHU(J) ... dthu(J) = I = TOUTC(J) - tC(J) + GAMMA*(1 - I) + GAMA*(1 - I) + GAMMA*(1 - I) + GAMA*(1 - I) + GAMMA*(1 - I) + GAMA*(1 - I) + GAMMA*(1 - I) + GAMA*(1 zhu(J));APPTEMPLIMIT(I,J,K) $(ORD(K) NE CARD(K)) \dots dt(I,J,K) = g = EMAT;$ APPTEMPCUMIN (I,CU) ... dtcu(I,CU) = g = EMAT;CONSTMATCH.. SUM((I,CU), zcu(I,CU)) = l = 2;

ο

```
CONSTMATCHC.. SUM((J),zhu(J)) =l= 0;
CONSTMATCHHX.. SUM((I,J,K),newz(I,J,K)) =l= 20;
newmatchz(I,J,K)(ORD(K) NE CARD(K)).. newz(I,J,K) =E= z(I,J,K)-ex z(I,J,K);
```

```
* Objective Function.....

OBJFN .. O =e=

SUM((I,CU),CCU(CU)*qcu(I,CU))+CHU*SUM(J,qhu(J))+CF*SUM((I,J,K),newz(I

,J,K))+SUM((I,CU),CF*zcu(I,CU))+CF*SUM(J,zhu(J))+

CW*SUM((I,J),FW(I,J)*(TINH(I)-TOUTC(J)));

SHAFTWORK .. W =e= SUM((I,J),FW(I,J)*(TINH(I)-TOUTC(J)));

;

MODEL STAGEMODEL SYNHEAT model /ALL/;

SOLVE STAGEMODEL USING MIP MINIMISING O;
```

DISPLAY z.l,ex_z,newz.l,zcu.l,zhu.l,tH.l,tC.l,q.l,qcu.l,qhu.l,O.l,W.l,FW;

Model of HEN Retrofit for Case 2 (new exchangers \geq 10)

SETS

I hot streams

```
/H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18/
```

```
J cold streams / C1,C2,C3,C4,C5,C6,C7,C8,C9 /
```

- K location / firstlocation,location2*location26,lastlocation /
- CU cold utility / CU1,CU2,CU3,CU4,CU5,CU6,CU7,CU8,CU9,CU10/

;

SCALARS

OMEGA	upper bound for heat exchange /999999/
GAMMA	upper bound for temperature difference /999999/
EMAT	exchanger minimum approach temperature /3/
CHU	unit cost for hot utility /1000/
CF	fixed charge for exchangers /99000000/
CW	unit cost for power consumption /200000/

Ø

PARAMETERS

;

.

TOUTH(I) out	et tempera	ature of cold stream	
/ H1	271.634	4.1	
H2	249.582		
H3	236.977		
H4	207.45		
H5	186.17		
H6	183.036		
H7	148.15		
H8	129.446		
H9	118.15		
H10	298.58		
H11	271.79		
H12	249.58		
H13	237.15		
H14	207.416		
H15	186.214		
H16	182.579		a
H17	147.941		
H18	129.501	1	
TINC(J) i	nlet tempe	erature of cold stream	
/ C1	268.793		
C2	246.57	2	
C3	234.198		
C4	204.446		
C5	183.188		

- C6 179.915
- C7 144.942
- C8 126.521

o

C9 111.587 /

TOUTC(J) outlet temperature of cold stream

- / C1 269.293
 - C2 247.07
 - C3 234.698
 - C4 204.946
 - C5 183.688
 - C6 180.415
 - C7 145.442
 - C8 127.021
 - C9 112.087 /
- FH(I) heat capacity of hot stream
- / H1 263.3583
 - H2 272.9911
 - H3 286.2356
 - H4 351.4749
 - H5 1480.733
 - H6 1276.324
 - H7 461.5032
 - H8 374.2515
 - H9b 354.1076
 - H10 22399
 - H11 13446.61
 - H12 12558.84
 - H13 3152.466
 - H14 2504.468
 - H15 2901.974
 - H16 1036.471
 - H17 410.6263
 - H18 149.4232
- FC(J) heat capacity of cold stream

- / C1 396200
 - C2 320063

 C3
 258800

 C4
 221200

 C5
 172800

 C6
 65600

 C7
 62400

 C8
 23300

 C9
 7830

FW(I,J) heat capacity of work

TCUIN(CU) inlet temperature of cold utility

/	CUI	295	
	CU2	268	
	CU3	246	
	CU4	234	
	CU5	204	
	CU6	183	
	CU7	180	
	CU8	145	
	CU9	127	
	CU10	111	
_			

TCUOUT(CU) outlet temperature of cold utility

/

/	CU1	300	
	CU2	269	
	CU3	247	
	CU4	235	
	CU5	205	
	CU6	184	
	CU7	181	
	CU8	146	
	CU9	128	
	CU10	112	/

CCU(CU) unit cost for cold utility

1	CUI	22	
	CU2	140	
	CU3	160	
	CU4	180	
	CU5	300	
	CU6	400	
	CU7	450	
	CU8	500	
	CU9	600	
	CU10	700	1

;

.

FW(I,J) =0; FW('H10','C1') = 851.636; FW('H11','C2') = 621.772; FW('H12','C3') = 450.434; FW('H13','C4') = 388.078; FW('H14','C5') = 263.583; FW('H15','C6') = 88.14; FW('H16','C7') = 230.15; FW('H16','C7') = 55.29; FW('H18','C9') = 21.027;

ex_z(I,J,K); ex_z(I,J,K) = 0; ex_z('H11','C1','firstlocation')= 1; ex_z('H15','C1','firstlocation')= 1; ex_z('H1','C1','firstlocation')= 1; ex_z('H12','C2','location2')= 1; ex_z('H12','C2','location2')= 1; ex_z('H15','C2','location2')= 1; ex_z('H15','C3','location3')= 1; ex_z('H3','C3','location3')= 1; ex_z('H4','C4','location4')= 1; ex_z('H17','C4','location4')= 1; ex_z('H20','C5','location5')= 1; ex_z('H18','C5','location5')= 1; ex_z('H5','C5','location5')= 1; ex_z('H5','C6','location6')= 1; ex_z('H20','C6','location6')= 1; ex_z('H20','C6','location6')= 1; ex_z('H23','C7','location7')= 1; ex_z('H23','C7','location7')= 1; ex_z('H23','C8','location8')= 1; ex_z('H8','C8','location8')= 1; ex_z('H9','C9','location9')= 1;

VARIABLES

;

TINH(I)	inlet temperature of hot stream
0	objective function
W	Shaft Work Requirement

POSITIVE VARIABLES

	dt(I,J,K)	temperature approach for match ij at the left of stage k
	dtcu(I,CU)	temperature approach for match hot stream i and cold utility
	dthu(J)	temperature approach for match cold stream j and hot utility
	q(I,J,K)	heat exchanged between hot stream i and cold stream j at
stage	e k	
	qcu(I,CU)	heat exchanged between hot stream i and cold utility
	qhu(J)	heat exchanged between cold stream j and hot utility
	tH(I,K)	temperature of hot stream i at location k
	tC(J,K)	temperature of cold stream j at location k

σ

BINARY VARIABLE

z(I,J,K)	Binary variable of HEX Process to Process
zcu(I,CU)	Binary variable of cold utility
zhu(J)	Binary variable of hot utility

;

TINH.fx('H1') = 303.15; TINH.fx('H2') = 271.634; TINH.fx('H3') = 249.582; TINH.fx('H4') = 236.977; TINH.fx('H4') = 207.45; TINH.fx('H5') = 186.17; TINH.fx('H6') = 186.17; TINH.fx('H7') = 183.036; TINH.fx('H8') = 148.15; TINH.fx('H9') = 129.446;

TINH.lo('H10') = 299; TINH.lo('H11') = 272; TINH.lo('H12') = 250; TINH.lo('H12') = 240; TINH.lo('H13') = 240; TINH.lo('H14') = 208; TINH.lo('H15') = 187; TINH.lo('H15') = 187; TINH.lo('H16') = 183; TINH.lo('H17') = 148; TINH.lo('H18') = 130;

TINH.up('H10') = 308.951; TINH.up('H11') = 285.491; TINH.up('H12') = 260.839; TINH.up('H13') = 281.75; TINH.up('H14') = 248.822;

TINH.up('H15') = 198.068; TINH.up('H16') = 232.016; TINH.up('H17') = 184.059; TINH.up('H18') = 162.963;

EQUATIONS

0

OHB_H(I) ov	rerall heat balance for each hot stream	
OHB_C(J) ov	rerall heat balance for each cold stream	
SHB_H(I,K) hea	at balance at each stage for hot stream	
SHB_C(J,K) hea	t balance at each stage for cold stream	
TINHASSGN(I) as	signment of inlet temperature of hot stream i	
TINCASSGN(J) as	signment of inlet temperature of cold stream j	
FH1(I,K) fea	asibility of temperature at each stage for hot stream	
FH2(I) fea	asibility of temperature at last stage for hot stream	
FC1(J,K) fea	asibility of temperature at each stage for cold stream	
FC2(J) fea	asibility of temperature at first stage for cold stream	
HULOAD(I) ho	t utility load	
CULOAD(J) co	ld utility load	
HECOUNT1(I,J,K)	count heatexchanger	
HECOUNT2(I,CU)	count hot utility	
HECOUNT3(J)	count cold utility	
APPTEMPL(I,J,K)	approach temperature at the left of stage k	
APPTEMPR(I,J,K)	approach temperature at the right of stage k	
APPTEMPCU(I,CU) approach temperature at cold utility of hot stream i	
APPTEMPHU(J)	approach temperature at hot utility of cold stream j	
APPTEMPLIMIT(I,	J,K) limiting temperature approach	
APPTEMPCUMIN (I,CU) approach temperature at cold utility		
CONSTMATCH	define match of cold utility	
CONSTMATCHC	define match of hot utility	
newmatchz(I,J,K)		
OBJFN	objective function	

* Overall Energy balance.... $OHB_H(I) \dots (TINH(I)-TOUTH(I))*FH(I) = e =$ SUM((J,K),q(I,J,K))+SUM(CU,qcu(I,CU)); $OHB_C(J) \dots (TOUTC(J)-TINC(J))*FC(J) = e = SUM((I,K),q(I,J,K))+qhu(J);$

* Heat balance at each stage..... SHB_H(I,K) $(ORD(K) NE CARD(K)) \dots (tH(I,K)-tH(I,K+1))*FH(I) =e=$ SUM(J,q(I,J,K)); SHB_C(J,K) $(ORD(K) NE CARD(K)) \dots (tC(J,K)-tC(J,K+1))*FC(J) =e=$ SUM(I,q(I,J,K));

* Assignment Temperature.....
TINHASSGN(I) .. TINH(I) =e= tH(I,'firstlocation');
TINCASSGN(J) .. TINC(J) =e= tC(J,'lastlocation');

* Feasible Temperature.... $FH \neq (I,K) \pmod{(ORD(K) NE CARD(K))}$.. tH(I,K) = g = tH(I,K+1); FH2(I).. TOUTH(I) = I = tH(I,'lastlocation'); $FC1(J,K) \pmod{(ORD(K) NE CARD(K))}$.. tC(J,K) = g = tC(J,K+1);FC2(J).. TOUTC(J) = g = tC(J,'firstlocation');

* Heat&Cold utility..... HULOAD(I) .. (tH(I,'lastlocation')-TOUTH(I))*FH(I) =e= SUM(CU,qcu(I,CU)); CULOAD(J) .. (TOUTC(J)-tC(J,'firstlocation'))*FC(J) =e= qhu(J);

* Counting existing heat exchanger at each stage.....
HECOUNT1(I,J,K)\$(ORD(K) NE CARD(K)) .. q(I,J,K)-OMEGA*z(I,J,K) =I= 0;
HECOUNT2(I,CU).. qcu(I,CU)-OMEGA*zcu(I,CU) =I= 0;
HECOUNT3(J) .. qhu(J)-OMEGA*zhu(J) =I= 0;

```
* Calculation of approach temperature.....
APPTEMPL(I,J,K)(ORD(K) \ NE \ CARD(K)) \ .. \ dt(I,J,K) = l = tH(I,K)-
tC(J,K)+GAMMA*(1-z(I,J,K));
APPTEMPR(I,J,K)(ORD(K) \ NE \ CARD(K)) \ .. \ dt(I,J,K+1) = I = tH(I,K+1)-
tC(J,K+1)+GAMMA*(1-z(I,J,K));
APPTEMPCU(I,CU)..
                           dtcu(I,CU)
                                      =]=
                                                       tH(I,'lastlocation')-
TCUOUT(CU)+GAMMA*(1-zcu(I,CU));
APPTEMPHU(J) ... dthu(J) = I = TOUTC(J) - tC(J, 'first location') + GAMMA*(1-
zhu(J));
APPTEMPLIMIT(I,J,K)(ORD(K) NE CARD(K)) \dots dt(I,J,K) = g = EMAT;
APPTEMPCUMIN (I,CU).. dtcu(I,CU) = g = EMAT;
CONSTMATCH.. SUM((I,CU),zcu(I,CU)) = l = 2;
CONSTMATCHC.. SUM((J), zhu(J)) = I = 0;
CONSTMATCHHX.. SUM((I,J,K), newz(I,J,K)) = I = 10;
newmatchz(I,J,K)(ORD(K) NE CARD(K)).. newz(I,J,K) = E = z(I,J,K)-ex z(I,J,K);
```

```
* Objective Function.....

OBJFN .. O =e=

SUM((I,CU),CCU(CU)*qcu(I,CU))+CHU*SUM(J,qhu(J))+CF*SUM((I,J,K),newz(I
,J,K))+SUM((I,CU),CF*zcu(I,CU))+CF*SUM(J,zhu(J))+

CW*SUM((I,J),FW(I,J)*(TINH(I)-TOUTC(J)));

SHAFTWORK .. W =e= SUM((I,J),FW(I,J)*(TINH(I)-TOUTC(J)));

;
```

MODEL STAGEMODEL SYNHEAT model /ALL/; SOLVE STAGEMODEL USING MIP MINIMISING O; DISPLAY z.l,ex z,newz.l,zcu.l,zhu.l,tH.l,tC.l,q.l,qcu.l,qhu.l,O.l,W.l,FW;

Retrofitted HEN Model Validation by PROII

The result from GAMS for case 1 (new exchangers ≥ 20) is validated with PROII by using the same match of exchanger because this result provides the optimal

solution when compares case 1 (new exchangers ≥ 20) with case 2 (new exchangers ≥ 10). Figure C1 is illustrated the result of validation. Temperature and duty of streams are changed; additionally, three new cooling utilities are added in structure. The result of validation is 229,900 kW of cooling duty and 128,775.69 kW of shaft work requirement. There are errors of temperature, duty and phase change at target temperature of hot stream when compares with base case due to result from GAMS with assumption of heat capacity constant and without consideration of latent heat. In addition, Mathematical Programming does not include equation of thermodynamic. Although there are error of temperature, duty and phase change, the result from GAMS is validated by PROII, resulting in shaft work saving and cooling duty saving are about 10.62 % and 1.16 % from base case.

. Sec

Figure C1 The result of Retrofitted HEN of case 1 (new exchangers \geq 20) validation from Mathematical programming.

114

.

D

CURRICULUM VITAE

Name:	Ms. Juthathip Thasai
Date of Birth:	September 2, 1990
Nationality:	Thai

University Education:

2009–2013 Bachelor of Engineering in Chemical Engineering, Department of Chemical Engineering, Faculty of Chemical Engineering, King Mongkut University of Technology North Bangkok, Bangkok, Thailand

Work Experience:

2012	Position:	Trainee Technologist
	Company name:	PTT Global Chemical Plc

Proceedings:

- Thasai, J.; and Siemanond, K. (2015, April 21) Design and Optimization of Cryogenic Process. <u>Proceedings of the 6th Research Symposium on</u> <u>Petrochemical and Materials Technology and the 21th PPC Symposium on</u> <u>Petroleum. Petrochemicals, and Polymers</u>, Bangkok, Thailand.
- Thasai, J.; and Siemanond, K. (2015, May 19-22) Combined Exergy-Pinch Analysis to Improve Cryogenic <u>Process. Proceedings of the 12th International</u>

0

Conference on Chemical & Process Engineering (ICHEAP 12). Milan, Italy.

σ