INDIUM-CONTAINING ZSM-5 CATALYST FOR METHYLATION OF BENZENE: EFFECT OF SILICA/ALUMINA RATIOS AND REACTION CONDITIONS

Nichapat Niyomthong

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University, and Institut Français du Pétrole 2013

128372670

on
i

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

..... College Dean (Asst. Prof. Pomthong Malakul)

Thesis Committee:

B. Ketiganan

(Asst. Prof. Boonyarach Kitiyanan)

apour L

(Assoc. Prof. Apanee Luengnaruemitchai)

T. Deen thai

(Dr. Tanate Danuthai)

ABSTRACT

5473010063: Petroleum Technology Program
Ms. Nichapat Niyomthong: Indium-Containing ZSM-5 Catalyst for
Methylation of Benzene: Effect of Silica/Alumina Ratios and
Reaction Conditions
Thesis Advisors: Asst. Prof. Boonyarach Kitiyanan, 81 pp.
Keywords: Benzene methylation/ Indium/ ZSM-5/ Silica to Alumina ratio

Catalytic conversion of methane to higher hydrocarbons is an attractive route for the utilization of methane. One possible way to convert methane is the direct methylation of benzene by methane in the presence of a catalyst. Indiumcontaining ZSM-5 catalyst has exhibited an ability to activate methane and convert benzene into toluene and xylenes. In this study, indium-containing ZSM-5 catalysts were prepared with varying SiO₂/Al₂O₃ molar ratios. The catalysts were characterized by temperature program reduction, temperature program desorption, X-Ray diffraction and UV-vis spectrophotometry. The In/HZSM-5 catalysts were treated in a hydrogen atmosphere prior to the reaction at 700 °C, this temperature was confirmed by the temperature program reduction method. Direct methylation could be achieved if oxygen was fed along with the feed at a reaction temperature of 350 ^oC. The effect of the reaction parameters; indium to aluminum ratio 1.0, methane to benzene feed ratio 104 and space velocity 2.8 h⁻¹ provided benzene conversion of 3% and greater than 95% toluene selectivity. SiO₂/Al₂O₃ molar ratios (23, 30, 50, 80 and 280) were also investigated and found that the highest benzene conversion was provided by a SiO_2/Al_2O_3 molar ratio of 50.

บทคัดย่อ

นางสาวณิชาภัทร นิยมทอง : ตัวเร่งปฏิกิริยาอินเดียมบน ZSM-5 สำหรับปฏิกิริยาเมทธิล เลชันของเบนซีน : การศึกษาผลของสัดส่วนซิลิกาต่ออลูมินาและสภาวะในการเกิดปฏิกิริยา (Indium-Containing ZSM-5 Catalyst for Methylation of Benzene: Effect of Silica/Alumina Ratios and Reaction Conditions) อ. ที่ปรึกษา : ผศ. ดร. บุนยรัชต์ กิติยานันท์ 81 หน้า

กระบวนการเปลี่ยนมีเทนโดยการเร่งปฏิกิริยาเพื่อให้ได้ผลิตภัณฑ์ที่มีคุณค่าทาง เศรษฐกิจสูงขึ้นเป็นวิธีการที่น่าสนใจในการใช้มีเทนให้เกิดประโยชน์ วิธีการหนึ่งที่เป็นไปได้ใน การเปลี่ยนแปลงมีเทนคือปฏิกิริยาเมทธิลเลชันโดยตรงของเบนซีนด้วยมีเทนและตัวเร่งปฏิกิริยา อินเดียมบน ZSM-5 ถูกเตรียมด้วยสัดส่วนส่วนซิลิกาต่ออลูมินาที่แตกต่างกัน ตัวเร่งปฏิกิริยาถูก วิเคราะห์ด้วยเทคนิก temperature program reduction, เทคนิก temperature program desorption, เทคนิคเอกซเรย์ดิฟแฟรกชันและเทคนิควัดการดูดกลืนแสง In/HZSM-5 ถูกเตรียมในสภาวะ บรรยากาศแก๊สไขโดรเจนที่อุณหภูมิ 700 องศาเซลเซียสซึ่งอุณหภูมินี้ถูกยืนยันโดยใช้เทคนิก temperature program reduction ปฏิกิริยาเมทธิลเลชันเกิดขึ้นได้เมื่อแก๊สออกซิเจนถูกส่งเข้าทำ ปฏิกิริยาพร้อมกับสารตั้งค้นที่อุณหภูมิ 350 องศาเซลเซียส ในการทคลองยังมีการหาสภาวะที่ เหมาะสมของตัวแปรต่างๆพบว่า สัดส่วนของอินเดียมต่ออลูมิเนียมเท่ากับ 1.0, สัดส่วนระหว่าง มีเทนกับเบนซีนแก่ากับ 104, และความเร็วในการใหลของสารตั้งด้น 2.8 ต่อชั่วโมง ให้ค่าสัดส่วน การเปลี่ยนของเบนซีนไปเป็นผลิตภัณฑ์ 3 % และสัดส่วนการเกิดไปเป็นโทลูอีนอยู่ที่ 95 % สัดส่วนซิลิกาต่ออลูมินา (23, 30, 50, 80 และ 280) ถูกศึกษาและพบว่าสัดส่วนซิลิกาต่ออลูมินา เท่ากับ 50 ให้ค่าสัดส่วนการเปลี่ยนของเบนซีนไปเป็นผลิตภัณฑ์สูงที่สุด

ACKNOWLEDGEMENTS

I gratefully take this opportunity to express my sincere gratitude to Asst. Prof. Boonyarach Kitiyanan, my thesis advisor, for his guidance, encouragement, suggestion, discussions and problem solving throughout of this work. I also acknowledge Assoc. Prof. Apanee Luengnaruemitchai and Dr. Tanate Danuthai for valuable information, comment and suggestion as thesis committees.

I am grateful for the scholarship and funding of this thesis work provided by the Petroleum and Petrochemical College and Center of Excellence on Petrochemical and Materials Technology, Thailand.

I would like to thank PTT Global Chemical Public Company Limited for the funding supports.

I also would like to thank all of the Petroleum and Petrochemical College's staff for the valuable knowledge and assistance. Lastly, I would like to thank my beloved parents, my friends and my seniors for their encouragement and suggestion without which this thesis would not be possible.

TABLE OF CONTENTS

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	ix
List of Figures	xiii

PAGE

CHAPTER

Ι	INTRODUCTION	1
Π	LITERATURE REVIEW	3
	2.1 Methane	3
	2.1.1 Methane Activation	3
	2.2 Intermediate of activated methane	4
	2.2.1 Free radical	4
	2.2.2 Alkyl species	5
	2.2.3 Carbenium ion	5
	2.3 Alkylation of aromatic	6
	2.3.1 Free radical substitution mechanism	7
	2.3.2 Electrophilic substitution mechanism	7
	2.3.3 Nucleophilic substitution mechanism	8
	2.4 Methylation of aromatic with methane	9
	2.4.1 Methylation of naphthalene with methane	9
	2.4.2 Methylation of toluene with methane	9
	2.4.3 Methylation of benzene with methane	10
	2.5 Zeolite	12
	2.5.1 Zeolite structures	13
	2.5.2 Acid sites	14

	2.5.3 Zeolite SiO ₂ /Al ₂ O ₃	15
	2.6 ZSM-5 Zeolite	15
	2.7 Indium containing zeolite	18
	2.7.1 The method of preparation of indium-containing	
	zeolite	18
	2.7.2 Catalytic activities of indium-containing zeolite	21
III	EXPERIMENTAL	23
	3.1 Materials	23
	3.1.1 Chemicals	23
	3.1.2 Gases	23
	3.2 Experimental Procedures	24
	3.2.1 Catalyst preparation	24
	3.2.2 Catalyst characterization	25
	3.2.3 Reaction Procedure	27
IV	RESULTS AND DISCUSSION	29
	4.1 Catalyst Characterization	29
	4.1.1 Temperature program reduction (TPR)	29
	4.1.2 X-ray diffraction spectroscopy (XRD)	31
	4.1.3 X-ray fluorescence spectroscopy (XRF)	32
	4.1.4 UV-visible spectroscopy	32
	4.1.5 Surface Area Analysis	33
	4.2 Catalytic activity measurement	35
	4.2.1 Effect of treatment gas and treatment temperature	35
	4.2.2 Effect of reaction temperature	40
	4.2.3 Effect of oxidative reaction (carrier gas)	42
	4.2.4 Effect of Indium to Aluminum Ratio	44
	4.2.5 Effect of Methane to Benzene Feed Molar Ratio	46
	4.2.6 Effect of Space Velocity (WHSV)	48

CHAPTER			PAGE
	4.2.7 Eff	ect of Silica to Alumina Ratio	49
V	CONCLUSI	ONS AND RECOMMENDATIONS	53
	5.1 Conclusio	ons	53
	5.2 Recomme	endations	54
	REFERENC	ES	55
	APPENDIC	ES	60
	Appendix A	Calculation of catalysts composition	60
	Appendix B	Calibration data and feed flow adjustment	62
	Appendix C	Raw data of reaction results	67
	Appendix D	Raw data of catalysts characterization	78
	CURRICUL	UM VITAE	80

LIST OF TABLES

TABLE

4.1	XRF of H-ZSM-5 with different SiO_2/Al_2O_3 ratios and In/Al ratios	32
4.2	BET surface area of HZSM-5 catalysts	34
4.3	BET surface area of physical mixing catalysts	34
4.4	BET surface area of In/HZSM-5 catalysts with different	
	atmospheres	35
4.5	Temperature program desorption (TPD) results of catalysts with	
	various indium loading ratios	44
4.6	Temperature program desorption (TPD) results of catalysts with	
	various SiO ₂ /Al ₂ O ₃ ratios	51
Al	The ingredients of prepared catalysts	61
B1	The response factor calculated from calibration curve of each	
	substances	65
B2	Flow controller adjustment and catalyst weight in various	
	reaction condition	66
C1	The results of the reaction with O_2 treatment at 350 $^{\circ}\mathrm{C}$ and N_2	
	carrier using SiO ₂ /Al ₂ O ₃ ratio 50, In/Al ratio 0.5, WHSV 2.8 h^{-1}	
	and methane to benzene feed ratio 70 at reaction temperature	
	350 °C	67
C2	The results of the reaction with $\rm H_2$ treatment at 700 $^{\circ}\rm C$ and $\rm N_2$	
	carrier using SiO ₂ /Al ₂ O ₃ ratio 50, In/Al ratio 0.5, WHSV 2.8 h^{-1}	
	and methane to benzene feed ratio 70 at reaction temperature	
	350 °C	67
C3	The results of the reaction with H_2 treatment at 700 °C followed	
	by O_2 treatment at 350 °C and N_2 carrier using SiO ₂ /Al ₂ O ₃ ratio	
	50, In/Al ratio 0.5, WHSV 2.8 h^{-1} and methane to benzene feed	
	ratio 70 at reaction temperature 350 °C	68

C4	The results of the reaction with H_2 treatment at 600 °C followed	
	by O_2 treatment at 350 °C and N_2 carrier using SiO_2/Al_2O_3 ratio	
	50, In/Al ratio 0.5, WHSV 2.8 h^{-1} and methane to benzene feed	
	ratio 70 at reaction temperature 350 °C	68
C5	The results of the reaction with H_2 treatment at 800 °C followed	
	by O_2 treatment at 350 °C and N_2 carrier using $\mathrm{SiO}_2/\mathrm{Al}_2\mathrm{O}_3$ ratio	
	50, In/Al ratio 0.5, WHSV 2.8 h^{-1} and methane to benzene feed	
	ratio 70 at reaction temperature 350 $^{\circ}$ C	69
C6	The results of the reaction with H_2 treatment at 700 °C followed	
	by O_2 treatment at 350 °C and N_2 carrier using SiO_2/Al_2O_3 ratio	
	50, In/Al ratio 0.5, WHSV 2.8 h ⁻¹ and methane to benzene feed	
	ratio 70 at reaction temperature 300 °C	69
C7	The results of the reaction with H_2 treatment at 700 °C followed	
	by O_2 treatment at 350 °C and N_2 carrier using SiO ₂ /Al ₂ O ₃ ratio	
	50, In/Al ratio 0.5, WHSV 2.8 h^{-1} and methane to benzene feed	
	ratio 70 at reaction temperature 400 °C	70
C8	The results of the reaction with H_2 treatment at 700 °C followed	
	by O_2 treatment at 350 °C and N_2 carrier using $\mathrm{SiO}_2/\mathrm{Al}_2\mathrm{O}_3$ ratio	
	50, In/Al ratio 0.5, WHSV 2.8 h^{-1} and methane to benzene feed	
	ratio 70 at reaction temperature 450 °C	70
C9	The results of the reaction with H_2 treatment at 700 °C followed	
	by O_2 treatment at 350 °C and N_2 carrier using SiO ₂ /Al ₂ O ₃ ratio	
	50, In/Al ratio 0.5, WHSV 2.8 h ⁻¹ and methane to benzene feed	
	ratio 70 at reaction temperature 500 $^{\circ}$ C	71
C10	The results of the reaction with H_2 treatment at 700 $^\circ \mathrm{C}$ and O_2	
	carrier using SiO ₂ /Al ₂ O ₃ ratio 50, In/Al ratio 0.5, WHSV 2.8 h^{-1}	
	and methane to benzene feed ratio 70 at reaction temperature	
	350 °C	71

TABLE

- C11 The results of the reaction with H₂ treatment at 700 °C and O₂ carrier using SiO_2/Al_2O_3 ratio 50, In/Al ratio 0.1, WHSV 2.8 h⁻¹ and methane to benzene feed ratio 70 at reaction temperature 350 °C
- C12 The results of the reaction with H_2 treatment at 700 °C and O_2 carrier using SiO₂/Al₂O₃ ratio 50, In/Al ratio 0.3, WHSV 2.8 h⁻¹ and methane to benzene feed ratio 70 at reaction temperature 350 °C
- C13 The results of the reaction with H₂ treatment at 700 °C and O₂ carrier using SiO₂/Al₂O₃ ratio 50, In/Al ratio 1.0, WHSV 2.8 h^{-1} and methane to benzene feed ratio 70 at reaction temperature 350 °C
- C14 The results of the reaction with H_2 treatment at 700 °C and O_2 carrier using SiO₂/Al₂O₃ ratio 50, In/Al ratio 1.0, WHSV 2.8 h⁻¹ and methane to benzene feed ratio 23 at reaction temperature 350 °C
- C15 The results of the reaction with H_2 treatment at 700 °C and O_2 carrier using SiO₂/Al₂O₃ ratio 50, In/Al ratio 1.0, WHSV 2.8 h⁻¹ and methane to benzene feed ratio 104 at reaction temperature 350 °C
- C16 The results of the reaction with H₂ treatment at 700 °C and O₂ carrier using SiO_2/Al_2O_3 ratio 50, In/Al ratio 1.0, WHSV 6.1 h⁻¹ and methane to benzene feed ratio 104 at reaction temperature 350 °C
- C17 The results of the reaction with H₂ treatment at 700 °C and O₂ carrier using SiO_2/Al_2O_3 ratio 50, In/Al ratio 1.0, WHSV 12.3h⁻¹ and methane to benzene feed ratio 104 at reaction temperature 350 °C

PAGE

72

73

72

73

74

74

75

C18

carrier using SiO₂/Al₂O₃ ratio 23, In/Al ratio 1.0, WHSV 2.8 h⁻¹ and methane to benzene feed ratio 104 at reaction temperature 75 350 °C The results of the reaction with H₂ treatment at 700 °C and O₂ C19 carrier using SiO₂/Al₂O₃ ratio 30, In/Al ratio 1.0, WHSV 2.8 h⁻¹ and methane to benzene feed ratio 104 at reaction temperature 350 °C 76 The results of the reaction with H₂ treatment at 700 °C and O₂ C20 carrier using SiO₂/Al₂O₃ ratio 80, In/Al ratio 1.0, WHSV 2.8 h⁻¹ and methane to benzene feed ratio 104 at reaction temperature 350 °C 76 The results of the reaction with H₂ treatment at 700 °C and O₂ C21 carrier using SiO₂/Al₂O₃ ratio 280, In/Al ratio 1.0, WHSV 2.8h⁻¹ and methane to benzene feed ratio 104 at reaction temperature 350 °C 77 79 D1 Desorption temperature and peak area of HZSM-5 catalysts Desorption temperature and peak area of HZSM-5 and D2 79 In/HZSM with SiO_2/Al_2O_3 50

The results of the reaction with H₂ treatment at 700 °C and O₂

LIST OF FIGURES

FIGURE

2.1	Methyl free radical.	4
2.2	Methyl carbanion.	5
2.3	Methyl carbenium ion.	6
2.4	The mechanism of methylation of benzene with methane on	
	Ag/HZSM-5.	12
2.5	The tetrahedron structure.	13
2.6	Framework structure of zeolite ZSM-5 (MFI) illustrating the	
	straight and sinusoidal pores and the pore intersections. A view	
	of the complete structure down the straight pores is depicted in	
	the lower left lower corner.	16
3.1	The catalytic measurement flow diagram.	27
4.1	H ₂ -TPR profiles of indium(II)oxide.	29
4.2	H_2 -TPR profiles of physical mixing $In_2O_3/HZSM$ -5 with	
	SiO_2/Al_2O_3 of HZSM-5 23, 30, 50, 80 and 280 and In/Al ratio	
	0.5.	30
4.3	X-ray diffraction patterns of HZSM-5, physical mixing	
	$In_2O_3/HZSM-5$, $In/HZSM-5$ under hydrogen treatment,	
	In/HZSM-5 under oxygen treatment, and In/HZSM-5 under	
	hydrogen followed by oxygen treatment.	31
4.4	UV-Visible spectrum of In_2O_3 physically mixed with ZSM-5	
	and In_2O_3/ZSM -5 treated in different atmosphere in the range of	
	200 to 900 nm.	33
4.5	Benzene conversion as a function of time on stream at different	
	treatment atmosphere and treatment temperature.	36
4.6	Toluene selectivity as a function of time on stream at different	
	treatment atmosphere and treatment temperature.	37

FIGURE

4.7	Benzene conversion as a function of time on stream at different	
	treatment atmosphere and treatment temperature.	39
4.8	Toluene selectivity as a function of time on stream at different	
	treatment atmosphere and treatment temperature.	39
4.9	Thermodynamic calculation for benzene methylation reaction.	40
4.10	Benzene conversion as a function of time on stream at different	
	reaction temperature.	41
4.11	Toluene selectivity as a function of time on stream at different	
	reaction temperature.	42
4.12	Benzene conversion as a function of time on stream at different	
	oxidative condition.	43
4.13	Toluene selectivity as a function of time on stream at different	
	oxidative condition.	43
4.14	Benzene conversion as a function of time on stream at different	
	indium to aluminum ratios.	45
4.15	Toluene selectivity as a function of time on stream at different	
	indium to aluminum ratios.	45
4.16	Benzene conversion as a function of time on stream at different	
	methane to benzene feed ratio.	47
4.17	Toluene selectivity as a function of time on stream at different	
	methane to benzene feed ratio.	47
4.18	Benzene conversion as a function of time on stream at different	
	space velocity (WHSV).	48
4.19	Toluene selectivity as a function of time on stream at different	
	space velocity (WHSV).	49
4.20	Temperature program desorption (TPD) profiles of catalyst with	
	various SiO2/Al2O3 ratios.	50
4.21	Benzene conversion as a function of time on stream at different	
	silica to alumina ratios.	52

FIGURE

4.22	Toluene selectivity as a function of time on stream at different	
	silica to alumina ratios.	52
B1	Response area from GC FID as a function of injection volume of	
	methane.	62
B2	Response area from GC FID as a function of injection volume of	
	benzene.	63
B3	Response area from GC FID as a function of injection volume of	
	toluene.	63
B4	Response area from GC FID as a function of injection volume of	
	<i>p</i> -xylene.	64
В5	Response area from GC FID as a function of injection volume of	
	<i>m</i> -xylene.	64
B6	Response area from GC FID as a function of injection volume of	
	o-xylene.	65
D1	Temperature program desorption (TPD) profiles of catalyst with	
	various In/Al ratios.	78