Evaluation of Monomeric Sugar Yield from Various Grasses Grown in Thailand as Biofuel Feedstock by Two-Stage Microwave/Chemical Pretreatment Process

Patomwat Tatijarern

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University

2013

I 28372682

561044

Thesis Title:	Evaluation of Monomeric Sugar Yield from Various Grasses
	Grown in Thailand as Biofuel Feedstock by Two-Stage
	Microwave/Chemical Pretreatment Process
By:	Patomwat Tatijarern
Program:	Polymer Science
Thesis Advisors:	Assoc. Prof. Sujitra Wongkasemjit
	Assoc. Prof. Apanee Luengnaruemitchai
	Asst. Prof. Thanyalak Chaisuwan

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

(Assoc. Prof. Sujitra Wongkasemjit)

Thangelik Cl-

apar (

(Assoc. Prof. Aparee Luengnaruemitchai)

Hathachaur M.

(Asst. Prof. Thanyalak Chaisuwan)

(Asst. Prof. Hathaikarn Manuspiya)

(Assoc. Prof. Manop Panapoy)

ABSTRACT

5472028063: Polymer Science Program
Patomwat Tatijarern: Evaluation of Monomeric Sugar Yield from
Various Grasses Grown in Thailand as Biofuel Feedstock by TwoStage Microwave/Chemical Pretreatment Process
Thesis Advisors: Assoc. Prof. Sujitra Wongkasemjit, Assoc. Prof.
Apanee Luengnaruemitchai, and Asst. Prof. Thanyalak Chaisuwan,
140 pp.

Keywords: Two-stage pretreatment, Secondary lignocellulosic materials, Microwave irradiation, Bioethanol

Cogon grass (Imperata cylindrica), Guinea grass (Panicum maximum), Kans grass (Saccharum spontaneum), Giant reed (Arundo donax), and Mission grass (Pennisetum polystachyon) were locally collected to test as bioethanol feedstock. Mission grass, Kans grass, and Giant reed, showing high cellulose and hemicellulose compositions, were treated by a two-stage chemical/microwave pretreatment method. The optimum conditions of the pretreatment were investigated and the maximum monomeric sugar yields were compared. The microwave-assisted NaOH and H₂SO₄ with 15:1 liquid to solid ratio were studied by varying catalyst concentration, temperature, and time to maximize the amount of the obtained monomeric sugar. The maximum monomeric sugars from microwave-assisted NaOH pretreated Mission grass, Kans grass, and Giant reed were 6.6 (at 120 °C,10 min, 3%(w/v) NaOH), 6.8 (at 80 °C,5 min, 5%(w/v) NaOH), and 6.8 (at 120 °C,5 min, 5%(w/v) NaOH) g/100g biomass, respectively, while maximum monomeric sugars from microwave-assisted H₂SO₄ pretreatment were 34.3 (at 200 °C,5 min, 1%(w/v) H₂SO₄), 33.8 (at 200 $^{\circ}C,10 \text{ min}, 0.5\%(w/v) \text{ H}_2\text{SO}_4$, and 31.9 (at 180 $^{\circ}C,30 \text{ min}, 0.5\%(w/v) \text{ H}_2\text{SO}_4$) g/100g biomass, respectively. The structural changes in weeds were characterized by Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscope (SEM).

บทคัดย่อ

นาย ปฐมวัฒน์ ตติเจริญ: การประเมินศักยภาพในการผลิตน้ำตาลโมเลกุลเดี่ยวของวัชพืช ในประเทศไทยเพื่อใช้เป็นวัตถุดิบสำหรับพลังงานชีวมวลด้วยกระบวนการปรับสภาพพืชสอง ขั้นตอน จากรังสีไมโครเวฟและสารเคมี (Evaluation of Monomeric Sugar Yield from Various Grasses Grown in Thailand as Biofuel Feedstock by Two-Stage Microwave/Chemical Pretreatment Process) อ. ที่ปรึกษา: รองศาสตราจารย์ ดร. สุจิตรา วงศ์เกษมจิตต์ รองศาสตราจารย์ ดร. อาภาณี เหลืองนฤมิตชัย และ ผู้ช่วยศาสตราจารย์ ดร. ธัญญลักษณ์ ฉายสุวรรณ์ 140 หน้า

หญ้าคา หญ้ากินนี้ หญ้าคอกเลา ต้นอ้อ และหญ้าขจรจบคอกเล็ก ที่ขึ้นเองตามธรรมชาติ ในประเทศไทย ถูกนำมาประยุกต์ใช้เป็นวัตถุดิบในการผลิตไบโอเอทานอล โดยในจำนวนหญ้า 5 ชนิดนี้พบว่า หญ้าขจรบดอกเล็ก หญ้าดอกเลา และต้นอ้อ มีองค์ประกอบของเซลลูโลสและเฮมิ เซลลูโลสสูงสุด จึงถูกนำมาศึกษาต่อเพื่อหาสภาวะที่ดีที่สุดในกระบวนการปรับสภาพพืชสอง ้ขั้นตอนด้วยรังสีไมโครเวฟและสารเคมีที่ใช้เป็นตัวเร่งปฏิกิริยา และเปรียบเทียบน้ำตาลโมเลกุล ้เดี๋ยวที่ผลิตได้จากหญ้าทั้งสามชนิดนี้ โดยในการศึกษาสภาวะของกระบวนการปรับสภาพพืชสอง ขั้นตอนนั้น รังสี ไมโครเวฟถูกใช้ร่วมกับโซเคียมไฮครอกไซค์และกรคซัลฟิวริก ที่อัตราส่วน ของเหลวต่อของแข็ง 15:1 และทำการศึกษาผลของอุณหภูมิ เวลา และความเข้มข้นของตัวเร่ง ปฏิกิริยา เพื่อหาสภาวะที่ดีที่สุดของกระบวนการนี้ จากผลการศึกษาพบว่า ในขั้นตอนแรกการใช้ ้รังสีไมโครเวฟร่วมกับโซเดียมไฮครอกไซค์สามารถผลิตน้ำตาลโมเลกุลเดี่ยวจากหญ้าขจรจบคอก เล็ก หญ้าคอกเลา และค้นอ้อ ได้ 6.6 กรัม (ที่อุณหภูมิ 120 องศาเซลเซียส 10 นาที 3%(w/v) NaOH) 6.8 กรัม (ที่อุณหภูมิ 80 องศาเซลเซียส 5 นาที 5%(w/v) NaOH) และ 6.8 (ที่อุณหภูมิ 120 องศา เซลเซียส 5 นาที่ 5%(w/v) NaOH) กรัมต่อ 100 กรัมชีวมวล ตามลำคับ ในขณะที่เมื่อใช้รังสี ใมโครเวฟร่วมกับกรคซัลฟีวริกในการปรับสภาพพืชขั้นที่สองนั้นสามารถผลิตน้ำตาลโมเลกุล เดี่ยวจากหญ้าขจรจบดอกเล็ก หญ้าดอกเลา และด้นอ้อ ใต้ 34.3 กรัม (ที่อุณหภูมิ 200 องศา เซลเซียส 5 นาที่ 1%(w/v) H₂SO₄) 33.8 กรัม (ที่อุณหภูมิ 200 องศาเซลเซียส 10 นาที 0.5%(w/v) H₂SO₄) และ 31.9 กรัม (ที่อุณหภูมิ 180 องศาเซลเซียส 30 นาที 0.5%(w/v) H₂SO₄) ต่อ 100 กรัม ชีวมวล ตามลำคับ การเปลี่ยนแปลงโครงสร้างทางกายภาพและทางเคมีของตัวอย่างจาก กระบวนการปรับสภาพพืชนั้นถูกศึกษาโดยใช้กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราดและ เทคนิคฟูเรียทรานสฟอร์มสเปคโตรสโคปี

ACKNOWLEDGEMENTS

I would like to take this opportunity to thank Assoc. Prof. Sujitra Wongkasemjit, Assoc. Prof. Apanee Luengnaruemitchai, Asst. Prof. Thanyalak Chaisuwan, Ph. D. Students, PPC staffs, and all of my friends for their kind assistance, good advice, and great support during my research times. I had pleasant working time with all of them. The acknowledgments would not be complete without saying how much I appreciate the moral support that I have received from my family.

Finally, I am grateful for the scholarship and funding of the thesis work provided by the Petroleum and Petrochemical College; and the Center of Excellence for Petrochemical and Materials Technology, Thailand.

TABLE OF CONTENTS

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	ix
List of Figures	xi

CHAPTER

Ι	INTRODUCTION	1
II	LITERATURE REVIEW	3
	2.1 Biomass-based fuels	3
	2.2 Bioethanol	4
	2.3 Lignocellulosic biomass	5
	2.4 Ethanol conversion process overview	16
	2.5 Pretreatment of lignocellulosic biomass	20
	2.5.1 Physical pretreatment	21
	2.5.2 Physicochemical pretreatment	22
	2.5.3 Chemical pretreatment	23
	2.5.4 Biological pretreatment	26
	2.5.5 Pulsed-electric-field pretreatment	27
	2.5.6 Microwave pretreatment	27
	2.5.7 Summary of pretreatment method	31
	2.6 Hydrolysis (Saccharification process)	34
	2.6.1 Chemical hydrolysis	35
	262 Enzymatic hydrolysis	37

	2.6.3 Characterization of pretreated solid residue	
	before hydrolysis	39
	2.7 The potential of lignocellulosic material	
	for second generation bioethanol production	42
	2.7.1 Water hyacinth	45
	272 Banana pseudostem	46
	2.7.3 Giant reed	48
	2.7.4 Kans grass	51
	2.8 Biomass energy potential and research in Thailand	56
Ш	EXPERIMENTAL	64
	3.1 Materials	64
	3.2 Equipment	64
	3.3 Methodology	65
	3.3.1 Biomass Preparation	65
	3.3.2 Compositional analysis of raw biomass	66
	3.3.3 Microwave assisted two stage pretreatment process	68
	3.3.4 Composition analysis of pretreated biomass	71
IV	RESULTS AND DISCUSSION	72
	4.1 Raw material composition	72
	4.2 Detection of grass particle sizes	73
	4.3 Optimization of Microwave-assisted NaOH Pretreatment	73
	4.3.1 Effect of Time and Temperature	74
	4.3.2 Effect of NaOH Concentration	79
	4.4 Optimization of two stage pretreatment	81
	4.4.1 Effect of Time and Temperature	82
	4.4.2 Effect of H_2SO_4 concentration	87

V

4.5 Effect of	two stages Microwave/Chemical pretreatment	
process of	on % Solid loss and pH value	89
4.5.1 %	Solid loss	89
4.5.2 pH	I value	94
4.6 Effect of	Pretreatment on Chemical Composition	99
4.7 FT-IR an	alysis	102
4.8 SEM Cha	aracterization	104
CONCLUSI	ONS AND RECOMMENDATIONS	109
REFERENC	TES	110
APPENDIC	ES	118
Appendix A	The Monomeric Sugar Standard Curve	
	of Glucose, Xylose, and Arabinose	118
Appendix B	The amount of monomeric sugar, pH value,	
	% solid loss of Mission grass	
	from the two-stage pretreatment	121
Appendix C	The amount of monomeric sugar, pH value,	
	% solid loss of Mission grass	
	from the two-stage pretreatment	128
Appendix D	The amount of monomeric sugar, pH value,	
	% solid loss of Mission grass	
	from the two-stage pretreatment	134

CURRICULUM VITAE

139

LIST OF TABLES

TABLE		PAGE
2.1	Major benefits of biofuel	4
2.2	The contents of cellulose, hemicelluloses, and lignin in	8
	common agricultural residues and wastes	
2.3	Main types of polysaccharides present in hemicelluloses	12
2.4	Differences between Cellulose and Hemicelluloses	14
2.5	Advantages and disadvantages of various pretreatment	32
	processes for lignocellulosic materials	
2.6	Comparison of advantages and disadvantages of different	33
	pre-treatment options for lignocellulosic materials	
2.7	Effect of various pretreatment methods on the chemical	33
	composition and chemical/physical structure of	
	lignocellulosic biomass	
2.8	Comparison of process conditions and performance of	39
	three hydrolysis processes	
2.9	The list of plant species used in this study and their sugar	43
	compositions	
2.10	Sugar production for fermentation of raw materials (10%	44
	w/v) from acid /enzyme pretreatment	
2.11	Concentration (g/l) and yield g/g pretreated water hyacinth	46
	of ethanol produced under different modes of enzymatic	
	hydrolysis and fermentation	
2.12	Chemical and energetic characterization of Arundo donax	49
2.13	Raw material composition of Saccharum spontaneum L.	53
	ssp. aegyptiacum (Willd.) Hack	
2.14	Total sugars and fermentation inhibitors profile from acid	55
	hydrolysates of S. spontaneum at different parameters	

LIST OF TABLES

TABLE		PAGE
2.15	Thailand's energy balance in 2008 (in ktoe)	57
2.16	Targets for Thailand's 15-year renewable energy	58
	development plan	
2.17	Existing Ethanol Plants in Thailand (June 2009)	59
2.18	Chemical composition and source of 10 screened weeds in	62
	Thailand	
2.19	Comparison of the chemical composition of the untreated	63
	and the NaOH-pretreated weeds	
4.1	Chemical composition of five Thai grass (Mission grass,	72
	Cogon grass, Guinea grass, Kans grass, and Giant reed)	
4.2	The particle size of five Thai grass (Mission grass, Cogon	73
	grass, Guinea grass, Kans grass, and Giant reed) after	
	mechanical pretreatment	
4.3	Optimum condition for Microwave/NaOH pretreatment of	74
	Mission grass, Kans grass, and Giant reed	
4.4	Optimum condition for Microwave/H ₂ SO ₄ pretreatment	82
	stage on microwave-assisted NaOH pretreated Mission	
	grass, Kans grass, and Giant reed in two stage pretreatment	
	process	
4.5	Chemical composition of Mission grass solid residues	100
	from each pretreatment stage	
4.6	Chemical composition of Kans grass solid residues from	101
	each pretreatment stage	
4.7	Chemical composition of Giant reed solid residues from	101
	each pretreatment stage	

PAGE

FIGURE		PAGE
2.1	Demonstration of the lower GHC emissions, resulting	5
	from the use of biofuels, as compared to gasoline on a	
	life cycle basis	
2.2	Representation of lignocelluloses structure, showing	7
	cellulose, hemicelluloses, and lignin fractions	
2.3	Chemical structure of cellulose	9
2.4	Schematic structure of corn fiber heteroxylan	11
2.5	Model for corn fiber cell walls	11
2.6	Angiosperm and Gymnosperm Hemicellulose Structures	13
2.7	Primary precursor of lignin p-coumaryl, coniferyl, and	15
	sinapyl alcohols	
2.8	Lignin/phenolics-carbohydrate complex in wheat straw	16
2.9	Schematic of the conversion of lignocellulosic biomass to	17
	fuel	
2.10	Generic block diagram of bioethanol production from	19
	lignocelluloses biomass	
2.11	Schematic of pretreatment process	20
2.12	Schematic of the role of pretreatment in the conversion	21
	of biomass to fuel	
2.13	Microwave heating in molecular aspect	28
2.14	The temperature profile after 60 sec of microwave	29
	irradiation compared to treatment in an oil-bath	
2.15	Main degradation products occurring during hydrolysis of	34
	lignocellulosic material	

FIGURE		PAGE
2.16	Dilute acid hydrolysis (first-stage and two-stages) and	36
	separated fermentation of pentose and hexose sugars	
2.17	Mode of action of cellulolytic enzymes	38
2.18	Schematic representation of the cellulase enzymes over	38
	the cellulose structure	
2.19	FTIR spectra of raw rice straw and pretreated solid	40
	residues under CSF of 1.5 (180 °C/0.7% $H_2SO_4/1$ min)	
	and 2.3 (180 °C/1.0% H ₂ SO ₄ /4 min)	
2.20	Water hyacinth [Eichhornia crassipes (Mart.) Solms]	45
2.21	Banana pseudostem	46
2.22	Residual cellulase activity in the liquid phase after 110 h	48
	of enzymatic hydrolysis	
2.23	Giant reed (Arundo donax)	48
2.24	Wild sugarcane or Kans grass (Saccharum spontaneum)	51
2.25	Perspective plot of the fitted total sugars (g/l) response	54
	surface of severity factor [Log (R0)] versus oxalic acid	
	concentration after dilute-OA-pretreatment of	
	Saccharum spontaneum L ssp. aegyptiacum (Willd.)	
	Hack	
2.26	Scanning electron microscopic (SEM) observations of	56
	substrate S. spontaneum	
3.1	Grass sample grown in Thailand a.) Mission grass	65
	(Pennisetum polystachyon), b.) Guinea grass (Panicum	
	maximum), c.) Kans grass (Saccharum spontaneum), d.)	
	Cogon grass (Impereta cylindrica), and e.) Giant reed	
	(Arundo donax)	

FIGURE		PAGE
3.2	A schematic representation of a Soxhlet extractor	67
3.3	A schematic representation of chemical composition	67
	analysis methods for biomass feedstocks from National	
	Renewable Energy Laboratory	
3.4	A schematic representation of Microwave assisted dilute	69
	NaOH pretreatment process	
3.5	A schematic representation of Microwave assisted dilute	70
	$H_{2}SO_{4}$ pretreatment process	
4.1	The glucose, xylose, arabinose components and total	75
	monomeric sugar yield of Mission grass (Pennisetum	
	polystachyon) using NaOH 0.5 % (w/v), 15:1 liquid-to-	
	solid ratio (LSR), different times, and different	
	temperatures	
4.2	The glucose, xylose, arabinose components and total	76
	monomeric sugar yield of Kans grass (Saccharum	
	spontaneum) using NaOH 0.5 % (w/v), 15:1 liquid-to-	
	solid ratio (LSR), different times, and different	
	temperatures	
4.3	The glucose, xylose, arabinose components and total	77
	monomeric sugar yield of Giant reed (Arundo donax)	
	using NaOH 0.5 % (w/v), 15:1 liquid-to-solid ratio (LSR),	
	different times, and different temperatures	
4.4	The comparison of the total yield of monomeric sugars of	78
	Mission grass, Kans grass, Giant reed at different	
	temperature and time using 0.5% (w/v) NaOH with 15:1	
	liquid-to-solid ratio (LSR)	

FIGURE		PAGE
4.5	Effect of NaOH concentration (% w/v) on monomeric	80
	sugar yields of Mission grass at 120 °C for 10 min , Kans	
	grass at 80 °C for 5 min ,and Giant reed at 120 °C for 5	
	min with 15:1 liquid-to-solid ratio (LSR)	
4.6	The comparison of the total yield of monomeric sugars of	81
	Mission grass at 120 °C for 10 min, Kans grass at 80 °C	
	for 5 min ,and Giant reed at 120 °C for 5 min with 15:1	
	liquid-to-solid ratio (LSR) at different NaOH	
	concentration (%w/v)	
4.7	The glucose, xylose, arabinose components and total	83
	monomeric sugar yield of microwave-assisted NaOH	
	pretreated Mission grass (Pennisetum polystachyon)	
	using $H_2SO_4 0.5 \%$ (w/v), 15:1 liquid-to-solid ratio	
	(LSR), different times, and different temperatures	
4.8	The glucose, xylose, arabinose components and total	84
	monomeric sugar yield of microwave-assisted NaOH	
	pretreated Kans grass (Saccharum spontaneum) using	
	$H_2SO_4 0.5 \%$ (w/v), 15:1 liquid-to-solid ratio (LSR),	
	different times, and different temperatures	
4.9	The glucose, xylose, arabinose components and total	85
	monomeric sugar yield of microwave-assisted NaOH	
	pretreated Giant reed (Arundo donax)using H ₂ SO ₄ 0.5 %	
	(w/v), 15:1 liquid-to-solid ratio (LSR), different times,	
	and different temperatures	

FIGURE		PAGE
4.10	The comparison of the total yield of monomeric sugars of	86
	microwave-assisted NaOH pretreated Mission grass,	
	Kans grass, Giant reed at different temperature and time	
	using 0.5% (w/v) H_2SO_4 ,15:1 liquid-to-solid ratio (LSR)	
4.11	Effect of H_2SO_4 concentration (% w/v) on monomeric	88
	sugar yields of microwave-assisted NaOH pretreated	
	Mission grass at 200 $^{\circ}\mathrm{C}$ for 5 min , Kans grass at 200 $^{\circ}\mathrm{C}$	
	for 10 min ,and Giant reed at 180 °C for 30 min with 15:1	
	liquid-to-solid ratio (LSR)	
4.12	The comparison of the total yield of monomeric sugars of	89
	microwave-assisted NaOH pretreated Mission grass at	
	200 $^{\circ}\mathrm{C}$ for 5 min, Kans grass at at 200 $^{\circ}\mathrm{C}$ for 10 min, and	
	Giant reed at 180 °C for 30 min with 15:1 liquid-to-solid	
	ratio (LSR) at different H_2SO_4 concentration (%w/v)	
4.13	The physical appearance of Mission grass, Kans grass,	90
	and Giant reed from untreatment, Microwave/NaOH	
	pretreatment, and two stage Microwave/NaOH followed	
	by Microwave/H ₂ SO ₄ pretreatment	
4.14	%Solid loss of untreated Mission grass, Kans grass, Giant	91
	reed at different temperature and time using 0.5% (w/v)	
	NaOH with 15:1 liquid-to-solid ratio (LSR)	
4.15	%Solid loss of microwave-assisted NaOH pretreated	92
	Mission grass, Kans grass, Giant reed at different	
	temperature and time using 0.5% (w/v) H_2SO_4 with 15:1	
	liquid-to-solid ratio (LSR)	

FIGURE		PAGE
4.16	%Solid loss of Mission grass at 120 °C for 10 min ,Kans grass at 80 °C for 5 min ,and Giant reed at 120 °C for 5	93
	min with 15:1 liquid-to-solid ratio (LSR) at different	
	NaOH concentration (%w/v)	
4.17	%Solid loss of microwave-assisted NaOH pretreated	93
	Mission grass at 200 °C for 5 min, Kans grass at at 200 °C	
	for 10 min, and Giant reed at 180 °C for 30 min with 15:1	
	liquid-to-solid ratio (LSR) at different H ₂ SO ₄	
	concentration (%w/v)	
4.18	Alkaline cleavage of α -aryl ether bonds and β -aryl ether	95
	bonds	
4.19	The pH of Mission grass, Kans grass, Giant reed at	96
	different temperature and time using 0.5% (w/v) NaOH	
	with 15:1 liquid-to-solid ratio (LSR)	
4.20	The pH of microwave-assisted NaOH pretreated Mission	97
	grass, Kans grass, Giant reed at different temperature and	
	time using 0.5% (w/v) H_2SO_4 with 15:1 liquid-to-solid	
	ratio (LSR)	
4.21	The pH of Mission grass at 120 °C for 10 min Kans grass	98
	at 80 °C for 5 min .and Giant reed at 120 °C for 5 min	
	with 15:1 liquid-to-solid ratio (LSR) at different NaOH	
	concentration ($\%w/v$)	
4 22	The pH of microwave-assisted NaOH pretreated Mission	98
1.22	$a_{\rm rass}$ at 200 °C for 5 min. Kans grass at at 200 °C for 10	/0
	grass at 200° C for 5 min, Kans grass at at 200° C for 10	
	and Grand LLSC concentration (0/ar /)	
	at different H_2SO_4 concentration (%w/v)	

FIGURE		PAGE
4.23	Sketch of pretreatment of lignocellulose as affected by	99
	temperature and final pH	
4.24	FTIR spectra of raw Mission grass, microwave-assisted	103
	NaOH pretreated Mission grass, and two stage pretreated	
	Mission grass	
4.25	FTIR spectra of raw Kans grass, microwave-assisted	103
	NaOH pretreated Kans grass, and two stage pretreated	
	Kans grass	
4.26	FTIR spectra of raw Giant reed, microwave-assisted	104
	NaOH pretreated Giant reed, and two stage pretreated	
	Giant reeds	
4.27	Scanning electron microscope images of Mission grass	106
4.28	Scanning electron microscope images of Kans grass	107
4.29	Scanning electron microscope images of Giant reed	108