DEVELOPMENT OF HETEROGENEOUS CATALYST FOR BIODIESEL PRODUCTION

Pisitpong Intarapong

A Dissertation Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University

2013

Thesis Title:	Development of Heterogeneous Catalyst for Biodiesel
	Production
By:	Mr. Pisitpong Intarapong
Program:	Petrochemical Technology
Thesis Advisors:	Assoc. Prof. Apanee Luengnaruemitchai
	Captain Dr. Samai Jai-In

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Doctor of Philosophy.

College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

(Asst. Prof. Pomthong Malakul)

mar

(Captain Dr. Samai Jai-In)

am

(Assoc. Prof. Apanee Luengnaruemitchai)

Francel B

(Assoc. Prof. Pramoch Rangsunvigit)

.

(Dr. Sarawut Kaewtathip)

ABSTRACT

4981003063: Petrochemical Technology Program
Pisitpong Intarapong: Development of Heterogeneous Catalyst for
Biodiesel Production
Thesis Advisors: Assoc. Prof. Apanee Luengnaruemitchai
Captain Dr. Samai Jai-In, 135 pp.
Keywords: Transesterification/ Solid base catalyst/ Al₂O₃/NaY/ Mordenite/
Bentonite/ Leaching

Biodiesel has been considered as an important alternative energy for diesel engines. Most of biodiesel is produced via transesterification of vegetable oils and alcohols using a homogeneous basic catalyst to accelerate reaction. KOH seems to be the promising catalyst which is used in a commercial industry; however, its properties, such as regeneration and deduction, have been unsolved problems in the present process. To overcome these drawbacks, heterogeneous catalysts have been proposed by some researchers to substitute homogeneous catalysts. In this work, the practically commercial materials which were often selected to use as a support (Al₂O₃, NaY and mordenite zeolite, and bentonite clay) that was loaded by KOH with vary loading by impregnation method finding an optimum condition which gave the highest biodiesel yield or fatty acid methyl ester content (FAME) in a batch and packed-bed reactors. A catalyst with 15 wt% KOH/NaY, 20 wt% KOH/mordenite and 20 wt% KOH/bentonite clay was found to be the optimum catalyst, which gave the highest basic properties and the best catalytic activity. The reusability of these spent catalysts was observed under consecutive runs. The minimum leaching of K on support was suggested to have high ability to reuse in the process. The result found that the amount of leached potassium of the KOH/Al₂O₃ was higher compared to that of the KOH loaded on NaY and mordenite zeolite. The packed-bed reactor exhibited higher possibility to regenerate catalyst than the batch reactor. However, the deactivation of this catalyst still occurred due to causing from glycerol molecules which blocked the basic site on the catalyst surface.

บทคัดย่อ

พิสิฐพงษ์ อินทรพงษ์ : การพัฒนาตัวเร่งปฏิกิริยาแบบวิวิธพันธ์สำหรับการผลิต น้ำมันใบโอคีเซล (Development of Heterogeneous Catalyst for Biodiesel Production) อ. ที่ปรึกษา : ร.ศ. คร. อาภาณี เหลืองนฤมิตชัย และ นาวาเอก คร. สมัย ใจอินทร์ 135 หน้า

น้ำมันใบโอคีเซลเป็นพลังงานทคแทนที่สำคัญมากสำหรับเครื่องยนต์ประเภทคีเซล น้ำมันใบโอคีเซลที่ผลิตได้ส่วนมากเกิดผ่านปฏิกิริยาทรานส์เอสเทอริฟิเคชันของน้ำมันจากพืชและ แอลกอฮอล์โคยใช้ตัวเร่งปฏิกิริยาเอกพันฐ์ประเภทเบสเป็นตัวเร่ง โพแทสเซียมไฮครอกไซด์เป็น ้ตัวเร่งปฏิกิริยาที่สำคัญสำหรับอุตสาหกรรมการผลิตไบโอดีเซล อย่างไรก็ตามคุณสมบัติของตัวเร่ง ปฏิกิริยาเอกพันธ์อย่างเช่น การนำตัวเร่งปฏิกิริยากลับมาใช้ใหม่หรือการกำจัดตัวเร่งปฏิกิริยาออก ้จากใบโอดีเซลยังคงก่อให้เกิดปัญหาอยู่กระบวนการปัจจุบัน เพื่อแก้ปัญหาเหล่านี้นักวิจัยบางส่วน ้ได้เสนอการใช้ตัวเร่งปฏิกิริยาแบบวิวิธพันธ์มาทดแทนตัวเร่งปฏิกิริยาแบบเดิม งานวิจัยฉบับนี้นำ ์โพแทสเซียมไฮครอกไซด์ใส่ลงบนตัวรองรับ อย่างเช่น อลูมินา โซเดียมวายและมอร์ดิไนต์ ซึ ด้วยวิธีการแบบอิมเพรคเนชั่นโดยการเปลี่ยนแปลงความเข้มข้นของ โอไลต์ ແລະ เคลย์ ้โพแทสเซียมไฮครอกไซต์ เพื่อหาสภาวะที่เหมาะสมที่จะทำให้ผลผลิตเป็นไบโอคีเซลที่สูงที่สุดใน เครื่องปฏิกรณ์แบบถังกวนและแบบท่อ จากผลการทคลองพบว่าปริมาณโพแทสเซียมที่เหมาะสม สำหรับการใส่บนตัวรองรับโซเคียมวาย มอร์ดิในต์ซีโอไลต์ และ เคลย์ คือ 15 20 และ 20 เปอร์เซ็นต์โดยน้ำหนักตามลำคับ ซึ่งทำให้ตัวเร่งปฏิกิริยามีคุณสมบัติเป็นเบสที่สูงที่สุดและมี ความสามารถเทื่ดีที่สุดสำหรับผลิตน้ำมันใบโอดีเซล นอกจากนี้ยังได้มีการทดสอบความสามารถ ในการนำกลับมาใช้ใหม่ของตัวเร่งปฏิกิริยาคังกล่าว โคยสรุปได้ว่าปริมาณของโพแทสเซียมที่หลุด ออกจากตัวรองรับที่น้อยที่สุด ส่งผลให้ตัวเร่งปฏิกิริยามีความสามารถในการนำกลับมาใช้ใหม่ได้ ้จากผลการทคลองที่ได้พบว่า โพแทสเซียมบนตัวรองรับอลูมินามีปริมาณของโพแทสเซียมที่หลุด ้ออกจากตัวรองรับมากกว่าบนตัวรองรับ โซเคียมวาย มอร์คิในต์ซีโอไลต์ และเคลย์ ซึ่งส่งผลให้ นอกจากนี้กระบวนการ ประสิทธิภาพในการนำกลับมาใช้ในกระบวนการผลิตไบโอดีเซลลดลง ผลิตไบโอคีเซลในเครื่องปฏิกรณ์แบบท่อยังสามารถช่วยส่งเสริมความสามารถในการนำกลับมาใช้ แต่อย่างไรก็ตามการ ของตัวเร่งปฏิกิริยามากกว่าการผลิตไบโอดีเซลในเครื่องปฏิกรณ์แบบถัง เสื่อมสภาพของตัวเร่งปฏิกิริยามีสาเหตุมาจากกลีเซอรอล ซึ่งสารตังกล่าวเกิดขึ้นในกระบวนการ ผลิตและขัดขวางการเร่งปฏิกิริยาเพราะกลีเซอรอลจะเกาะอยู่ที่พื้นผิวของตัวเร่งปฏิกิริยานั่นเอง

ACKNOWLEDGEMENTS

I would like to acknowledge the organization and the generous assistance of the following individuals in completing this research project.

First of all, I am grateful for the scholarship and funding of the thesis work provided by the Petroleum and Petrochemical College; and the Center of Excellence on Petrochemical and Materials Technology, Thailand. These supports have given my life with many numerous experiences more than only the degree. And I would like to gratefully acknowledge the National Metal and Materials Technology Center, Thailand for funding of my thesis work.

I would like to thank to the most considerable person who offered me the great opportunity ever, Assoc. Prof. Apanee Luengnaruemitchai. She recommended me not only to do the research work but also to overcome the problems in my life.

Special gratitude is expressed to Captain Dr. Samai Jai-In who is the kind supervisors, providing me with lots of helpful suggestion me with his valuable advices. Moreover, I would like to extent my appreciation to Asst. Prof. Pomthong Malakul, Assoc. Prof. Pramoch Rangsunvigit, and Dr. Sarawut Kaewtathip for their kindness being as a chair committee and for their recommendations.

Also, I would like to thank Prof. Simon Ng, who gave me a good chance to do a research at National Biofuels Energy Laboratory, Engineering College of Wayne State University. In addition, I would like to thank Prof. Salley, Dr. Kim, Dr. Yan and all staffs who recommended and helped me when I was there. I would like to extend my gratitude to Mr. Robert and Ms. Barbara for their suggestion and kind assistance in the technical writing for publication. I also would like to thank all PPC staff for facility and assistance to me while I was working my thesis work. And I would like to thank all my friends at PPC and WSU who gave lots of good advices and helps me in my laboratory work.

Finally, I would like to express my deep grateful to my family for their love, supports, and take care. This dissertation is totally dedicated to them.

TABLE OF CONTENTS

		PAGE
Titl	e Page	i
Abs	stract (in English)	iii
Abs	stract (in Thai)	iv
Ack	knowledgements	v
Tab	ble of Contents	vi
List	t of Tables	ix
List	t of Figures	xi
CHAPTI	ER	
I	INTRODUCTION	1
II	LITERATURE REVIEW	3
III	EXPERIMENTAL	18
IV	A COMPARATIVE STUDY OF KOH/Al ₂ O ₃ AND	
	KOH/NaY CATALYSTS FOR BIODIESEL	
	PRODUCTION VIA TRANSESTERIFICATION	
	FROM PALM OIL	27
	4.1 Abstract	27
	4.2 Introduction	27
	4.3 Experimental	29
	4.4 Results and Discussion	31
	4.5 Conclusions	43
	4.6 Acknowledgements	43
	4.7 References	43

V

TRANSESTERIFICATION OF PALM OIL	
OVER KOH/NaY ZEOLITE IN A PACKED-BED	
REACTOR	46
5.1 Abstract	46
5.2 Introduction	46
5.3 Experimental	48
5.4 Results and Discussion	51
5.5 Conclusions	62
5.6 Acknowledgements	62
5.7 References	62

VI INFLUENCE OF POTASSIUM LOADING AND CALCINATION TEMPERATURE ON THE ACTIVITY OF KOH/MORDENITE ZEOLITE FOR TRANSESTERIFICATION OF PALM OIL 6.1 Abstract 6.2 Introduction 6.3 Experimental 6.4 Results and Discussion 6.5 Conclusions

0.0		
6.6	Acknowledgements	87
6.7	References	87

VII TRANSESTERIFICATION OF PALM OIL USING KOH LOADING ON VARIOUS SUPPORTS IN A CONTINUOUS REACTOR 7.1 Abstract 7.2 Introduction

7.3 Experimental 92

PAGE

65

65

65

67

67

86

90

90

90

	7.4 Results and Discussion	93
	7.5 Conclusions	111
	7.6 Acknowledgements	112
	7.7 References	112
VIII	CONCLUSIONS AND RECOMMENDATIONS	116
	REFERENCES	118
	APPENDICES	125
	Appendix A Temperature-programmed Desorption (TPD)	125
	Appendix B Acid Titration Method	127
	Appendix C Gas Chromatography (GC)	128
	Appendix D High Performance Liquid Chromatography	
	(HPLC)	130

CHAPTER

CURRICULUM VITAE 134

PAGE

LIST OF TABLES

TABLE

analysis

36

CHAPTER II

2.1	Typical fatty acid composition-Animal oil source	4
2.2	Production of vegetable oils in Thailand	5
2.3	Chemical structure of common fatty acids	5
2.4	Fuel properties of thermally cracked soybean oil	6
2.5	Effect of precursor type on the catalytic activity	10
2.6	Effect of reactor type on the catalytic activity	13
2.7	Conversion and amount of leached active species of a	15
	heterogeneous catalyst	

CHAPTER III

3.1	Hammett indicators	21
	CHAPTER IV	
4.1	Properties of the palm oil	31
4.2	Surface areas of the studied fresh and spent KOH on	
	alumina and NaY zeolite catalysts	34
4.3	Potassium content of the prepared catalysts from XRF	

CHAPTER V

5.1	Catalytic activity and characterization of NaY and KOH	
	loaded on NaY catalysts	4]

CHAPTER VI

6.1	Characterization of N_2 adsorption and desorption, basic	
	properties and XRF of mordenite and K/mordenite catalyst	69
6.2	Effect of process variable on tranesterification of palm oil in	
	batch reactor	83

CHAPTER VII

7.1 Basic strength, leaching potassium, and methyl ester yield of		
	catalysts in a batch reactor	94
7.2	Basic properties of bentonite and modified bentonite	
	catalysts.	103
7.3	Calculation reaction rate (Catalyst weight $= 60g$)	106
7.4	Reaction of kinetic constants at various reaction	
	temperatures	108
7.5	Comparison of the Ea value in this study with standard	
	homogeneous and heterogeneous catalysts used in biodiesel	
	production	108

LIST OF FIGURES

FIGURE

CHAPTER II

2.1	Transesterification of triglycerides with alcohol.	8
2.2	Framework structure of a) NaY zeolite, b) mordenite, and c)	
	bentonite clay.	17

CHAPTER III

3.1	Schematic of packed-bed reactor (recirculation).	20
3.2	Schematic of packed-bed reactor.	21

CHAPTER IV

4.1	XRD patterns of the Al_2O_3 and KOH/Al_2O_3 catalysts: (a)	
	Al_2O_3 , (b) 5% KOH/ Al_2O_3 , (c) 10% KOH/ Al_2O_3 , (d) 15%	
	KOH/Al ₂ O ₃ , (e) 20% KOH/Al ₂ O ₃ , (f) 25% KOH/Al ₂ O ₃ , (g)	
	30% KOH/Al ₂ O ₃ , and (h) 35% KOH/Al ₂ O ₃ .	32
4.2	XRD patterns of the NaY and KOH/NaY catalysts: (a) NaY,	
	(b) 7% KOH/NaY, (c) 8% KOH/NaY, (d) 9% KOH/NaY,	
	(e) 10% KOH/NaY, (f) 13% KOH/NaY, and (g) 15%	
	KOH/NaY.	33
4.3	TPD profiles of CO ₂ on Al ₂ O ₃ , NaY, 25 wt% KOH/Al ₂ O ₃	
	catalysts, and 10 wt% KOH/NaY catalysts.	35
4.4	Yield of biodiesel as a function of reaction time.	37
4.5	Yield of biodiesel as a function of wt% KOH.	38
4.6	Methyl ester content and mono-, di-, tri-glycerides of	
	biodiesel as a function of wt% KOH loading on alumina.	39
4.7	Methyl ester content and mono-, di-, tri-glycerides of	
	biodiesel as a function of wt% KOH loading on NaY.	40

4.8	Conversion of biodiesel as a function of wt% KOH loading.	40
4.9	Yield of biodiesel as a function of molar ratio of methanol to	41
	oil.	
4.10	Yield of biodiesel as a function of amount of catalyst.	42

CHAPTER V

5.1	XRD patterns of the fresh catalysts: (a) NaY, (b) 5% K/NaY,	
	(c) 10% K/NaY, (d)15% K/NaY, and (e) 20% K/NaY; and	
	spent catalysts: (f) 5% K/NaY, (g) 10% K/NaY, (h)15%	
	K/NaY, and (i) 20% K/NaY.	51
5.2	SEM images and particle size distribution of fresh catalysts:	
	(a) NaY, (b) 5% K/NaY, (c) 10% K/NaY, (d) 15% K/NaY,	
	and (e) 20% K/NaY; and spent catalyst: (f) 15%K/NaY.	54
5.3	CO2-TPD profiles of (a) NaY, (b) 5 wt% K/NaY, (c) 10 wt%	
	K/NaY, (d) 15 wt% K/NaY, and (e) 20 wt% K/NaY.	56
5.4	(a) FAME (%), (b) titration method, and (c) CO_2 -TPD*	
	(only strong basicity) with varying the potassium loading.	57
5.5	FAME (%) versus run numbers in the transesterification	
	reaction of palm oil with methanol for the K/NaY catalyst.	58
5.6	FTIR spectra of (a) NaY, (b) fresh 15wt% K/NaY, (c) spent	
	4 th run 15wt% K/NaY, (d) washed with heptane, and (e)	
	washed with potassium solution of spent 4 th run 15wt%	61
	K/NaY.	

CHAPTER VI

6.1	XRD patterns of mordenite and K/mordenite catalysts: (a)	
	mordenite, (b) 10 wt% K/mordenite, (c) 15 wt%	
	K/mordenite, (d) 20 wt% K/mordenite, (e) 30 wt%	
	K/mordenite, and calcined 20 wt% K/mordenite at	
	temperature: (f) 400°C, (g) 500°C, and (h) 600°C.	68
6.2	SEM patterns of mordenite and K/mordenite catalysts: (a)	
	mordenite, (b) 20 wt% K/mordenite, and (c) 30 wt%	
	K/mordenite: calcined 20 wt% K/Mordenite at temperature:	
	(d) 400 °C, (e) 500 °C, and (f) 600 °C: (g) Fresh 20 wt%	
	K/mordenite, (h) Spent 20 wt% K/mordenite, and (i) Treated	
	20 wt% K/mordenite: (j) mordenite, (k) 20 wt%	
	K/mordenite, and (1) 30 wt% K/mordenite.	71
6.3	Horvath-Kawazoe pore sizes and pore volume of mordenite	
	and modified mordenite catalyst.	72
6.4	FTIR patterns of mordenite and K/mordenite catalysts: (a)	
	mordenite, (b) fresh 20 wt% K/mordenite, (c) used 20 wt%	
	K/mordenite, and (d) washed 20 wt% K/mordenite.	73
6.5	CO ₂ -TPD patterns of mordenite and K/mordenite catalysts:	
	(a) mordenite, (b) 10 wt% K/mordenite, (c) 20 wt%	
	K/mordenite, and (d) 30 wt% K/mordenite.	74
6.6	A, ¹ H NMR spectra of uncalcined (a) mordenite, (b) 20 wt%	
	K/mordenite, (c) 30 wt% K/mordenite, and calcined (d) 20	
	wt% K/mordenite: B, ²⁹ Si NMR spectra of (b) uncalcined 20	
	wt% K/mordenite, and (d) calcined 20 wt% K/mordenite: C,	
	²⁷ Al NMR spectra of (b) uncalcined 20 wt% K/mordenite,	
	and (d) calcined 20 wt% K/mordenite.	78
6.7	Scheme of the global basicity cluster in mordenite.	80

PAGE

CHAPTER VII

7.1	Effect of various types of support on the methyl ester yield	
	of palm oil in the batch reactor (methanol/oil molar ratio	
	15:1, stirrer speed 300 rpm, catalyst mesh size 10-20 mesh,	
	and reaction temperature at 60 °C).	94
7.2	Effect of various types of support on the methyl ester yield	
	of palm oil in the continuous reactor (methanol/oil = 15:1,	
	flow rate = 0.4 ml/min, amount of catalyst 30 g, catalyst	
	mesh size 10–20, and reaction temperature 60 °C).	96
7.3	Relationship among amount of catalyst, bed height and	
	residence time measured in the steady state of the continuous	
	experimental system.	97
7.4	Effect of amount of catalyst on the methyl ester yield of	
	palm oil in the continuous reactor (20 wt% K/bentonite clay,	
	methanol/oil = 15:1, flow rate = 0.4 ml/min, catalyst mesh	
	size 10–20, and reaction temperature 60 °C).	98
7.5	Effect of flow rate (or residence time) on the methyl ester	
	yield of palm oil in the continuous reactor (20 wt%	
	K/bentonite clay, methanol/oil = 15:1, amount of catalyst 60	
	g, catalyst mesh size 10-20 mesh, and reaction temperature	
	60 °C).	99
7.6	Effect of catalyst size on the methyl ester yield of palm oil in	
	the continuous reactor (20 wt% K/bentonite clay,	
	methanol/oil = 15:1, amount of catalyst 60 g, flow rate = 0.3	
	ml/min, and reaction temperature 60 °C).	101

PAGE

FIGURE

7.7 Effect of percentage of potassium loading on the methyl ester yield of palm oil in the continuous reactor (amount of catalyst 60 g, methanol/oil = 15, flow rate = 0.3 ml/min, catalyst mesh size 10-20 mesh, and reaction temperature 60 °C).
7.8 Catalyst stability of continuous reactor (20 wt% K/bentonite clay, methanol/oil = 15:1, amount of catalyst 60 g, flow rate = 0.3 ml/min, catalyst mesh size 10-20 mesh, and reaction temperature 60 °C).