CATALYTIC TAR REMOVAL BY Ni SUPPORTED ON CeO₂-ZrO₂ BASED CATALYSTS

٩.

1.1

Asawin Bampenrat

.

ø

A Dissertation Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University

Thesis Title:	Catalytic Tar Removal by Ni Supported on
	CeO ₂ -ZrO ₂ Based Catalysts
By:	Asawin Bampenrat
Program:	Petrochemical Technology
Thesis Advisors:	Assoc. Prof. Pramoch Rungsunvigit
	Prof. Johannes W. Schwank
	Assoc. Prof. Vissanu Meeyoo
	Assoc. Prof. Thirasak Rirksomboon
	Asst. Prof. Boonyarach Kitiyanan

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Doctor of Philosophy.

..... College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

(Prof. Somchai Osuwan)

(Prof. Johannes W. Schwank)

Ruult

(Assoc. Prof. Thirasak Rirksomboon)

They

noch R

(Assoc. Prof. Pramoch Rungsunvigit)

(Assoc. Prof. Vissanu Meeyoo)

B. Kotiyanan_

(Asst. Prof. Boonyarach Kitiyanan)

Vatta Ver i

(Asst. Prof. Siriporn Jongpatiwut) (Assoc. Prof. Metta Charoenpanich)

O

ABSTRACT

4781001063: Petroleum Technology Program Asawin Bampenrat: Catalytic Tar Removal by Ni Supported on CeO₂-ZrO₂ Based Catalysts Thesis Advisors: Assoc. Prof. Pramoch Rungsunvigit, Prof. Johannes W. Schwank, Assoc. Prof. Vissanu Meeyoo, Assoc. Prof. Thirasak Rirksomboon, Asst. Prof. Boonyarach Kitiyanan 124 pp.
Keywords: Tar removal/ Benzene/ Toluene/ Naphthalene / Oxidation/ Steam reforming/ Nickel/ Ce₂-ZrO₂/ Transition metal oxides-doped Ce₂-ZrO₂

Biomass gasification is a promising technology for producing CO- and H₂rich gases to be used for many applications. However, the presence of heavy organic impurities in the flue gas, i.e. tar, is the main technical barrier in the biomass gasification process, making catalytic hot gas conditioning a necessary step in most gasification application. Therefore, there has been emphasis on the development of highly active and carbon formation resistance catalyst for tar elimination. In this study, the total oxidation and steam reforming of model tar compounds (benzene, toluene and naphthalene) over CeO2-ZrO2 and Ni/CeO2-ZrO2-based catalysts were investigated. The experimental results showed that Mn-doped CeO₂-ZrO₂ mixed oxides, Ce_{0.75}Zr_{0.15}Mn_{0.10}O₂ particularly, catalyst exhibits the highest activity toward complete oxidation of the three studied tar compounds. Based on kinetic study results of naphthalene oxidation over CeO₂-ZrO₂ mixed oxides, the reaction mechanism can be expressed by the Mars-van Krevelen mechanism, indicating that the catalytic activity was related to the redox properties of the catalysts. For steam reforming reaction, Ni/Ce_{0.75}Zr_{0.25-x}Mn_xO₂ and Ni/Ce_{0.75}Zr_{0.15}Me_{0.10}O₂ (Me = Cr, Fe, Mn and V) catalysts exhibit high activities and stabilities for toluene and naphthalene steam reforming with no sign of deactivation in a period of 6 hours. In particular, the incorporation of Mn into ceria-zirconia mixed oxide is able to modify the redox

properties of the mixed oxide support. Moreover, the presence of Mn results in the dramatic decrease in carbon formation with the absence of filamentous carbon.

e

÷

o

.

บทคัดย่อ

อัสวิน บำเพ็ญรัตน์ : การกำจัดสารประกอบทาร์โดยใช้ตัวเร่งปฏิกิริยานิกเกิลบนตัว รองรับชนิดซีเรีย-เซอร์โคเนีย (Catalytic Tar Removal by Ni Supported on CeO₂-ZrO₂ Based Catalysts) อ. ที่ปรึกษา : รศ. คร. ปราโมช รังสรรค์วิจิตร ศ. โจฮานเนส ชวางค์ รศ. คร. วิษณุ มี อยู่ รศ. คร. ธีรศักดิ์ ฤกษ์สมบูรณ์ และ ผศ. คร. บุญรัชต์ กิติยานันท์ 124 หน้า

้กระบวนการแกสิฟิเคชันชีวมวลเป็นเทคโนโลยีหนึ่งที่สามารถผลิตแก๊สผลิตภัณฑ์ที่มี CO และ H, เป็นองค์ประกอบหลักซึ่งสามารถนำไปใช้ประโยชน์ได้อย่างกว้างขวาง อย่างไรก็ตาม ในการนำแก๊สผลิตภัณฑ์จากกระบวนการดังกล่าวมาใช้ประโยชน์มักประสบกับปัณหาเกี่ยวกับ สารประกอบทาร์ซึ่งเป็นสารประกอบอินทรีย์ที่มีมวลโมเลกุลสูงและสามารถควบแน่นเป็น ของเหลวที่อุณหภูมิต่ำ จึงจำเป็นต้องมีกระบวนการปรับปรุงแก๊สผลิตภัณฑ์โดยใช้ตัวเร่งปฏิกิริยา ้สำหรับกระบวนการแกสิฟิเคชันชีวมวล ในงานวิจัยนี้เป็นการศึกษาและปรับบรุงตัวเร่งปฏิกิริยาที่ ้สามารถกำจัดสารประกอบทาร์โดยใช้ดัวเร่งปฏิกิริยาซีเรีย-เซอร์โคเนียสำหรับปฏิกิริยาออกซิเดชัน และโดยใช้ตัวเร่งปฏิกิริยาโลหะนิเกิลที่มีซีเรีย-เซอร์โคเนียเป็นตัวรองรับสำหรับปฏิกิริยารีฟอร์มมิง ้ด้วยน้ำ จากการศึกษาพบว่าตัวเร่งปฏิกิริยาซีเรีย-เซอร์โคเนียที่มีแมงกานีสเป็นตัวปรับปรุง ้คุณสมบัติ (Ce_{0.75}Zr_{0.15}Mn_{0.10}O₂) ให้ค่ากัมมันตภาพ (activity) สูงที่สุดสำหรับปฏิกิริยาออกซิเดชัน ของเบนซีน โทลูอีน และแนฟทาลีน และจากการศึกษาจลนพลศาสตร์ (kinetics) ของปฏิกิริยา ้ออกซิเคชันของแนฟทาลีนโคยใช้ตัวเร่งปฏิกิริยาซีเรีย-เซอร์โคเนียพบว่าสามารถใช้กลไกของ Mars-van Krevelen อธิบายปฏิกิริยาดังกล่าวได้ จึงสรุปได้ว่ากัมมันตภาพของตัวเร่งปฏิกิริยาซีเรีย-เซอร์โคเนียสัมพันธ์กับคุณสมบัติทางรีคอกซ์ (redox property) สำหรับปฏิกิริยารีฟอร์มมิงด้วยน้ำ ้นั้นจากการศึกษาพบว่าตัวเร่งปฏิกิริยานิกเกิลบนตัวรองรับซีเรีย-เซอร์ โคเนียที่มีแมงกานีสเป็นตัว ปรับปรุงคุณสมบัติ (Ni/Ce_{0 75}Zr_{0.25-x}Mn_xO₂) และตัวเร่งปฏิกิริยานิกเกิลบนตัวรองรับชนิดซีเรีย-เซอร์โคเนียที่มีโลหะออกไซด์ได้แก่ โครเมียม (Cr) เหล็ก (Fe) แมงกานีส (Mn) และวานาเดียม (V) เป็นด้วปรับปรุงคุณสมบัติ (Ni/Ce_{0 15}Zr_{0 15}Me_{0 10}O₂ (Me = Cr, Fe, Mn และ V)) ให้ค่ากับมันตภาพ และเสถียรภาพ (stability) ที่สูงในช่วงเวลาที่ทำการทคสอบสำหรับปฏิกิริยารีฟอร์มมิงของโทลูอีน และแนฟทาลีนด้วยน้ำ พบว่าในกรณีที่ใช้แมงกานีสสามารถรักษาหรือปรับปรุงคุณสมบัติทางรี ้ดอกซ์ของตัวรองรับซีเรีย-เซอร์โคเนียโดยช่วยลดการเกิดการ์บอนบนตัวเร่งปฏิกิริยาโดยเฉพาะ ป้องกันการเกิดการ์บอนชนิดฟิลาเมนท์ (filamentous carbon) อีกด้วย

ACKNOWLEDGEMENTS

First of all, I would like to express my sincere thanks to my advisors; Assoc. Prof. Vissanu Meeyoo, Assoc. Prof. Thirasak Rirksomboon, Assoc. Prof. Pramoch Rungsunvigit, and Asst. Prof. Boonyarach Kitiyanan who have given me a great opportunity to study in Ph.D. program and provided their knowledge, useful recommendations, comments and suggestions throughout my graduate work.

I would like to thank Prof. Johannes W. Schwank and his family for his kindness, suggestions and helps while I was working at the University of Michigan. I also would like to use this opportunity to express my sincere thanks to everyone in Schwank's group for their assistances, suggestions and encouragements. I also would like to thank Dr. Kai Sun and Dr. Haiping Sun of the University of Michigan Electron Microbeam Analysis Laboratory for valuable assistance in the microscopy work.

My sincere thanks go to Prof. Somchai Osuwan, Assoc. Prof. Metta Charoenpanich and Asst. Prof. Siriporn Jongpatiwut for serving as my thesis is committee. I also give my gratitude to colleagues and staff members at PPC for their assistances.

This thesis work is partially funded by the Petroleum and Petrochemical College; and the National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, Chulalongkorn University, Thailand. Additionally, It is my pleasure to express acknowledge to the Thailand Research Fund (TRF) under the Royal Golden Jubilee Ph.D. program and Ratchadapiseksomphote Endowment Fund of Chulalongkorn University.

Finally, I would like to express my gratitude to my parents, my family and my friends for their love, encouragement, support and understanding.

TABLE OF CONTENTS

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	v
Acknowledgements	vi
Table of Contents	vii
List of Tables	xi
List of Figures	xiii

CHAPTER

Ι	INTRODUCTION		1
	1.1 Significance of Research		1
	1.2 Objective and Outline of Thesis		3
II	LITERATURE REVIEW		5
	2.1 Background		5
	2.1.1 Tar Classification		5
	2.1.2 Tar Removal Techniques	•	8
	2.2 Literature Survey		11
	2.2.1 Catalysis for Biomass Gasification		11
	2.2.2 Strategies for Coke Minimisation		18
	2.2.3 Ceria-Zirconia Mixed Oxides		20
III	EXPERIMENTAL		22
	3.1 Materials		22
	3.1.1 Gases		22
	3.1.2 Chemicals		22
	3.2 Experiments		23

•

	3.2.1 Catalyst Preparations	23
	3.2.2 Catalyst Characterizations	24
	3.2.3 Catalytic Activity Tests	26
IV	CATALYTIC OXIDATION OF NAPHTHALENE	
	OVER CeO2-ZrO2 MIXED OXIDE CATALYSTS	29
	4.1 Abstract	29
	4.2 Introduction	29
	4.3 Experimental	30
	4.3.1 Catalyst Preparation and Characterizations	30
	4.3.2 Activity Tests and Kinetic Studies	30
	4.4 Results and Discussion	31
	4.4.1 Catalytic Activities for Naphthalene Oxidation	31
	4.4.2 Kinetic Studies	32
	4.5 Conclusions	41
	4.6 Acknowledgements	41
	4.7 References	41

V	CATALYTIC OXIDATION OF VOLATILE		
	ORGANIC COMPOUNDS OVER TRANSITION		
	METAL OXIDE-DOPED CeO2-ZrO2 CATALYSTS	44	
	5.1 Abstract	44	
	5.2 Introduction	44	
	5.3 Experimental	. 46	
	5.3.1 Catalyst Preparation and Characterizations	46	
	5.3.2 Activity Tests	46	
	5.4 Results and Discussion	47	
	5.4.1 Catalyst Characterizations	47	
	5.4.2 Catalytic Activities for VOCs Oxidation	53	

ο

СНАРТ	ER	PAGE
	5.5 Conclusions	60
	5.6 Acknowledgements	61
	5.7 References	61
VI	STEAM REFORMING OF TOLUENE AS A MOD	EL
	COMPOUND OF TAR DERIVED FROM BIOMAS	SS
	GASIFICATION: THE EFFECT OF TRANSITION	N
	METAL OXIDE DOPING	64
	6.1 Abstract	64
	6.2 Introduction	64
	6.3 Experimental	66
	6.3.1 Catalyst Preparation	66
	6.3.2 Catalyst Characterization	66
	6.3.3 Catalyst Activity Tests	68
	6.4 Results and Discussion	69
	6.4.1 Catalyst Characterization	69
	6.4.2 Catalytic Activities for Toluene Steam	
	Reforming	78
	6.4.3 Effect of Space-Time	78
	6.4.4 Carbon Formation	83
	6.5 Conclusions	86
	6.6 Acknowledgements	86
	6.7 References	87
VI	I NAPHTHALENE STEAM REFORMING OVER	
	Mn-DOPED CeO2-ZrO2 SUPPORTED NICKEL	
	CATALYSTS	90
	7.1 Abstract	90

o

-

o

- 2

PAGE

	7.2 Introduction	91
	7.3 Experimental	92
	7.3.1 Catalyst Preparation	92
	7.3.2 Catalyst Characterizations	92
	7.3.3 Catalyst Activity Tests	94
	7.4 Results and Discussion	95
	7.4.1 Catalyst Characterization	95
	7.4.2 Catalytic Activities for Naphthalene	
	Steam Reforming	100
	7.4.3 Effect of Steam-to-Carbon Ratio	104
	7.4.4 Carbon Formation	104
	7.5 Conclusions	110
	7.6 Acknowledgements	110
	7.7 References	110
VIII	CONCLUSIONS AND DECOMMENDATIONS	114
VIII	CONCLUSIONS AND RECOMMENDATIONS	114
	8.1 Conclusions	114
	8.2 Recommendations	115
	e	
	REFERENCES	116
	CURRICULUM VITAE	123

LIST OF TABLES

TABLE

•

-

CHAPTER II

.

List of tar compounds that are considered for different	
tar classes	7
Typical composition of biomass tar	8
Summary of catalysts advantages and disadvantages	14
Overview of literature on decomposition of model	
biomass tar	16
	List of tar compounds that are considered for different tar classes Typical composition of biomass tar Summary of catalysts advantages and disadvantages Overview of literature on decomposition of model biomass tar

CHAPTER IV

4.1	Kinetic models tested in fitting the naphthalene oxidation	
	process	39
4.2	Values of the rate parameters obtained for naphthalene	
	oxidation over Ce _{0.75} Zr _{0.25} O ₂ mixed oxide catalyst	40

CHAPTER V

5.1	Textural properties of the catalysts	50
5.2	The amount of H_2 consumption determined from the	
	reduction peak of Ce_{0.75}Zr_{0.25}O_2 and Ce_{0.75}Zr_{0.15}Me_{0.10}O_2	
	(Me = Cr, Fe, Mn and V) mixed oxides in TPR profiles	
	shown in Figure 5.3	53
5.3	Catalytic activity for benzene (BEN), toluene (TOL) and	
	naphthalene (NAPH) oxidation expressed by $T_{50\%}$	54
5.4	Apparent activation energies of VOCs oxidation	59

xii

CHAPTER VI

6.1	Textural properties of Ni-supported catalysts	70
6.2	Degree of Ni metal dispersions and Ni crystallite size	
	of the Ni-supported catalysts	70
6.3	Reaction characteristics of gas compositions using various	
	nickel supported on Ce $_{0.75}$ Zr $_{0.25}$ O ₂ , Ni/Ce $_{0.75}$ Zr $_{0.15}$ Me $_{0.10}$ O ₂	
	mixed oxide and α -Al ₂ O ₃ catalysts at reaction temperature	
	of 600 and 700 °C (time on stream = 6 h; S/C ratio = 5.0)	80
6.4	Total amounts of carbon deposited on catalysts via the	
	toluene steam reforming; after 6 h on stream, at 700 $^{\circ}\mathrm{C}$	
	and, an S/C ratio of 5.0	86

CHAPTER VII

7.1	Typical composition of biomass gasification	91
7.2	Textural properties of Ni-supported catalysts as measured by	
	N_2 adsorption-desorption isotherms at – 196 °C	98
7.3	Degrees of Ni dispersion and Ni crystallite sizes of the Ni-	
	supported catalysts	98
7.4	Naphthalene steam reforming activity of $Ce_{0.75}Zr_{0.25-x}Mn_xO_2$	
	supports (reaction temperature = 700 °C; time on stream = 6	
	h; S/C ratio = 2.0)	103
7.5	Naphthalene steam reforming activity of Ni/Ce _{0.75} Zr _{0.25} .	
	$_{x}Mn_{x}O_{2}$ catalysts (reaction temperature = 700 °C; time on	
	stream = 6 h; S/C ratio = 2.0; naphthalene conversion = 1)	103
7.6	Total amounts of carbon deposited on catalysts via the	
	naphthalene steam reforming; after 6 h on stream,	
	at 700 °C and, an S/C ratio of 2.0	107

LIST OF FIGURES

FIGU	RE	PAGE
	CHAPTER I	
1.1	Thesis overview.	3
	CHAPTER II	
2.1	Tar classes.	6
2.2	Tar reduction concept by primary methods.	10
2.3	Tar reduction concept by secondary methods.	10
	CHAPTER III	
3.1	Schematic diagram of the experimental setup for model	27
	tar compound total oxidation.	
3.2	Schematic diagram of the experimental setup for model	
	tar compound steam reforming.	28
	CHAPTER IV	
4.1	Light-off curves for naphthalene oxidation over $Ce_{1-x}Zr_xO_2$	1
	mixed oxide catalysts; with a gas mixture composed of 200	
	ppmv $C_{10}H_8$, 10% O_2 and balance He.	33
4.2	CO-TPR profiles of the $Ce_{1-x}Zr_xO_2$ mixed oxide catalysts	34
4.3	Experimental reaction rate (r _{Naphthalene}) vs. P _{Naphthalene} at	
	different P_{Oxygen} values at 543 K for the $Ce_{0.75}Zr_{0.25}O_2$	
	mixed oxide catalyst.	35
4.4	Arrhenius plots of reaction rate constants for the catalytic	
	oxidation of naphthalene over $Ce_{0.75}Zr_{0.25}O_2$ mixed oxide	
	catalyst by: (A) power law model; (B) Mars-van Krevelen	
	model.	38

xiv

CHAPTER V

5.1	X-ray diffraction patterns for $Ce_{0.75}Zr_{0.25}O_2$ and	
	$Ce_{0.75}Zr_{0.15}Me_{0.10}O_2$ (Me = Cr, Fe, Mn and V) mixed oxide	
	catalysts with aging time of 50 h, and calcined at 773 K.	48
5.2	Raman spectrum of the $Ce_{0.75}Zr_{0.25}O_2$ and	
	$Ce_{0.75}Zr_{0.15}Me_{0.10}O_2$ (Me = Cr, Fe, Mn and V) mixed oxide	
	catalysts.	49
5.3	H_2 -TPR profiles of the Ce _{0.75} Zr _{0.25} O ₂ and	
	$Ce_{0.75}Zr_{0.15}Me_{0.10}O_2$ (Me = Cr, Fe, Mn and V) mixed oxide	
	catalysts calcined at 773 K with heating rate of 10 K min ⁻¹ , a	
	reducing gas containing 5% H_2 in nitrogen with a flow rate	
	of 75 ml min ⁻¹ .	52
5.4	Light-off curve for benzene oxidation over $Ce_{0.75}Zr_{0.25}O_2$	
	and $Ce_{0.75}Zr_{0.15}Me_{0.10}O_2$ (Me = Cr. Fe, Mn and V) mixed	
	oxide catalysts; with gas mixture composed of 2000 ppmv	
	C_6H_6 , 10% O_2 and balance He.	55
5.5	Light-off curve for toluene oxidation over $Ce_{0.75}Zr_{0.25}O_2$	
	and $Ce_{0.75}Zr_{0.15}Me_{0.10}O_2$ (Me = Cr, Fe, Mn and V) mixed	
	oxide catalysts; with gas mixture composed of 2000 ppmv	
	C_7H_8 , 10% O_2 and balance He.	56
5.6	Light-off curve for naphthalene oxidation over $Ce_{0.75}Zr_{0.25}O_2$	
	and $Ce_{0.75}Zr_{0.15}Me_{0.10}O_2$ (Me = Cr, Fe, Mn and V) mixed	
	oxide catalysts; with gas mixture composed of 200 ppmv	
	$C_{10}H_8$, 10% O_2 and balance He.	57
5.7	Constable plot of pre-exponential factors as a function of	
	apparent activation energies for the catalytic oxidation of	
	VOCs over $Ce_{0.75}Zr_{0.15}Me_{0.10}O_2$ mixed oxide catalysts.	60

o

-

PAGE

CHAPTER VI

6.1	X-ray diffraction patterns for Ni/Ce0.75Zr0 25O2 and	
	$Ni/Ce_{0.75}Zr_{0.15}Me_{0.10}O_2$ (Me = Cr, Fe, Mn and V) mixed	
	oxide catalysts with the aging time of 50 h, and calcined at	
	500 °C.	72
6.2	H ₂ -TPR profiles of the Ni/Ce _{0 75} Zr _{0 25} O ₂ ,	
	$Ni/Ce_{0.75}Zr_{0.15}Me_{0.10}O_2$ (Me = Cr, Fe, Mn and V) mixed	
	oxide and 15% Ni/ α -Al ₂ O ₃ catalysts.	74
6.3	TEM images of Ni/Ce _{0 75} Zr _{0.25} O ₂ catalyst.	75
6.4	TEM images of Ni/Ce _{0.75} Zr _{0.15} Cr _{0.10} O ₂ catalyst.	76
6.5	TEM images of Ni/Ce _{0.75} Zr _{0.15} Fe _{0.10} O ₂ catalyst.	76
6.6	TEM images of Ni/Ce $_{0.75}$ Zr $_{0.15}$ Mn $_{0.10}$ O ₂ catalyst.	77
6.7	TEM images of $Ni/Ce_{0.75}Zr_{0.15}V_{0.10}O_2$ catalyst.	77
6.8	Influence of space-time on toluene conversion and selectivity	
	to carbon-containing products during steam reforming of	
	toluene over $Ni/Ce_{0.75}Zr_{0.25}O_2$ catalyst; with a gas mixture	
	composed of 2000 ppmv C ₇ H ₈ , S/C ratio = 5.0, T = 700 $^{\circ}$ C	
	and time on stream = $6 h$.	81
6.9	Influence of space-time on toluene conversion and selectivity	
	to carbon-containing products during steam reforming of	
	toluene over Ni/Ce _{0.75} Zr _{0.15} Mn _{0.10} O ₂ catalyst; with a gas	
	mixture composed of 2000 ppmv C_7H_8 , S/C ratio = 5.0, T =	
	700 °C and time on stream = 6 h.	82
6.10	Catalytic activity for toluene steam reforming over	
	$Ni/Ce_{0.75}Zr_{0.25}O_2$, $Ni/Ce_{0.75}Zr_{0.15}Me_{0.10}O_2$ (Me = Cr, Fe, Mn	
	and V) mixed oxide and 15% Ni/ α -Al ₂ O ₃ catalysts; with a	
	gas mixture composed of 2000 ppmv C_7H_8 , S/C ratio = 5.0	
	and $T = 600 ^{\circ}C.$	84

o

-

FIGURE

0

6.11	Catalytic activity for toluene steam reforming over			
	$Ni/Ce_{0.75}Zr_{0.25}O_2$, $Ni/Ce_{0.75}Zr_{0.15}Me_{0.10}O_2$ (Me = Cr. Fe, Mn			
	and V) mixed oxide and 15% $Ni/\alpha\text{-}Al_2O_3$ catalysts; with a			
	gas mixture composed of 2000 ppmv C_7H_8 , S/C ratio = 5.0	•		
	and $T = 700 ^{\circ}C$.		85	

CHAPTER VII

7.1	Schematic diagram of the experimental setup for	
	naphthalene steam reforming.	95
7.2	X-ray diffraction patterns for 15% Ni/Ce_{0.75}Zr_{0.25-x}Mn_xO_2	
	mixed oxide catalysts with the aging time of 50 h, and	
	calcined at 500 °C. The enlarged (111) crystal planes of	
	both CeO_2 and the others are presented in the inset.	97
7.3	H_2 -TPR profiles of the $Ce_{0.75}Zr_{0.25-x}Mn_xO_2$ mixed oxide	
	samples.	101
7.4	H ₂ -TPR profiles of the 15% Ni/Ce _{0 75} Zr _{0 25-x} Mn _x O ₂ mixed	
	oxide and 15% Ni/ α -Al ₂ O ₃ catalysts.	102
7.5	Effect of S/C ratio on the selectivities of carbon containing	
	products and hydrogen yield over: (A) 15%	
	$Ni/Ce_{0.75}Zr_{0.25}O_2$, (B) 15% $Ni/Ce_{0.75}Zr_{0.15}Mn_{0.10}O_2$.	105
7.6	Catalytic activity for naphthalene steam reforming over	
	15% Ni/Ce _{0 75} Zr _{0 25-x} Mn _x O ₂ mixed oxide and 15% Ni/ α -	
	AI_2O_3 catalysts; with a gas mixture composed of 1,500	
	ppmv $C_{10}H_8$, S/C ratio = 2.0 and T = 700 °C.	106
7.7	TPO profiles of the spent catalysts (15% Ni/Ce _{0.75} Zr _{0.25} .	
	$_xMn_xO_2$ mixed oxide and 15% Ni/ α -Al_2O_3) after exposure	
	to reaction at 700 °C for 6 h.	108

-

.

PAGE

FIGURE PAGE

7.8 TEM images of the spent catalysts: (A) 15% Ni/α-Al₂O₃,
(B) 15% Ni/Ce_{0.75}Zr_{0.25}O₂, (C) 15% Ni/Ce_{0.75}Zr_{0.15}Mn_{0.10}O₂.

.

o