NOVEL ELECTROSPUN TITANIUM (IV) OXIDE COMPOSITE HOLLOW FIBERS AS ANODE IN LITHIUM-ION BATTERIES

Tanatchporn Sirimekanont

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University, and Institut Français du Pétrole 2013

I28372578

Thesis Title:	Novel Electrospun Titanium (IV) Oxide Composite
	Hollow Fibers as Anode in Lithium-ion Batteries
By:	Tanatchporn Sirirmekanont
Program:	Polymer Science
Thesis Advisors:	Prof. Pitt Supaphol

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

Ma College Dean (Asst. Prof. Pomthong Malakul)

Thesis Committee:

y /0

(Prof. Pitt Supaphol)

K. Simbatmankhong

(Dr. Korakot Sombatmankhong)

Hathailian M.

(Asst. Prof. Hathaikarn Manuspiya)

ABSTRACT

5472049063: Polymer Science Program
Tanatchporn Sirimekanont: Novel Electrospun Titanium (IV) Oxide
Composite Hollow Fibers as Anode in Lithium-ion Batteries.
Thesis Advisors: Prof. Pitt Supaphol and Dr. Korakot
Sombatmankhong 117 pp.
Keywords: Electrospinning/ Lithium-ion batteries/ Anode/ Titanium oxide
nanofibers/ Hollow fibers

Nanostructured transition metal oxides have been developed as electrode materials in Lithium-ion Batteries (LIBS) due to their ability to provide high capacity and improved cycling performance. Among these types, titanium oxide (TiO₂) has attracted considerable interesting owing to its high lithium intercalation property, minimal toxicity and small volume change during cycling. TiO₂, however, has low ionic and electronic conductivity. Therefore, this present work will focus on the structural modification of TiO₂ nanofibers to improve their efficiency. Accordingly, the hollow ZnO-TiO₂ and Ag₂O-TiO₂ composite hollow fibers will be prepared through coaxial electrospinning of the colloidal solution consisting of Titanium (IV) isopropoxide/ Poly (vinyl acetate)/ Zn particles and Ag particles in case of Ag₂O-TiO₂ fibers, followed by calcination in air at 500 °C 1 h. Both of added Zn and Ag particles are employed as seeds to generate the growth of ZnO and Ag₂O crystals on the surface of TiO₂ using the hydrothermal treatment at various times and temperatures. The average diameter of both types of the products obtained after hydrothermal treatment increased with increasing time and temperature of hydrothermal treatment. XRD patterns revealed well crystalline features of anatase TiO₂ with ZnO, and Ag₂O. Additionally, the surface area of the obtained hollow fibers was observed by BET surface area. Among the hydrothermally treated ZnO-TiO₂ composite hollow fibers, the fibers which were treated at 115 °C 0.5 h provided the highest surface area $(25.164 \text{ m}^2\text{g}^{-1})$ compared to the other hydrothermally treated ones. But in case of Ag₂O-TiO₂ composite hollow fibers, the fibers which were treated at $110 \,^{\circ}$ C 1 h provided the highest surface area (44.960 m²g⁻¹).

บทคัดย่อ

ธนัชพร ศิริเมฆานนท์ : วัสคุโครงสร้างเส้นใยกลวงเชิงประกอบ ไททาเนียม ออกไซค์ ชนิคใหม่สำหรับการประยุกต์ใช้เป็นขั้วแอโนคในลิเธียมไอออน แบตเตอรี (Novel Electrospun Titanium (IV) Oxide Composite Hollow Fibers as Anode in Lithium-ion Batteries) อ. ที่ปรึกษา : ศ. คร. พิชญ์ ศุภผล และ คร. กรกช สมบัติมั่นคง 117 หน้า

โครงสร้างระดับนาโนของ ทรานซิชัน เมทัล ออกไซด์ ได้รับการพัฒนาอย่างต่อเนื่อง ในการทำเป็นอิเล็กโทรคในลิเธียมไอออน แบตเตอรี โดย ไททาเนียม ออกไซด์ (TiO₂) ได้รับ ้เนื่อจากมีโครงสร้างผลึกที่เหมาะสมในการให้ถิเธียมไอออนแทรกตัวใน ความสนใจอย่างมาก ้ปริมาณสูง, ความเป็นพิษต่ำ, และเกิดการเปลี่ยนแปลงทางปริมาตรน้อยระหว่างกระบวนการให้ และคายประจุ แต่อย่างไรก็ตาม ไททาเนียม ออกไซค์ มีความสามารถในการนำไอออน ดังนั้นงานวิจัยนี้จึงมุ่งศึกษาวิธีการปรับปรุงลักษณะพื้นผิวเส้นใยไททาเนียม และอิเล็คตรอนต่ำ ออกไซด์ เพื่อปรับปรุงประสิทธิภาพการนำไฟฟ้า โดยเส้นใยกลวงซึ่งเป็นวัสดุเชิงประกอบของ ้ซิงค์ ออกไซค์-ไททาเนียม ออกไซค์ และ ซิลเวอร์ ออกไซค์-ไททาเนียม ออกไซค์ ถูกเตรียมจาก สารละลายคอลลอยค์ของ ไททาเนียม ไอโซโพรพอกไซค์ (TIP)/ พอลิไวนิล อะซิเตท (PVAc)/ อนุภาคของซิงค์ (Zn particles) และ ซิลเวอร์(Ag particles) ตามลำคับ ผ่านเทคนิค การปั่นเส้นใย ด้วยไฟฟ้าสถิตย์แบบร่วมแกน (coaxial electrospinning) ตามด้วยกระบวนการเผา (calcination) ที่ 500 องศา เป็นเวลา 1 ชั่วโมง โดยอนุภาคของซิงค์ และ ซิลเวอร์ที่เติมลงไป จะถูกใช้เพื่อ เหนี่ยวนำให้เกิดการเติบโตของผลึกซิงค์ ออกไซด์ และ ซิลเวอร์ ออกไซด์ บนผิวของเส้นใยกลวง ้ผ่านกระบวนการให้ความร้อนด้วยน้ำ (hydrothermal treatment) ที่สภาวะต่างๆ จากผลการทดลอง พบว่าขนาดเส้นใยเฉลี่ยของวัสดุทั้งสองชนิดเพิ่มขึ้นตามเวลาและอุณหภูมิ ภายใต้กระบวนการให้ ความร้อนด้วยน้ำ จากผลเอกซเรย์ดิฟแฟรกชัน (XRD) พบว่าเส้นใยกลวงทั้งสองชนิดประกอบ ์โครงสร้างผลึกของอะนาเทส ไททาเนียม ออกไซด์ ร่วมกับ ซิงค์ ออกไซด์ และ ซิลเวอร์ ออกไซด์ นอกจากนี้ พื้นที่ผิวของวัสดุโครงสร้างเส้นใยกลวงเชิงประกอบ ไททาเนียม ออกไซด์ทั้งสองชนิด ใค้ถูกตรวจสอบโดยเซอร์เฟส แอเรีย อะนาไลเซอร์ (BET) ผลการทคสอบพบว่าวัสคุโครงสร้าง เส้นใยกลวงเชิงประกอบของซิงค์ ออกไซค์- ไททาเนียม ออกไซค์ที่สภาวะ 115 องศา 0.5 ชั่วโมง ให้ค่าพื้นที่ผิวสูงสุด ส่วนวัสดุโครงสร้างเส้นใยกลวงเชิงประกอบของซิลเวอร์ออกไซด์-ไททา เนียม ออกไซด์ที่สภาวะ 110 องศา1 ชั่วโมง ให้ก่าพื้นที่ผิวสูงสุด

ACKNOWLEDGEMENTS

This work has provided a valuable experience and a lot of knowledge to the author. It would not have been possible without the guidance and the support of several individuals who in one way or another contributed and extended their valuable assistance in the preparation and completion of this study. I would like to express my deepest appreciation to all of them.

First and foremost, I would like to offer my sincerest gratitude to my advisor, Prof. Pitt Supaphol, who continues to support and give excellent guidance and encouragements. Dr. Korakot Sombatmankhong, who acted as my thesis co-advisor, has supplied many necessary things, assistance, and good advices throughout my work. They were always available for my problems I had regarding this work. I would like to extremely thank them for their generous supports, persistent helps and patience that bring me the good opportunity to make this work successful.

Besides my advisor and co-advisor, I would like to specially thank Asst. Prof. Hataikarn Manuspiya for being my advisory committee member and giving me the insightful comments and recommendations.

My sincere thank also goes to all faculties and staffs of the petroleum and petrochemical College for their kind aids to simplify the work.

Also, I would like to express my deep appreciation to Ph.D. students in my group for their suggestions and constant helps as well as their friendliness that made me feel comfortable to be a part of this group. Moreover, special thank goes to all my PPC friends for their kindly helping and encouragements.

This thesis work is funded by the Petroleum and Petrochemical College; and the National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, Thailand.

Eventually, the author would like to express the sincerest thankfulness to my family for their limitable supports, priceless encouragement and endless love throughout these two years.

TABLE OF CONTENTS

PAGE

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	x
List of Figures	xiii

CHAPTER

I	INTRODUCTION	1
II	LITERATURE REVIEW	3
	2.1 Lithium-ion Batteries (LIBs)	3
	2.2 Materials for Lithium-ion Batteries	4
	2.2.1 Cathode Materials	4
	2.2.2 Electrolyte Materials	6
	2.2.3 Anode Materials	9
	2.3 Electrospinning Process	12
	2.3.1 Electrospinning Apparatus	14
	2.3.2 Modeling of Electrospinning Process	14
	2.3.3 Parameters of Electrospinning Process	17
	2.3.4 Coaxial Electrospinning	18
	2.4 Hydrothermal Synthesis	21
	2.5 Crystal Growth and Nucleation	21
	2.5.1 Nucleation	22
	2.5.2 Crystal Growth	22
	2.6 Nanofibrous Materials	23
	2.7 The Development of Electrospun Fibrous	
	Anode Materials in Lithium-ion Batteries	26

Ш

	2.7.1	Lithium Metals	26
	2.7.2	2 The Low Intrinsic Electrical Conductivity	
		of Electrode Materials	27
	2.7.3	Transition Metal Oxides	29
	2.7.4	Zero-strain Insertion Anode Materials	29
	2.7.5	Volume Expansion and Contraction of Anode	
		Materials	30
	2.7.6	Si-based Anodes	31
	2.7.7	Other Improvements	32
EX	PERI	MENTAL	41
3.1	Mate	rials	41
	3.1.1	Materials Used for Coaxial Electrospinning	41
	3.1.2	Materials Used for Hydrothermal Treatment	41
	3.1.3	Materials Used for Electrochemical Characterization	41
3.2	Equi	pment	41
	3.2.1	Scanning Electron Microscope (SEM)	41
	3.2.2	Transmission Electron Microscope (TEM)	42
	3.2.3	X-ray Diffraction (XRD)	42
	3.2.4	Surface Area Analyzer (Autosorp-1MP)	42
	3.2.5	Attenuated Total Reflectance-Fourier Transform	
		Infrared Spectrometer (ATR-FTIR)	42
	3.2.6	Maccor Battery Test System Series 4000	42
3.3	Meth	odology	42
	3.3.1	The Effect of Operating Voltage to	
		the Morphology of Synthesized Fibers	42
	3.3.2	The Effect of Calcination Process to the Crystal	
		Structure of Synthesized Fibers	44
	3.3.3	The Effect of Surface Modification by Hydrothermal	
		Treatment to the Morphology, Weight, and the Average	9

IV

Diameter of Synthesized ZnO/TiO ₂ and Ag ₂ O/TiO) ₂
Composite Hollow Fibers	44
3.4 Characterization	46
3.4.1 Scanning Electron Microscope (SEM)	46
3.4.2 Transmission Electron Microscope (TEM)	46
3.4.3 X-ray Diffraction (XRD)	47
3.4.4 Surface Area Analyzer (Autosorp-1MP)	47
3.4.5 Attenuated Total Reflectance-Fourier Transform	
Infrared Spectrometer (ATR-FTIR)	47
3.5 Electrochemical Characterization	47
3.5.1 Preparation of Materials Used as Anode	48
3.5.2 Preparation of Materials Used as Cathode	48
	10
RESULTS AND DISCUSSION	49
4.1 The Effect of Operating Voltage to the Morphology of	10
Synthesized Fibers	49
4.1.1 TiO ₂ Hollow Fibers, Zn/TiO_2 , and Ag/TiO_2	10
Composite Hollow Fibers	49
4.1.2 TiO ₂ Fibers	52
4.2 The Effect of Calcination Process to the Morphology and	
the Crystal Structure of Synthesized Fibers	53
4.2.1 Calcination Condition at Different Time	
and Temperature	53
4.3 The Effect of Surface Modification by Hydrothermal	
Treatment to the Morphology, Weight, and	
the Average Diameter of Synthesized ZnO/TiO_2	
and Ag ₂ O/TiO ₂ Composite Hollow Fibers	69
4.3.1 Adjusting the Hydrothermal Treatment Condition	
under the Fixed Time for 1 Hour at	
Various Temperatures	71

117

4.3.2 Ad	ljusting the Hydrothermal Treatment Condition	n
unc	der the Fixed Temperature at115 °C at	
Var	rious Times	86
4.4 Lithium l	Ion Battery Study	101
CONCLUSI	ONS AND RECOMMENDATIONS	103
5.1 Conclusion	ons	103
5.2 Recomm	endations	105
REFERENC	ES	106
APPENDIX		111
Appendix A	Experimental Data of BET Surface Area	
	Analysis	111

CURRICULUM VITAE

LIST OF TABLES

TABLE		PAGE
2.1	Advantages and disadvantages of each process for fiber-	
	formation	25
4.1	The average diameter of the pre-calcined TiO_2 hollow fibers	51
4.2	The Percentage of Crystallinity	56
4.3	The details of crystallite size at different conditions	56
4.4	The average diameter (μm) of calcined TiO ₂ hollow fibers at	
	different calcinations conditions	61
4.5	Assignments for FT-IR absorption bands for poly(vinyl	
	acetate)	64
4.6	The average diameter of fibers before and after calcination	65
4.7	Cross sectional SEM images and TEM images of calcined	
	TiO_2 hollow fibers, Zn/TiO_2 composite hollow fibers, and	
	Ag/TiO ₂ composite hollow fibers	67
4.8	The atomic percentage of calcined composite hollow fibers	69
4.9	The average diameter of ZnO-TiO ₂ composite hollow fibers	
	after hydrothermal treatment for 1 h	73
4.10	The weight of ZnO -TiO ₂ composite hollow fibers before and	
	after hydrothermal treatment for 1 h	74
4.11	The atomic percentage of hydrothermally treated $ZnO-TiO_2$	
	composite hollow fibers for 1 h at various temperatures	75
4.12	The crystallite size of ZnO outgrowths at various	
	temperatures	78
4.13	The average diameter of Ag_2O -Ti O_2 composite hollow fibers	
	after hydrothermal treatment for 1 h	80
4.14	The weight of Ag_2O -TiO ₂ composite hollow fibers before	
	and after hydrothermal treatment for 1 h	81

4.15	The atomic percentage of hydrothermally treated Ag_2O-TiO_2	
	composite hollow fibers for 1 h at different temperatures	83
4.16	The crystallite size of Ag ₂ O outgrowths at various	
	temperatures	85
4.17	The average diameter of ZnO -TiO ₂ composite hollow fibers	
	after hydrothermal treatment at 115 °C	88
4.18	The weight of ZnO -TiO ₂ composite hollow fibers before and	
	after hydrothermal treatment at 115 °C	89
4.19	The atomic percentage of hydrothermally treated $ZnO-TiO_2$	
	composite hollow fibers at 115 °C at various times	90
4.20	The crystallite size of ZnO outgrowths at various times	91
4.21	The average diameter of Ag_2O -Ti O_2 composite hollow fibers	
	after hydrothermal treatment for 1 h	94
4.22	The weight of Ag_2O -Ti O_2 composite hollow fibers before	
	and after hydrothermal treatment at 115 $^{\circ}\mathrm{C}$	95
4.23	The atomic percentage of hydrothermally treated Ag_2O -TiO ₂	
	composite hollow fibers at 115 °C at various times	96
4.24	The crystallite size of Ag_2O outgrowths at various times	98
4.25	BET surface area of the obtained materials	100
Al	Raw data of multi-point BET of TiO ₂ fibers	112
А2	Raw data of multi-point BET of TiO_2 hollow fibers	112
A3	Raw data of multi-point BET of calcined Zn/TiO_2 composite	
	hollow fibers	113
Α4	Raw data of multi-point BET of ZnO-TiO ₂ composite	
	hollow fibers at 115 °C 1 h	113
A5	Raw data of multi-point BET of ZnO -Ti O_2 composite	
	hollow fibers at 115 °C 0.75 h	114
A6	Raw data of multi-point BET of ZnO-TiO ₂ composite	
	hollow fibers at 115 °C 0.5 h	114

TABLE

PAGE

A7	A7 Raw data of multi-point BET of calcined Ag/TiO ₂ composite	
	hollow fibers	115
A8	Raw data of multi-point BET of Ag ₂ O-TiO ₂ composite	
	hollow fibers at 110 °C 1 h	115
A9	Raw data of multi-point BET of Ag ₂ O-TiO ₂ composite	
	hollow fibers at 115 °C 1 h	116
A10	Raw data of multi-point BET of Ag ₂ O-TiO ₂ composite	
	hollow fibers at 120 °C 1 h	116

LIST OF FIGURES

FIGU	GURE	
2.1	Lithium-ion cell operation, during charging lithium ions	
	intercalate into the anode, the reverse occurs during	
	discharge.	4
2.2	Schematic illustration of a typical Li-ion battery: (a)	
	Aluminum current collector; (b) Oxide active material; (c)	
	Porous separator soaked with liquid electrolyte; (d)	
	Inhomogeneous SEI layer; (e) Graphite active material and	
	(f) Copper current collector.	8
2.3	Mechanism of Li^+ ion conduction in intrinsic (dry) SPE.	8
2.4	Three types of carbon.	10
2.5	Schematic representation of an electrospinning apparatus	
	(r, radius of the capillary; R, curvature radius of the	
	electrode used) and Taylor cones. (a) Formation of Taylor	
	cone in an applied electric field. (b) Taylor cone ejects fluid	
	jet. (c) Surface tension causes cone shape to relax. Jet stream	
	starts out in stable straight region, then becomes unstable,	
	partly owing to charge repulsion, typically showing	
	a whipping or spiraling motion.	12
2.6	Whipping motion occurred in rapid acceleration zone.	13
2.7	A schematic of an electrospinning setup.	14
2.8	Illustrations of (a) A short segment of a garland yarn, (b)	
	Details of the conglutinated solid fibers, and (c) A diagram	
	of a loop in a segment of one fiber and another loop.	17
2.9	The experimental setup of coaxial electrospinning.	19
2.10	High-magnification SEM micrographs and TEM images	
	inserts of C-CNFW carbonized at 850 °C.	19

2.11	FE-SEM images of HCNFs carbonized at various	
	carbonization temperatures: (a) 800, (b) 1000, (c) 1200,	
	and (d) 1600 °C.	20
2.12	Schematic representation of processes involved in the crystal	
	growth:(1) Transport of solute to a position nearthe crystal	
	surface; (2) diffusion throughboundary layer; (3) adsorption	
	onto crystalsurface; (4) diffusion over the surface;(4*)	
	desorption from the surface; (5) attachmentto a step or edge;	
	(6) diffusion along the step or edge; (7) Incorporation into	
	kinksite or step vacancy.	23
2.13	Artistic representations of (a) Woven fabrics, (b) Nonwoven	
	fabrics (c) nonwoven electrospun mat detail visualizing	
	a soldering-like attachment.	24
2.14	The SEM image for the cross-section of the protection layer.	27
2.15	SEM (1000X) of carbon materials cycled at different	
	discharge rates. (A) Carbon cycled at 1C; (B) carbon cycled	
	at 2C discharge rate; (C) and (D) carbon cycled at 3C	
	discharge rate.	28
216	Evolution of the SEI film on the surface of carbon when the	
	battery is continued to be cycled.	28
2.17	Galvanostatic discharge/charge curves for the first cycle.	31
2.18	The SEM image of C/Si = $3.3:1$ composite nanofibers cycled	
	for 15 cycles at 0.1 C.	32
2.19	Discharge capacities of the fibers measured at different	
	current densities from 100 to 1000 mAhg ⁻¹ .	33
2.20	Electrochemical tests of C/Li or Fe ₃ O ₄ /C/Li half cells:	
	discharge capacity versus cycles of the nanofibers.	34
2.21	The TEM images of (a) pristine $1D-TiO_2$, (b) Ag/1D-TiO ₂ ,	
	and (c) Au/1D-TiO ₂ .	35

2.22	Cycle performance on the discharge capacities of the test	
	cells at the constant current rate.	35
2.23	The SEM; (A and B) and FE-SEM; (C) images of	
	hydrothermally treated nanofibers.	36
2.24	The galvanostatic charge-discharge curves for the prepared	
	TiO ₂ -ZnO nanostructure.	37
2.25	Cycling performance of TiO ₂ /PCNFs (PAN:PMMA=2:1, 3:1	
	and 5:1)and TiO ₂ /CNFs (PAN:PMMA=1:0) at different	
	current densities of 25, 50, 100, 200,400 and 800 mAg ⁻¹ .	38
2.26	The TEM images (a) and (b) of the as-prepared nonwoven	
	TiO_2 and TiO_2 /Ag films after calcination at 500 °C for 1 h	
	in air, respectively.	39
2.27	The Cycling behaviors of the anatase TiO_2 powder, TiO_2 and	
	TiO_2/Ag hollow fibers.	39
2.28	The FE-SEM images of Si core/C shell nanofibers: (a) low	
	and and (b) high magnifications.	40
4.1	SEM images (magnification = $5000X$; scale bar = $10.0 \ \mu$ m) of	
	the pre-calcined TiO_2 hollow fibers under the fixed condition	
	of 19 cm working distance atoperating voltage of (a) 15 kV,	
	(b) 17 kV, (c) 19 kV, (d) 21 kV, (e) 23 kV, and (f) 25 kV.	50
4.2	The average diameter of pre-calcined TiO_2 hollow fibers as	
	a function of applied voltage (across a fixed working	
	distance of 17 cm).	51
4.3	SEM images (magnification = 5000X; scale bar = 10.0 μ m)	
	of (a)pre-calcinedZn/TiO ₂ and (b) pre-calcined	
	Ag/TiO ₂ composite hollow fibers under the proper	
	electrospinningcondition of 15 kV/17 cm.	52

FIGURE

PAGE

4.4	SEM images (magnification = 5000X; scale bar = 10.0 μ m) of	
	the pre-calcinedTiO ₂ fibers under the proper electrospinning	240
	condition of 15 kV/17 cm.	53
4.5	XRD results of TiO_2 hollow fibers before calcination.	54
4.6	XRD results of TiO_2 hollow fibers at various calcination	
	conditions.	55
4.7	SEM images of the calcinedTiO ₂ hollow fibers	
	(15 kV/17 cm) at different calcination conditions; at (a-1)	
	low and (a-2) high magnifications of 500 °C/1h, at (b-1) low	
	and (b-2) high magnifications of 500 °C/2h, at (c-1) low and	
	(c-2) high magnifications of 500 °C/3h, at (d-1) low and	
	(d-2) high magnifications of 600 °C/1h, at (e-1) low and	
	(e-2) high magnifications of 600 °C/2h, at (f-1) low and	
	(f-2) high magnifications of 600 °C/3h, at (g-1) low and	
	(g-2) high magnifications of 650 °C/1h, at (h-1) low and	
	(h-2) high magnifications of 650 °C/2h, and at (i-1) low	
	and (i-2) high magnifications of 600 °C/3h.	59
4.8	The average diameter of calcined TiO_2 hollow fiber at	
	500 °C, 600 °C, and 650 °C as a function of calcination time.	60
4.9	The average diameter of calcined TiO_2 hollow fiber at 1 h,	
	2 h, and 3 h as a function of calcination temperature.	60
4.10	FTIR spectrum of (a) pre-calcined TiO_2 hollow fiber and	
	(b) TiO ₂ hollow fiber calcined at 500 °C 1 h.	
	(The electrospinning condition was 15kV/17cm).	62
4.11	FTIR spectrum of (a) pre-calcined TiO_2 fiber and (b) TiO_2	
	fiber calcined at 500 $^{\circ}$ C 1 h. (The electrospinning condition	
	was 15kV/17cm).	62

FIGURE

4.12	FTIR spectrum of (a) pre-calcined Zn/TiO ₂ composite	
	hollow fibers and (b) Zn/TiO ₂ composite hollow	
	fiberscalcined at 500 °C 1 h. (The electrospinning condition	
	was 15kV/17cm).	63
4.13	FTIR spectrum of (a) pre-calcinedAg/TiO ₂ composite	
	hollow fibers and (b) Ag/TiO2composite hollow	
	fiberscalcined at 500 °C 1 h. (The electrospinning condition	
	was 15kV/17cm).	63
4.14	SEM images (magnification = 5000X; scale bar = $10.0 \ \mu m$) of	
	(a) calcinedTiO ₂ hollow fibers, (b)calcinedZn/TiO ₂ composite	
	hollow fibers, (c) calcined Ag/TiO ₂ composite hollow	
	fibers and (d) calcined TiO_2 fibers under the proper calcination	
	condition of 500 °C for 1 h.	65
4 1 5	SAED patterns of (a) calcinedTiO ₂ hollow fibers,	
	(b) Zn/TiO ₂ composite hollow fibers and (c)	
	Ag/TiO ₂ composite hollow fibers.	68
4.16	EDX results of (a) calcinedZn/TiO ₂ composite hollow	
	fibers and (b) Ag/TiO_2 composite hollow fibers.	68
4.17	SEM images (magnification = 15000X; scale bar = $3.00 \ \mu m$)	
	of hydrothermally treated $ZnO-TiO_2$ composite hollow	
	fibersfor 1 h at (a and b) 110 °C, (c and d) 115 °C, and	
	(e and f) 120 °C.	72
4.18	The average diameter of hydrothermally treated $ZnO-TiO_2$	
	composite hollow fibers for 1 h at various temperatures.	73
4.19	The obtained weight of ZnO outgrowths for 1 h at different	
	temperatures.	74
4.20	EDX results of hydrothermally treated $ZnO-TiO_2$	
	composite hollow fibersfor 1 h at (a) 110 °C, (b) 115 °C,	
	and (c) 120 °C.	75

FIGURE

4.21	XRD patterns of (a) Zn/TiO ₂ composite hollow	
	fibersobtained after calcination and ZnO-TiO ₂ composite	
	hollow fibersobtained after hydrothermal treatment for 1 h at	
	(b) 110 °C, (c) 115 °C, and (d) 120 °C.	77
4.22	SAED patterns of ZnO-TiO ₂ composite hollow	
	fibersobtained after hydrothermal treatment for 1 h at (a) 110	77
4.23	°C, (b) 115 °C, and (c) 120 °C.	
	SEM images of hydrothermally treated Ag ₂ O-TiO ₂ composite	
	hollow fibersfor 1 h at (a) 110 °C, (c) 115 °C, and (e) 120 °C	
	at magnification = 15000X; scale bar = $3.00 \ \mu m$ and at (b) 110	
	°C, (d) 115 °C, and (f) 120 °C at magnification = 35000X;	
	scale bar = $1.00 \ \mu m$.	79
4.24	The average diameter of hydrothermally treated Ag_2O -Ti O_2	
	composite hollow fibers for 1 h at various temperatures.	80
4.25	The obtained weight of Ag ₂ O outgrowths for 1 h at various	
	temperatures.	81
4.26	EDX results of hydrothermally treated Ag ₂ O-TiO ₂ composite	
	hollow fibersfor 1 h at (a) 110 °C, (b) 115 °C, and	
	(c) 120 °C.	82
4.27	XRD patterns of (a) Ag/TiO2 composite hollow fiberswhich	
	acquired after calcination and Ag ₂ O-TiO ₂ composite hollow	
	fibers obtained after hydrothermal treatment for 1 h at	
	(b) 110 °C, (c) 115 °C, and (d) 120 °C.	84
4.28	SAED patterns of Ag ₂ O-TiO ₂ composite hollow	
	fibersacquired after hydrothermal treatment for 1 h at (a) 110	
	°C, (b) 115 °C, and (c) 120 °C.	85
4.29	SEM images(magnification = $15000X$; scale bar = $3.00 \ \mu m$) of	
	hydrothermally treated ZnO-TiO ₂ composite hollow fibersat	
	115 °C for (a and b) 0.5 h, (c and d) 0.75 h, and (e and f) 1 h.	86

xix

PAGE

4.30	The average diameter of hydrothermally treated $ZnO-TiO_2$	
	composite hollow fibersat 115 °C as a function of time.	87
4.31	The obtained weight of ZnO outgrowthsat 115 °C at	
	different times.	88
4.32	EDX results of hydrothermally treated ZnO-TiO ₂ composite	
	hollow fibersat 115 °C for (a) 0.5 h, (b) 0.75 h, and (c) 1 h.	89
4.33	XRD patterns of (a) Zn/TiO_2 composite hollow	
	fibersobtained after calcination and ZnO-TiO ₂ composite	
	hollow fibersobtained after hydrothermal treatment at 115 °C	
	for (b) 0.5 h, (c) 0.75 h, and (d) 1 h.	91
4.34	SEM images of hydrothermally treatedAg2O-TiO2 composite	
	hollow fibersat 115 °C for (a) 0.5 h, (c) 0.75 h, and (e) 1 h at	
	magnification = 15000X; scale bar = $3.00 \ \mu m$ and for (b) 0.5	
	h, (d) 0.75 h, and (f) 1 h at magnification = 35000X; scale bar	
	$= 1.00 \ \mu m.$	92
4.35	The average diameter of hydrothermally treated Ag_2O -Ti O_2	
	composite hollow fibersat 115 °Cas a function of time.	92
4.36	The obtained weight of Ag ₂ O outgrowthsat 115 °C	
	as a function of time.	94
4.37	EDX results of hydrothermally treated Ag_2O -TiO ₂ composite	
	hollow fibersat 115 °Cfor (a) 0.5 h, (b) 0.75 h, and (c) 1 h.	95
4.38	XRD patterns of (a) Ag/TiO ₂ composite hollow fibers acquired	
	after calcination and Ag ₂ O-TiO ₂ composite hollow	
	fibersobtained after hydrothermal treatment at 115 °C for (b)	
	0.5 h, (c) 0.75 h, and (d) 1 h.	97
4.39	The digital photos of the prepared (a) anode, (b) cathode,	
	and (c) separator.	101
4.40	Charge curve of hydrothermally treated $ZnO-TiO_2$ composite	
	hollow fibers under the condition of 115 °C 0.5 h.	102