LIGNOCELLULOSIC BIOMASS PRETREATED WITH IONIC LIQUID

Rinrat Wanapirom

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University, and Institut Français du Pétrole 2015

I28368538

580017

Ø

Thesis Title:	Lignocellulosic Biomass Pretreated with Ionic Liquid
By:	Rinrat Wanapirom
Program:	Petrochemical Technology
Thesis Advisors:	Assoc. Prof. Apanee Luengnaruemitchai
	Assoc. Prof. Sujitra Wongkasemjit

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

..... College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

Que

(Assoc. Prof. Apanee Luengnaruemitchai)

unha

(Assoc. Prof. Sujitra Wongkasemjit)

Thanyalah Chaisman

(Asst. Rrof. Thanyalak Chaisuwan) • (Dr. Ruengsak Thitiratsakul)

ABSTRACT

5671030063	Petrochemical Technology Program
	Rinrat Wanapirom: Lignocellulosic Biomass Pretreated with Ionic
	Liquid.
	Thesis Advisors: Assoc. Prof. Apanee Luengnaruemitchai, and
	Assoc. Prof. Sujitra Wongkasemjit 88 pp.
Keywords:	Acid catalyst/ Ionic liquid/ Pretreatment/ Response surface
	methodology

Lignocellulosic biomass can be used to produce fermentable sugar, which is used in the production of biofuels. However, enzymatic action is hindered by the recalcitrance of plant cell walls. Among the chemicals used in the pretreatment of biomass, acid can give high glucose yield; however, it can also form inhibitors. To solve these problems, a new method is being used to improve the total sugar concentration by adding acid as a catalyst during ionic liquid pretreatment. This research focused on a suitable composition of Napier grass, the effect of acid type, acid concentration, pretreatment time, biomass loading and temperature during ionic liquid pretreatment. The optimal condition of these variables were determined by response surface methodology (RSM) for producing maximum reducing sugar. The result showed that maximum reducing sugar concentration of 14.38 g/l was derived Pakchong1 Kanchanaburi (Leaf) was pretreated by 1-Ethyl-3when methylimidazolium acetate and acetic acid at 147 °C, 76 min, acid 1.287 volume% and biomass loading of 20 g/l.

บทคัดย่อ

٥

รินรัตน์ วนาภิรมย์: การปรับสภาพลิกโนเซลลูโลสโดยใช้ของเหลวไอออนิก (Lignocellulosic Biomass Pretreated with Ionic Liquid) อ. ที่ปรึกษา : รศ. คร. อาภาณี เหลือง นฤมิตชัย และ รศ. คร. สุจิตรา วงศ์เกษมจิตต์ 88 หน้า

ลิกโนเซลลูโลสสามารถใช้เป็นวัตถุดิบในการผลิตน้ำตาล เพื่อนำไปใช้ในการผลิต แต่เนื่องจากการป้องกันของผนังเซลล์ เชื้อเพลิงชีวภาพ ทำให้เอนไซม์ไม่สามารถเข้าไปทำ ้ปฏิกิริยากับเซลลูโลสได้ โดยทั่วไปสารเคมีประเภทกรดเป็นทางเลือกหนึ่งที่ใช้ในการปรับสภาพ ชีวมวลและให้ปริมาณน้ำตาลสูง อย่างไรก็ตามทำให้เกิดสารยับยั้งในกระบวนการหมัก ดังนั้นวิธี ใหม่ที่ใช้เพิ่มความเข้มข้นของน้ำตาลคือ การเติมกรคเป็นตัวเร่งปฏิกิริยาในการปรับสภาพด้วย ของเหลวไอออนิก ในงานวิจัยนี้ศึกษาองก์ประกอบที่เหมาะสมของหญ้าเนเปียร์, ผลกระทบของ ชนิคกรด, ความเข้มข้นของกรด, ปริมาณชีวมวล, เวลาและอุณหภูมิในการปรับสภาพ จากตัวแปร ้ดังกล่าว ค่าที่ดีที่สุดที่ทำให้ได้น้ำตาลสูง สามารถหาโดยวิธีการแสดงผลตอบสนองแบบโครงร่าง พื้นผิวหรือ RSM ซึ่งได้กวามเข้มข้นของน้ำตาลจากใบหญ้าเนเปียร์พันธุ์ปากช่อง 1 (จังหวัด กาญจนบุรี) เท่ากับ 14.38 กรัมต่อลิตร เมื่อใช้ของเหลวไอออนิกชนิค 1 - เอทิล – 3 – เมทิลอิมิคา-์โซเลียมอะซิเตท และกรคอะซิติก 1.287 เปอร์เซ็นต์โคยปริมาตร เป็นตัวเร่งปฏิกิริยา ที่อุณหภูมิ 147 องศาเซลเซียส เป็นเวลา 76 นาที โดยใช้หญ้า 20 กรัมต่อลิตรของสารละลาย

ACKNOWLEDGEMENTS

۵

First of all, this research work was partially supported by The Ratchadapisek Sompoch Endowment Fund (2013), Chulalongkorn University (CU-56-900-FC) and Thailand Research Fund (IRG5780012). Moreover, National Research University Project, Office of Higher Education Commission (WCU-037-EN-57).

I would like to express my sincere gratitude to my advisor Assoc. Prof. Apanee Luengnaruemitchai for the continuous support of research, for her patience, motivation, enthusiasm, and immense knowledge. Her guidance helped me in all the time of research and writing of this thesis. Furthermore, my sincere thanks also goes to Assoc. Prof Sujitra Wongkasemjit, Asst. Prof. Thanyalak Chaisuwan, and Dr. Ruengsak Thitiratsakul for their kindness being my co-advisor and committee.

Besides my advisor, I would like to special thank for Dr. Akarin Boonsombuti who gives a good guidance for experiment. He gave useful suggestions and helping me to solve thesis's problem.

Last but not least, a special thanks to my parents and my friends for all their support and encouragement throughout the period of this research. Especially, I would like to thanks Mr. Phitsanu Teeraphapkul and Mr. Chayut Yaempho for support me to do my experiment.

TABLE OF CONTENTS

٥

PAGE

Tit	le Page	i
Ab	stract (in English)	iii
Ab	stract (in Thai)	iv
Ac	knowledgements	v
Tal	ole of Contents	vi
Lis	t of Tables	xi
Lis	t of Figures	xiii
	Ø	
CHAPT	ER	
I	INTRODUCTION	1
II	LITERATURE REVIEW	4
	2.1 Lignocellulosic Biomass	4
	2.1.1 Cellulose	6
	2.1.2 Hemicellulose	8
	2.1.3 Lignin	8
	2.1.4 Napier Grass	10
	2.2 Pretreatment	11
	2.3 Ionic Liquids Pretreatment	14
	2.3.1 Ionic Liquid	15
	2.3.2 Factors of Ionic Liquids Pretreatment	18
	2.4 Microwave Pretreatment	18
c	2.5 Enzymatic Hydrolysis	19
	2.6 Fermentation	20
	2.7 Response Surface Methodology (RSM)	22
	2.7.1 Central Composite Design (CCD)	23

Ш	EXPERIN	IENT	AL	27
	3.1	Mate	rials	27
		3.1.1	1-Ethyl-3-methylimidazolium Acetate	
			([EMIM][Ac])	27
		3.1.2	Hydrochloric Acid (HCl)	27
		3.1.3	Acetic Acid (CH ₃ COOH)	27
		3.1.4	Sodium Citrate Buffer	27
		3.1.5	Cellulase from TrichodermaReesei	27
		3.1.6	Standard Glucose, Xylose, Arabinose, HMF and	
			Furfural	27
		3.1.7	Pennisetum Purpureum x P. Alopecuroides	
			(Emperor Napier Grass)	27
		3.1.8	Pennisetum Purpureum x P. Glaucum Pakchong1	
			(Pakchong1 Napier Grass) From Kanchanaburi and	
			Saraburi Province	27
	3.2	Equip	oment	27
		3.2.1	Perkin Elmer Series 200 LC/S/N291N5060508:	
			High Performance Liquid Chromatography (HPLC)	
			with a Refractive Index Detector Using an	
			Aminex–HPX 87H Column (300 mm x 78 mm,	
			Bio-Rad Lab, USA)	27
		3.2.2	A CEM (Matthews, NC, USA) MAR-5 HP-500	
			Microwave System	27
		3.2.3	PERICHROM PR2100 Gas Chromatograph	
			with Flame Ionization Detector (GC-FID)	27
		3.2.4	X-ray Diffraction Analyzer (XRD)	27
		3.2.5	Fourier Transform Infrared Spectroscopy (FTIR)	27
		3.2.6	Brunauer-Emmett-Tellet (BET) (Autosorb-1)	27
		3.2.7	Simultaneous Thermal Analysis (STA)	27

CHAPTER

Ċ,

PAGE

-

IV

PAGE

3.2.8 Scanning Electron Microscope (SEM)	27
3.2.9 Vortex Mixture	27
3.2.10 Incubator Shaker	27
3.2.11 Autoclave	27
3.2.12 pH Meter	27
3.2.13 Oven	27
3.2.14 Filter Paper (Whatman No.1)	27
3.3 Experimental Procedures	28
3.3.1 Napier Grass/Ionic Liquid Pretreatment	28
3.3.2 Enzymatic Hydrolysis	31
3.3.3 Fermentation	31
3.4 Analytical Method	31
3.4.1 High Performance Liquid Chromatography (HPLC)	31
3.4.2 Scanning Electron Microscopy (SEM)	31
3.4.3 BET Surface Area Analysis	32
3.4.4 X-ray Diffraction (XRD)	32
3.4.5 Fourier Transform Infrared Spectroscopy (FTIR)	33
3.4.6 Simultaneous Thermal Analysis (STA)	33
RESULTS AND DISCUSSION	34
4.1 Composition of Napier Grass	34
4.2 Effect of Acid Type on Total Sugar Yield	35
4.2.1 Total Sugar Concentration	• 36
4.2.2 Crystallinity Index by X-ray Diffraction	37
4.2.3 Crystallinity Index and Functional Group	
by Fourier Transform Infrared Spectroscopy (FTIR)	40
4.3 Optimization of the Total Sugar Concentration	
using Response Surface Methodology (RSM)	43

	4.3.1 Crystallinity Measurement and Functional Group		
	Analysis by XRD and FTIR	49	
	4.3.2 Thermal Analysis	50	
	4.3.3 BET Surface Area and Pore Size Diameter	51	
	4.3.4 Scanning Electron Microscopy (SEM)	52	
	4.4 Comparison of Total Sugar Concentration		
	of Napier Grasses	53	
	4.4.1 Crystallinity Measurement and Functional		
	Group Analysis by XRD and FTIR	53	
	4.4.2 Surface Area and Pore Size Diameter with		
	Scanning Electron Microscope	60	
	4.4.3 Thermal Analysis	62	
V	CONCLUSIONS AND RECOMMENDATIONS	64	
	5.1 Conclusions	64	
	5.2 Recommendation	65	
	REFERENCES	66	
	APPENDICES	74	
	Appendix A Chemical Composition of Rice Straw	74	
	Appendix B Effect of Acid Type on Total Sugar Yield	75	
	Appendix C Checking Reducing Sugar in Hydrolysate	78	
	Appendix D The Total Sugar Concentration at Any Acid		
	Concentration	80	
	Appendix E The Total Sugar Concentration of Mixed		
	Napier Grass	82	
	Appendix F Effect of Amount of Enzyme on Total		
	Sugar Concentration	83	

0

Х

Appendix G	Composition of Pakchong 1 leaf from	
	Kanchanaburi Province by using NREL Method	84
Appendix H	Manufacturing Overhead	85
Appendix I	Adsorption and Desorption Isotherm	87

.

CURRICULUM VITAE

88

-

LIST OF TABLES

0

-

TAB	TABLE	
2.1	Cellulose, hemicellulose, and lignin contents in common	
	agricultural residues and wastes	5
2.2	Comparison of chemical component and ethanol yield of	
	energy crops	10
2.3	Advantages and disadvantages of different pretreatment	
	methods of lignocellulosic biomass	12
2.4	Advantages and disadvantages of ionic liquids	17
2.5	Summary of Central composite designs	24
3.1	Coded and experimental values of the factors for RSM	28
3.2	Central composite design (CCD)	29
4.1	The chemical composition of untreated Napier grass	34
4.2	Crystallinity index of aqueous-[Emim][Ac], CH ₃ COOH-	
	aqueous [Emim][Ac], and HCl-aqueous [Emim][Ac]	40
4.3	The TCI, LOI and the ratio of lignin and cellulose values	41
4.4	Experimental design and results of the central composite	
	design of CH ₃ COOH-aqueous [EMIM][Ac]/Microwave	
	pretreatment	43
4.5	Statistics regression for the optimization of total sugar	
	concentration	45
4.6	The crystalline index of untreated and preteated of	
	Pakchong1 from Kanchanaburi province by FTIR	50
4.7	Surface area and pore size diameter of untreated and	
	pretreated of Pakchong1 from Kanchanaburi province	52
4.8	Crystalline index of untreated and preteated of Napier	
	grasses	55
4.9	The total sugar concentration and theoritical yield of	
	Napier grasses	59

TABLE

.

1

PAGE

4.10	Surface area and pore size diameter of untreated and		
	pretreated of Napier grasses	61	
Al	The chemical composition of untreated rice straw	74	
C1	The amount of acetic acid in hydrolysate	78	
Dl	Comparison of total sugar concentration and acid type with		
	different acid concentration by using Pakchong1 from		
	Saraburi province as a raw material. Pretreatment		
	conditions: 50 volume% [Emim][Ac] and 162°C for 48 min	80	
El	The total sugar concentration of mixed Napier grass at 147		
	°C, 76 min, 20 g/l biomass loading, and 1.287 volume%		
	acetic acid	82	
F1	Effect of amount of enzyme on total sugar concentration	83	
Gl	The composition of Napier grass was determined by the		
	National Renewable Energy Laboratory (NREL)	84	
Hl	Solvents, chemicals, and materials cost	85	

xii

۵

LIST OF FIGURES

FIGU	URE	
2.1	Lignocellulosic biomass.	4
2.2	Lignocellulosic biomass structure.	6
2.3	The cellulose network: A is the cellulose chain and B shows	
	inter and intra H-bonds present in cellulose.	7
2.4	Formation of micro- and macrofibrils (fibril) of cellulose.	7
2.5	Hemicellulose structure.	8
2.6	P-coumaryl-, coniferyl-, and sinapyl alcohol: dominant	0
	building blocks of the three- dimensional polymer lignin.	9
2.7	Lignin structure.	9
2.8	Schematic of the role of pretreatment in the conversion of	
	biomass to fuel.	11
2.9	Typical structures combine organic cations with inorganic or	
	organic anions.	16
2.10	Dissolution mechanism of cellulose in [EMIM][Ac].	17
2.11	Major types of inhibitors and their chemical structure	21
2.12	Model of central composite design at $k=2$ (left) and $k=3$	
	(right).	23
3.1	Schematic of acidic aqueous ionic liquid pretreatment and	
	hydrolysis procedure flow diagram.	30
4.1	Comparison of total sugar concentration and acid type with	
	different acid concentrations by using Pakchong1 from	
	Saraburi province as a raw material. Pretreatment conditions:	
	50 volume% [Emim][Ac] and 162 °C for 48 min.	37
4.2	The structure of cellulose I and cellulose II.	39

FIGURE

•

4.3	X-ray diffraction patterns of untreated Pakchong 1 from	
	Saraburi province, aqueous-[Emim][Ac], 1-4 volume%	
	$\rm CH_3COOH$ in aqueous [Emim][Ac] (a) and , 1-4 volume%	
	HCl in aqueous [Emim][Ac] (b), respectively. At	
	pretreatment conditions: 50 volume% [Emim][Ac] and 162 °C	
	for 48 min.	39
4.4	FTIR spectra of untreated Pakchong 1 from Saraburi province,	
	aqueoue-[Emim][Ac], 1-4 volume% CH ₃ COOH in aqueous	
	[Emim][Ac] (a) and , 1-4 volume% HCl in aqueous	
	[Emim][Ac] (b), respectively. At pretreatment conditions: 50	
	volume% [Emim][Ac] and 162 °C for 48 min.	42
4.5	Response surface (a) and contour plots (b) of central	
	composite design for optimization condition between time and	
	temperature of acidic aqueous ionic liquid pretreatment.	46
4.6	Response surface (a) and contour plots (b) of central	
	composite design for optimization condition between biomass	
	loading and temperature of acidic aqueous ionic liquid	
	pretreatment.	47
4.7	Response surface (a) and contour plots (b) of central	
	composite design for optimization condition between biomass	
	loading and time of acidic aqueous ionic liquid pretreatment.	47
4.8	Response surface (a) and contour plots (b) of central	
	composite design for optimization condition between	
	temperature and acid concentration of acidic aqueous ionic	
	liquid pretreatment.	48

FIGURE

۵

4.9	Response surface (a) and contour plots (b) of central	
	composite design for optimization condition between	
	biomass loading and acid concentration of acidic aqueous	
	ionic liquid pretreatment.	48
4.10	Response surface (a) and contour plots (b) of central	
	composite design for optimization condition between time	
	and acid concentration of acidic aqueous ionic liquid	
	pretreatment.	49
4.11	(a) XRD patterns and (b) FTIR spectra of untreated and	
	pretreated Napier grass of Pakchong1 from Kanchanaburi	
	province. Reaction conditions: at 147 °C, 76 min, 20 g/l	
	biomass loading, and 1.287 volume% acetic acid.	50
4.12	The first derivative of untreated and pretreated of	
	Pakchong1 from Kanchanaburi province.	51
4.13	SEM images of untreated (a) and pretreated (b) of	
	Pakchong1 from Kanchanaburi province.	52
4.14	Total sugar concentration of untreated and pretreated of	
	Napier grasses (leaf and stem).	54
4.15	XRD patterns of untreated and pretreated of Pakchong1	
	Napier grasses. Reaction conditions: at 147 °C, 76 min, 20	
	g/l biomass loading, and 1.287 volume% acetic acid.	56
4.16	FTIR spectra of untreated and pretreated of Pakchong1	
	Napier grasses. Reaction conditions: at 147 °C, 76 min, 20	
	g/l biomass loading, and 1.287 volume% acetic acid.	57
4.17	SEM images of untreated and pretreated of Pakchong1	
	Napier grasses. Reaction conditions: at 147 °C, 76 min, 20	
	g/l biomass loading, and 1.287 volume% acetic acid.	58

xv

FIGURE

٥

-

0

4.18	(a) Schematic drawing of a swollen fiber of native	
	cellulose. A is an unswollen section, B is balloon, and C is	
	cellulose swollen and dissolved in side the membrane.	61
4.19	The DTG curves of untreated and pretreated of Pakchong1	
	Napier grasses. Reaction conditions: at 147 °C, 76 min, 20	
	g/l biomass loading, and 1.287 volume% acetic acid.	63
B1	Comparison of total sugar concentration and acid type with	
	different acid concentration by using rice straw as a raw	
	material. Pretreatment conditions: 50 volume%	
	[Emim][Ac] and 162 °C for 48 min.	76
B2	SEM images of untreated (a) and pretreated rice straw with	
	aqueous-[Emim][Ac] (b), 1% CH3COOH aqueous-	
	[Emim][Ac] (c), and 1% HCl aqueous-[Emim][Ac] at 50	
	volume% [Emim][Ac] and 162 °C for 48 min.	77
Cl	HPLC results of 3% HCl aqueous-[Emim][Ac].	78
C2	HPLC results of Pakchong 1 (Leaf) Kan.	79
Dl	Dissolution mechanism of cellulose in CH ₃ COOH	
	aqueous-[Emim][Ac]	81
I 1	Adsorption and desorption isotherm of untreated and	
	pretreated Napier grasses. Reaction conditions: at 147 °C,	
	76 min, 20 g/l biomass loading, and 1.287 volume%	
	acetic acid.	87