IMMOBILIZATION OF MESOPOROUS-ASSEMBLED TiO₂ NANOCRYSTAL PHOTOCATALYST FOR DEGRADATION OF AZO DYE CONTAMINANT IN WASTEWATER

Pavita Kunwanlee

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan. The University of Oklahoma, Case Western Reserve University and Institut Français du Pétrole 2011

12.8.77 5 592

Thesis Title:	Immobilization of Mesoporous-Assembled TiO ₂ Nanocrystal
	Photocatalyst for Degradation of Azo Dye Contaminant in
	Wastewater
By:	Pavita Kunwanlee
Program:	Petroleum Technology
Thesis Advisors:	Asst. Prof. Thammanoon Sreethawong
	Prof. Sumaeth Chavadej

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

....College Dean (Asst. Prof. Pomthong Malakul)

Thesis Committee:

(Asst. Prof. Thammanoon Sreethawong)

Charadej umaeth

(Prof. Sumaeth Chavadej)

Hothailar M.

(Asst. Prof. Hathaikarn Manuspiya)

S. Satur

(Dr. Singto Sakulkhaemaruethai)

ABSTRACT

5273012063: Petroleum Technology Program Pavita Kunwanlee: Immobilization of Mesoporous-Assembled TiO₂

Nanocrystal Photocatayst for Degradation of Azo Dye Contaminant in Wastewater

Thesis Advisors: Asst. Prof. Thammanoon Sreethawong and Prof Sumaeth Chavadej 81 pp.

Keywords: Mesoporous TiO₂/ Photocatalysis/ Immobilization/ Azo Dye/ Acid black/ Degradation

Photocatalysis is an advanced oxidation process that efficiently degrades organic contaminants present in wastewater effluents. The suspension of TiO₂ powders in wastewater during the photocatalytic treatment shows great photoactivity, but it requires further troublesome filtering process to separate the photocatalyst from the treated wastewater. Therefore, utilization of TiO_2 in an immobilized mode is more practical because it solves the problems of TiO₂ separation and reuse as compared to a suspension mode. This work focused on the photocatalytic degradation of Acid Black (AB) diazo dye by using nanocrystalline mesoporous-assembled TiO₂ photocatalyst immobilized on a glass plate, where the mesoporous-assembled TiO₂ nanocrystal was synthesized by a sol-gel process with the aid of a structure-directing surfactant. Various preparation parameters during the immobilization step were investigated on the photocatalytic AB dye degradation performance. The experimental results showed that the mesoporous-assembled TiO₂ film with 5 wt.% P-25 TiO₂ addition and calcined at 400 °C provided the highest AB dye degradation rate constant of 0.23 h⁻¹. Moreover, an increase in the number of coated TiO₂ layers was found to enhance the photocatalytic activity until reaching the peel-off limitation at 4 layers.

บทคัดย่อ

ภาวิตา กรรณวัลลี : การสลายตัวของสีข้อมประเภทเอโซที่ปนเปื้อนในน้ำเสียโดยใช้ ตัวเร่งปฏิกิริยาแบบใช้แสงร่วมไททาเนียที่มีโครงสร้างในลักษณะนาโนและมีรูพรุนในระดับเมโซ พอร์ซึ่งถูกตรึงบนตัวรองรับ (Immobilization of Mesoporous-Assembled TiO₂ Nanocrystal Photocatalyst for Degradation of Azo Dye Contaminant in Wastewater) อ. ที่ปรึกษา : ผศ.คร. ธรรมนูญ ศรีทะวงศ์ และ ศ.คร. สุเมธ ชวเคช 81 หน้า

ปฏิกิริยาแบบใช้แสงร่วมเป็นกระบวนการออกซิเคชันที่มีประสิทธิภาพ สำหรับการย่อย สลายสารอินทรีย์ที่ปนเปื้อนในน้ำเสีย การใช้ผงไททาเนียแบบแขวนลอยในน้ำเสียระหว่าง ปฏิกิริยาแบบใช้แสงร่วมนั้นสามารถตอบสนองต่อความไวแสงได้ดี แต่จะก่อให้เกิดปัญหาใน กระบวนการแยกตัวเร่งปฏิกิริยาแบบใช้แสงร่วมจากน้ำเสียที่บำบัดแล้ว ดังนั้นการนำไททาเนียที่ ตรึงบนตัวรองรับแล้วมาใช้จะมีความเหมาะสมมากกว่า เนื่องจากสามารถแก้ไขปัญหาของ กระบวนการแขกไททาเนีย และสามารถนำกลับมาใช้ได้ใหม่ ในงานวิจัยนี้มุ่งเน้นศึกษา ความสามารถในการย่อยสลายสี่ย้อมประเภทไคเอโซชนิคแอซิคแบล็คของตัวเร่งปฏิกิริยาแบบใช้ แสงร่วมไททาเนียที่มีโครงสร้างในลักษณะนาโนและมีรูพรุนในระดับเมโซพอร์ ซึ่งถูกตรึงบน แผ่นกระจกใส ในการทดลองนี้ตัวเร่งปฏิกิริยาที่มีโครงสร้างในลักษณะนาโนและมีรูพรุนในระดับ เมโซพอร์สังเคราะห์ขึ้นโดยกระบวนการโซล-เจลร่วมกับการใช้สารลดแรงตึงผิวเป็นตัวกำหนด โกรงสร้าง โดยได้ทำการศึกษาตัวแปรต่างๆในขั้นตอนการตรึงตัวเร่งปฏิกิริยา เพื่อใช้ในปฏิกิริยา แบบใช้แสงร่วมในการสถายตัวของสีข้อมแอซิดแบล็ค จากผลการทคลองพบว่าเมื่อใส่ตัวเร่ง ปฏิกิริยาแบบใช้แสงร่วมไททาเนียเกรคทางการค้า พี-25 ปริมาณ 5 เปอร์เซ็นต์โคยน้ำหนัก ลงบน ฟิล์มตัวเร่งปฏิกิริยาไททาเนียที่มีโครงสร้างในลักษณะนาโนและมีรูพรุนในระดับเมโซพอร์ ซึ่งเผา ที่อุณหภูมิ 400 องศาเซลเซียส ให้ผลในการย่อยสลายสี่ข้อมแอซิคแบล็คดีที่สุด โดยแสดงอัตราการ ฟอกสีที่ 0.23 ต่อชั่วโมง นอกจากนี้ยังพบว่า การเพิ่มจำนวนชั้นของฟิล์มตัวเร่งปฏิกิริยาไททาเนีย ช่วยทำให้เกิดปฏิกิริยาแบบใช้แสงร่วมได้ดีขึ้นจนกระทั่งเพิ่มจำนวนชั้นไปถึงจุดที่ฟิล์มไททาเนีย เกิดการหลุดลอกออกซึ่งจำกัดอยู่ที่ 4 ชั้น

ACKNOWLEDGEMENTS

The author was grateful for the scholarship and funding of the thesis work provided by the Asahi Glass Foundation, Japan; the Petroleum and Petrochemical College; and the Center for Petroleum, Petrochemicals, and Advanced Materials, Chulalongkorn University, Thailand.

The author would like to express her sincere gratitude to Asst. Prof. Thammanoon Sreethawong and Prof. Sumaeth Chavadej for their invaluable guidance, understanding, and constant encouragement throughout the course of this research.

She would like to express special thanks to Asst. Prof. Hathaikarn Manuspiya and Dr. Singto Sakulkhaemaruethai for kindly serving on her thesis committee. Their sincere suggestions are definitely imperative for accomplishing her thesis.

Her gratitude is absolutely extended to all staffs of the Petroleum and Petrochemical College, Chulalongkorn University, for all their kind assistance and cooperation.

Furthermore, she would like to take this important opportunity to thank all of her graduate friends for their unforgettable friendship.

Finally, she really would like to express her sincere gratitude to her parents and family for the love, understanding, and cheering.

TABLE OF CONTENTS

Title	e Page	i
Abs	stract (in English)	iii
Abs	stract (in Thai)	iv
Title Page Abstract (in English) Abstract (in Thai) Acknowledgements Table of Contents List of Tables List of Figures CHAPTER I INTRODUCTION II LITERATURE REVIEW 2.1 Azo Dyes 2.1.1 General Remarks 2.1.2 Classification and Designation 2.2 Semiconductor 2.3 Titanium Oxide Photocatalyst 2.3.1 General Remarks 2.3.2 Crystal Structure and Properties 2.3.3 Semiconductor Characteristic and Photocatalytic Activity 2.3.4 Applications of TiO ₂ Photocatalyst 2.4 Nano-Photocatalysts 2.4.1 General Remarks 2.4.2 Activity of Nano-Photocatalysts 2.5 Photocatalytic Degradation Mechanisms	v	
Tab	Title Page Abstract (in English) Abstract (in Thai) Acknowledgements Table of Contents List of Tables List of Figures CHAPTER I INTRODUCTION II LITERATURE REVIEW 2.1 Azo Dyes 2.1.1 General Remarks 2.1.2 Classification and Designation 2.2 Semiconductor 2.3 Titanium Oxide Photocatalyst 2.3.1 General Remarks 2.3.2 Crystal Structure and Properties 2.3.3 Semiconductor Characteristic and Photocatalytic Activity 2.3.4 Applications of TiO2 Photocatalyst 2.4 Nano-Photocatalysts 2.4.1 General Remarks 2.4.2 Activity of Nano-Photocatalysts 2.4.2 Activity of Nano-Photocatalysts	vi
List	of Tables	x
List	of Figures	xi
СНАРТИ	R	
I	INTRODUCTION	1
II	LITERATURE REVIEW	4
	2.1 Azo Dyes	4
	2.1.1 General Remarks	4
	2.1.2 Classification and Designation	4
	2.2 Semiconductor	5
	2.3 Titanium Oxide Photocatalyst	8
	2.3.1 General Remarks	8
	2.3.2 Crystal Structure and Properties	8
	2.3.3 Semiconductor Characteristic and	10
	Photocatalytic Activity	
	2.3.4 Applications of TiO ₂ Photocatalyst	11
	2.4 Nano-Photocatalysts	13
	2.4.1 General Remarks	13
	2.4.2 Activity of Nano-Photocatalysts	13
	2.5 Photocatalytic Degradation Mechanisms	15
	2.5.1 Photocatalytic Oxidation	15
	2.5.2 Photosensitized Oxidation	16

	2.6 Immobilization of TiO ₂ Photocatalyst	17
	2.6.1 Preparation Techniques for Immobilizing	17
	TiO_2 on a Support	
	2.6.2 Support for TiO ₂ Photocatalyst	18
	2.6.3 Immobilization of TiO ₂ Photocatalyst	19
	2.7 Factors Influencing the Photocatalytic Degradation	20
	2.7.1 Effect of Initial Dye Concentration	20
	2.7.2 Effect of TiO ₂ Immobilization	21
	2.7.3 Effect of Binder	21
	2.7.4 Effect of Solution pH	22
	2.7.5 Effect of Light Intensity and	
	Irradiation Time	23
	2.7.6 Effect of H ₂ O ₂ Addition	23
	2.7.7 Effect of Calcination Temperature of	
	Photocatalyst	24
	2.7.8 Effect of Calcination Time of Photocatalyst	24
	2.8 Porous Materials	25
	2.9 Sol-Gel Process	26
	2.10 Immobilization Procedure	27
III	EXPERIMENTAL	29
	3.1 Materials	29
	3.2 Equipment	29
	3.3 Methodology	30
	3.4 Photocatalytic Experiment	35
IV	RESULTS AND DISCUSSION	37
	4.1 Characterization Results of TiO ₂ Photocatalyst	37
	4.1.1 TG Analysis	37
	4.1.2 N ₂ Adsorption-Desorption Analysis	38

CHAPTER

	4.1.3	UV-Visible Spectroscopy	41
	4.1.4	XRD	45
	4.1.5	SEM	49
	4.1.6	TEM	54
	4.1.7	Amount of TiO ₂ Photocatalyst Coated	
		on Glass Plate	56
	4.1.8	AFM	58
4.2	Photoc	atalytic AB Dye Degradation Results	61
	4.2.1	UV-Visible Spectroscopy	61
	4.2.2	Effect of Calcination Temperature of the	
		Synthesized Mesoporous-Assembled TiO_2	
		Photocatalyst Film	63
	4.2.3	Effect of Number of Coated TiO ₂ Layers of	
		the Synthesized Mesoporous-Assembled	
		TiO ₂ Photocatalyst Film	66
	4.2.4	Effect of P-25 TiO ₂ Content Added to the	
		Synthesized Mesoporous-Assembled TiO_2	
		Photocatalyst	68
	4.2.5	Effect of Calcination Temperature of the	
		Synthesized Mesoporous-Assembled TiO_2	
		Photocatalyst Film with 5 wt.% P-25 TiO2	
		Addition	71
	4.2.6	Effect of Number of Coated TiO ₂ Layers of	
		The Synthesized Mesoporous-Assembled TiO_2	
		Photocatalyst Film with 5 wt.% P-25 TiO_2	
		Addition	73
	4.2.7	Effect of Recyclability of the Synthesized	
		Mesoporous-Assembled TiO ₂ Photocatalyst	
		Film with 5 wt.% P-25 TiO ₂ Addition	75

 \mathbf{V}

4.2.8 Photocatalytic Activity Comparison between	
the immobilized and Suspended Synthesized	
Mesoporous-Assembled TiO ₂ Photocatalyst	
with 5 wt.% P-25 TiO ₂ Addition	77
CONCLUSIONS AND RECOMMENDATIONS	79
5.1 Conclusions	79
5.2 Recommendations	80
REFERENCES	81
CURRICULUM VITAE	86

LIST OF TABLES

TABLE		PAGE
2.1	Color Index of different azo dyes	5
2.2	The band gap positions of some common	7
	semiconductor photocatalysts	
2.3	Definitions about porous solids	25
4.1	N ₂ adsorption-desorption results of the synthesized	
	mesoporous-assembled TiO2 photocatalyst without and	
	with P-25 TiO ₂ addition calcined a different temperatures	41
4.2	Absorption onset wavelength and band gap energy results	
	of the synthesized mesoporous-assembled TiO ₂	
	photocatalysts coated on glass plate without and with P-25	
	TiO ₂ addition and calcined at different temperatures	45
4.3	Crystallite size results of the synthesized mesoporous-	
	Assembled TiO ₂ photocatalysts without and with P-25	
	TiO ₂ addition calcined at different temperatures	49
4.4	TiO ₂ film thickness results of the synthesized mesoporous-	
	assembled TiO_2 photocatalyst films without and with P-25	
	TiO ₂ addition	53
4.5	Amount of the synthesized mesoporous-assembled TiO_2	
	photocatalysts without and with P-25 TiO_2 addition coated	
	on glass plate and calcined at different temperatures	57
4.6	Surface roughness results of glass plate without and with	
	NaOH treatment	61
4.7	Surface roughness results of the synthesized mesoporous-	
	assembled TiO_2 photocatalyst films coated on glass plate	
	without and with 5 wt.% P-25 TiO ₂ addition	61

LIST OF FIGURES

FIGURE

2.1	The structure of band gap energy	6
2.2	Crystal structures of (a) anatase, (b) rutile, and (c) brookite	9
2.3	General mechanism of TiO ₂ photocatalysis	17
3.1	UV light irradiation system for photocatalytic activity test	35
4.1	TG curve of the as-synthesized dried TiO ₂ gel	38
4.2	N ₂ adsorption-desorption isotherms of the synthesized	
	mesoporous-assembled TiO2 photocatalyst calcined at	
	500 °C (Inset: Pore size distribution)	39
4.3	N_2 adsorption-desorption isotherms of the 5 wt.% P-25	
	TiO_2 -added synthesized mesoporous-assembled TiO_2	
	photocatalyst calcined at 400 °C (Inset: Pore size	
	distribution)	40
4.4	UV-visible spectra of the synthesized mesoporous-	
	assembled TiO ₂ photocatalyst films coated on glass plate	
	and calcined at different temperatures without and with	
	5 wt.% P-25 TiO ₂ addition	43
4.5	UV-visible spectra of the synthesized mesoporous-	
	assembled TiO_2 photocatalyst films coated on glass plate	
	and calcined at 400 °C with P-25 TiO_2 addition at	
	different contents	44
4.6	XRD patterns of the synthesized mesoporous-assembled	
	TiO ₂ photocatalyst films coated on glass plate and calcined	
	at different temperatures	47
4.7	XRD patterns of the 5 wt.% P-25 TiO2-added synthesized	
	mesoporous-assembled TiO_2 photocatalyst films coated on	
	glass plate and calcined at different temperatures	47

4.8	XRD patterns of the synthesized mesoporous-assembled		
	TiO ₂ photocatalyst films coated on glass plate calcined at		
	400 °C with P-25 TiO ₂ addition at different contents		48
4.9	SEM images of the synthesized mesoporous-assembled TiC) ₂	
	photocatalyst film calcined at 400 °C with 1-layer coating:		
	(a) top view and (b) cross-sectional view	11	51
4.10	SEM images of the 5 wt.% P-25 TiO ₂ -added synthesized	5	
	mesoporous-assembled TiO2 photocatalyst film calcined at	18	
	400 °C with 1-layer coating: (a) top view and		
	(b) cross-sectional view	:	52
4.11	TEM images of the synthesized mesoporous-assembled		
	TiO ₂ photocatalysts scraped from the TiO ₂ film-coated		
	glass plates (a) without and (b) with 5 wt.% P-25 TiO_2	•	
	addition (400 °C calcination temperature)	- · ·	55
4.12	3-Dimensional AFM images (5×5 µm surface plots) of	in.	
	The glass plates: (a) without and (b) with NaOH treatment,		
	and of the synthesized mesoporous-assembled TiO_2 films		
	coated on glass plate calcined at 400 °C: (c) without and		
	(d) with 5 wt.% P-25 TiO ₂ addition		59
4.12	(Continue) 3-Dimensional AFM images (5×5 μ m surface		
	plots) of the glass plates: (a) without and (b) with NaOH		
	treatment, and of the synthesized mesoporous-assembled		
	TiO_2 films coated on glass plate calcined at 400 °C:		
	(c) without and (d) with 5 wt.% P-25 TiO_2 addition		60
4.13	UV-visible spectrum of AB dye solution		62

- 4.14 UV-visible spectra of AB dye solution as a function of irradiation time during the course of photocatalytic degradation. (synthesized mesoporous-assembled TiO₂ photocatalyst; total reaction mixture volume, 500 ml; initial AB concentration, 10 mg/l; initial solution pH, 5.04; number of coated TiO₂ layer, 1 layer; number of TiO₂-coated glass plate, 8 plates; and irradiation time, 5 h)
- 4.15 Effect of calcination temperature of the synthesized mesoporous-assembled TiO₂ photocatalyst film on AB dye degradation efficiency (total reaction mixture volume, 500 ml; initial AB dye concentration, 10 mg/l; initial solution pH, 5.04; number of coated TiO₂ layer, 1 layer; number of TiO₂-coated glass plate, 8 plates; and irradiation time, 5 h)
- 4.16 Effect of calcination temperature of the synthesized mesoporous-assembled TiO₂ photocatalyst film on reaction rate constant for AB dye degradation (total reaction mixture volume, 500 ml; initial AB dye concentration, 10 mg/l; initial solution pH, 5.04; number of coated TiO₂ layer, 1 layer; number of TiO₂-coated glass plate, 8 plates; and irradiation time, 5 h)
- 4.17 Effect of number of coated TiO₂ layers of the synthesized mesoporous-assembled TiO₂ photocatalyst film on AB dye degradation efficiency (total reaction mixture volume, 500 ml; initial AB dye concentration, 10 mg/l; initial solution pH, 5.04; calcination temperature, 400 °C; number of TiO₂-coated glass plate, 8 plates; and irradiation time, 5 h)

63

66

4.18 Effect of number of coated TiO₂ layers of the synthesized mesoporous-assembled TiO₂ photocatalyst film on reaction rate constant for AB dye degradation (total reaction mixture volume, 500 ml; initial AB dye concentration, 10 mg/l; initial solution pH, 5.04; calcination temperature, 400 °C; number of TiO₂-coated glass plate, 8 plates; and irradiation 68 time, 5 h) 4.19 Effect of P-25 TiO₂ content added to the synthesized mesoporous-assembled TiO₂ photocatalyst film on AB dye degradation efficiency (total reaction mixture volume, 500 ml; initial AB dye concentration, 10 mg/l; initial solution pH, 5.04; calcination temperature, 400 °C; number of coated TiO₂ layer, 1 layer; number of TiO₂-coated glass 70 plate, 8 plates; and irradiation time, 5 h) 4.20 Effect of P-25 TiO₂ content added to the synthesized mesoporous-assembled TiO₂ photocatalyst film on reaction rate constant for AB dye degradation (total reaction mixture volume, 500 ml; initial AB dye concentration, 10 mg/l; initial solution pH, 5.04; calcination temperature, 400 °C; number of coated TiO₂ layer, 1 layer; number of TiO₂-coated glass plate, 71 8 plates; and irradiation time, 5 h)

4.21	Effect of calcination temperature of the 5 wt.% P-25	
	TiO_2 -added synthesized mesoporous-assembled TiO_2	
	photocatalyst film on reaction rate constant for AB dye	
	degradation as compared to the synthesized TiO_2	
	photocatalyst film without P-25 TiO_2 addition (total	
	reaction mixture volume, 500 ml; initial AB dye	
	concentration, 10 mg/l; initial solution pH, 5.04;	
	number of coated TiO_2 layer, 1 layer; number of	
	TiO_2 -coated glass plate, 8 plates; and irradiation	
	time, 5 h)	72
4.22	Effect of number of coated TiO ₂ layers of the 5 wt.%	
	P-25 TiO ₂ -added synthesized mesoporous-assembled	
	TiO_2 photocatalyst film on AB dye degradation efficiency	
	(total reaction mixture volume, 500 ml; initial AB dye	
	concentration, 10 mg/l; initial solution pH, 5.04;	
	calcination temperature, 400 °C; number of TiO ₂ -coated	
	glass plate, 8 plates; and irradiation time, 5 h)	74
4.23	Effect of number of coated TiO_2 layers of the 5 wt.% P-25	
	TiO_2 -added synthesized mesoporous-assembled TiO_2	
	Photocatalyst film on reaction rate constant for AB dye	
	degradation (total reaction mixture volume, 500 ml; initial	
	AB dye concentration, 10 mg/l; initial solution pH, 5.04;	
	calcination temperature, 400 °C; number of TiO ₂ -coated	
	glass plate, 8 plates; and irradiation time, 5 h)	75

4.24 Effect of recyclability of the synthesized mesoporousassembled TiO₂ photocatalyst film with 5 wt.% P-25 TiO₂ addition on AB dye degradation efficiency (total reaction mixture volume, 500 ml; initial AB dye concentration, 10 mg/l; initial solution pH, 5.04; calcination temperature, 400 °C; number of coated TiO₂ layer, 4 layer; number of 76 TiO₂-coated glass plate, 8 plates; and irradiation time, 4h) Effect of recyclability of the synthesized mesoporous-4.25 assembled TiO₂ photocatalyst film with 5 wt.% P-25 TiO₂ addition on reaction rate constant for AB dye degradation (total reaction mixture volume, 500 ml; initial AB dye concentration, 10 mg/l; initial solution pH, 5.04; calcination temperature, 400 °C; number of coated TiO₂ layer, 4 layer; number of TiO2-coated glass plate, 8 plates; and irradiation 77 time, 4 h)

xvi