# ACTIVITY OF SUPPORTED Au CATALYST FOR PREFERENTIAL CO OXIDATION



A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University, and Institut Français du Pétrole 2011

I28374940

| Thesis Title:    | Activity of Supported Au Catalyst for Preferential CO |
|------------------|-------------------------------------------------------|
|                  | Oxidation                                             |
| By:              | Sahil Chawla                                          |
| Program:         | Petroleum Technology                                  |
| Thesis Advisors: | Asst. Prof. Apanee Luengnaruemitchai                  |
|                  | Assoc. Prof. Sujitra Wongkasemjit                     |
|                  | Dr. Ratchaneekorn Wanchanthuek                        |

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

..... College Dean

(Asst. Prof./Pomthong Malakul)

**Thesis Committee:** 

apari

(Asst. Prof. Apanee Luengnaruemitchai)

(Assoc. Prof. Sujitra Wongkasemjit)

Smill->

(Dr. Ratchaneekorn Wanchanthuek)

R. Wanchin Church

(Assoc. Prof. Thirasak Rirksomboon)

-----

(Dr. Pesak Rungrojchaipon)

#### ABSTRACT

5273018063: Petroleum Technology
Sahil Chawla: Activity of Supported Au Catalyst for Preferential CO
Oxidation
Thesis Advisors: Asst. Prof. Apanee Luengnaruemitchai,
Assoc. Prof. Sujitra Wongkasemjit, and Dr. Ratchaneekorn
Wanchanthuek
Keywords: Fuel cell/ CO conversion/ CO selectivity/ Au catalyst/ Ceria/ PROX/
CO oxidation

Preferential oxidation (PROX) of carbon monoxide is recognized to be the most suitable method to reduce the quantity of carbon monoxide in a H<sub>2</sub>-rich stream to an acceptable level for fuel cell applications. The aim of this research is to investigate the optimum condition of the prepared catalysts, Au/La-CeO<sub>x</sub> prepared by deposition-precipitation method, for PROX in the presence of H<sub>2</sub>. The effects of preparation parameters, such as support preparation method, drying method, gold loading, and calcination temperature, on the characteristic and catalytic activity of the catalysts were studied. The results showed that the Au/La-CeO<sub>x</sub> exhibited 90.9% CO conversion and 40.3% PROX selectivity at 100 °C. However, by applying O<sub>2</sub> pretreatment to the Au/La-CeO<sub>x</sub> catalyst at 120°C for 30 minutes, the CO conversion and PROX selectivity increased to 95.6% and 40.8%, respectively.

. .

# บทคัดย่อ

สาหิล ชาวลา : ความว่องไวในการเกิดปฏิกริยาเคมีของตัวเร่งปฏิกิริยาทองสำหรับ ออกซิเดชันแบบเลือกเกิดของการ์บอนมอนอกไซด์ (Activity of Supported Au Catalyst for Preferential CO oxidation) อ. ที่ปรึกษา: ผศ. คร.อาภาณี เหลืองนฤมิตชัย รศ. คร.สุจิตรา วงศ์ เกษมจิตต์ และ คร. รัชนึกร วันจันทึก

การเลือกเกิดปฏิกิริขาออกซิเดชันของก๊าซการ์บอนมอนอกไซด์ได้รับการขอมรับให้เป็น วิธีที่เหมาะสมที่สุดในการลดปริมาณการ์บอนมอนออกไซด์ในแก๊สสังเคราะห์เพื่อให้อยู่ในระดับที่ ใช้งานในเซลล์เชื้อเพลิงได้ ในงานวิจัยนี้เป็นการศึกษาสภาวะที่เหมาะสมของดัวเร่งปฏิกิริขาทอง บนด้วรองรับผสมระหว่างซีเรียออกไซด์และแลนทานัมออกไซด์ที่เตรียมด้วยวิธีการขึดเกาะควบคู่ กับการตกผลึก (Deposition–precipitation) ด้วแปรที่ศึกษาที่มีอิทธิพลต่อความว่องไวของ ด้วเร่งปฏิกิริขามี วิธีการเตรียมตัวรองรับ วิธีการทำแห้ง อุณหภูมิที่ใช้ในการเผาเตรียมตัวเร่ง ปฏิกิริขา และปริมาณของทองที่ใช้ในการเตรียมตัวเร่งปฏิกิริขา และจากการศึกษาพบว่าในสภาวะ ที่เหมาะสมตัวเร่งปฏิกิริขาทองบนด้วรองรับผสมระหว่างซีเรียออกไซด์และแลนทานัมออกไซด์ให้ ก่าการเปลี่ขนแปลงของแก๊สการ์บอนมอนอกไซด์ที่ 90.9 เปอร์เซนต์ และก่าการเลือกเกิดปฏิกิริขา กับแก๊สการ์บอนมอนอกไซด์ที่ 40.3 เปอร์เซนต์ที่อุณหภูมิ 100 องศาเซลเซียส แต่เมื่อใช้การปรับ สภาพด้วยออกซิเจนบนตัวเร่งปฏิกิริขาที่อุณหภูมิ 120 องศาเซลเซียส เป็นเวลา 30 นาที ช่วยทำให้ การเปลี่ยนแปลงของแก๊สการ์บอนมอนอกไซด์ที่อุณหภูมิ 120 องศาเซลเซียส เป็นเวลา 30 นาที ช่วยทำให้ การเปลี่ยนแปลงของแก๊สการ์บอนมอนอกไซอ์ ไซด์และการเลือกเกิดปฏิกิริขากับแก๊ส การ์บอนมอนอกไซด์เพิ่มขึ้นเป็น 95.6 เปอร์เซนด์และ 40.8 เปอร์เซนต์ตามลำดับ

#### ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to all those who gave the possibility to complete this work.

First of all, I want to thank the Petroleum and Petrochemical College, Chulalongkorn University for providing me the opportunity to work on this special project in the first instance, to do the necessary research work, and to use the laboratory facilities. I also would like to thank the National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, Chulalongkorn University for their support.

I am deeply indebted to my thesis advisors, Asst. Prof Apanee Luengnaruemitchai, Assoc. Prof. Sujitra Wongkasemjit, and Dr. Ratchaneekorn Wanchanthuek whose giving admirable guidance, encourage, stimulating suggestions and helped me in all the time of my research.

My sincere thank are due to the official committees, Assoc. Prof. Thirasak Rirksomboon and Dr. Pesak Rungrojchaipon, for their detailed review, constructive critisim and excellent advice during the preparation of my thesis work. Also for special senior students in the Petroleum and Petrochemical College, I would like to show my appreciation to Mr. Chinchanop Pojanavaraphan and Mr. Verakit Anupapwisetkul for their helpful suggestions.

Lastly, this special thesis would not have been possible without the knowledge received from all the lecturers and staffs at the Petroleum and Petrochemical College, plus love and constant support from my family and friends.

## **TABLE OF CONTENTS**

|     | Title Page                                    |                                                           | i   |
|-----|-----------------------------------------------|-----------------------------------------------------------|-----|
|     | Abstr                                         | ract (in English)                                         | iii |
|     | Abstr                                         | ract (in Thai)                                            | iv  |
|     | Ackn                                          | owledgements                                              | v   |
|     | Table of Contents<br>List of Tables           |                                                           | vi  |
|     |                                               |                                                           | ix  |
|     | List o                                        | of Figures                                                | х   |
| CHA | артеі                                         | र                                                         |     |
|     | I                                             | INTRODUCTION                                              | 1   |
|     | II                                            | THEORETICAL BACKGROUND AND LITERATURE                     |     |
|     |                                               | REVIEW                                                    | 3   |
|     |                                               | 2.1 Fuel Cells                                            | 3   |
|     |                                               | 2.1.1 The Basics of Fuel Cell Technology                  | 3   |
|     |                                               | 2.1.2 Type of Fuel Cells                                  | 4   |
|     | 2.1.2 Type of Fuel Cells<br>2.2 Hydrogen Fuel |                                                           | 5   |
|     |                                               | 2.2.1 Advantages and Disadvantages of Hydrogen Fuel       | 5   |
|     |                                               | 2.2.2 Hydrogen Production Processes                       | 6   |
|     |                                               | 2.3 Gas Treatment                                         | 10  |
|     |                                               | 2.3.1 Pressure Swing Adsorption (PSA)                     | 10  |
|     |                                               | 2.3.2 Preferential Oxidation or Selective Oxidation of CO | 11  |
|     |                                               | 2.4 Properties of Gold                                    | 12  |
|     |                                               | 2.5 Deposition-precipitation (DP)                         | 13  |
|     |                                               | 2.6 Literature Review                                     | 14  |

| METHODOLOGY                                               | 17 |
|-----------------------------------------------------------|----|
| 3.1 Materials                                             | 17 |
| 3.2 Equipment                                             | 18 |
| 3.3 Experimental                                          | 20 |
| 3.3.1 Catalyst Preparation                                | 20 |
| 3.3.2 Catalyst Characterization                           | 22 |
| 3.3.3 Catalyst Activity Measurement                       | 26 |
| 3.4 Calculation                                           | 28 |
| RESULTS AND DISCUSSION                                    | 30 |
| 4.1 Catalyst Characterization                             | 30 |
| 4.1.1 XRD Patterns                                        | 30 |
| 4.1.2 UV Measurement                                      | 35 |
| 4.1.3 TPR Measurement                                     | 39 |
| 4.1.4 BET Surface Area Measurement                        | 44 |
| 4.1.5 TEM Result                                          | 45 |
| 4.1.6 FT-IR Measurement                                   | 54 |
| 4.2 Activity Measurement                                  | 55 |
| 4.2.1 Effect of Adding La to the CeO <sub>2</sub> support | 55 |
| 4.2.2 Effect of Support Preparation Method                | 56 |
| 4.2.3 Effect of Drying Method                             | 58 |
| 4.2.4 Effect of Gold Loading                              | 60 |
| 4.2.5 Effect of Calcination Temperature                   | 62 |
| 4.2.6 Effect of O <sub>2</sub> Pretreatment               | 64 |
| 4.2.7 Deactivation Test                                   | 66 |
| 4.2.7.1 Effect of $H_2O$ in the Feed Stream               | 66 |
| 4.2.7.2 Effect of $CO_2$ in the Feed Stream               | 66 |
| 4.2.7.3 Effect of Combination of $CO_2$ and $H_2O$        |    |
| in Feed Stream                                            | 67 |

| TER |                                 | PAGI |  |
|-----|---------------------------------|------|--|
| v   | CONCLUSIONS AND RECOMMENDATIONS | 68   |  |
|     | 5.1 Conclusions                 | 68   |  |
|     | 5.2 Recommendations             | 69   |  |
|     | REFERENCES                      | 70   |  |
|     |                                 |      |  |
|     | CURRICULUM VITAE                | 77   |  |
|     |                                 |      |  |
|     |                                 |      |  |
|     | · • • • •                       |      |  |
|     |                                 |      |  |
|     |                                 |      |  |

# CHAPTER

## LIST OF TABLES

| TABL | ΓABLE                                                     |    |
|------|-----------------------------------------------------------|----|
| 2.1  | Comparison of five fuel cell technologies                 | 5  |
| 2.2  | Properties of gold                                        | 12 |
| 4.1  | BET surface area for the Au/La-CeO <sub>x</sub> catalysts | 45 |
|      |                                                           |    |
|      |                                                           |    |
|      |                                                           |    |
|      |                                                           |    |

### **LIST OF FIGURES**

**FIGURE** 

#### 3 2.1 Fuel-cell unit and fuel processing 7 2.2 Hydrogen production path 20 3.1 Schematic flow of PROX process. 4.1 X-Ray diffraction (XRD) patterns of gold supported catalysts in which the La-CeO<sub>x</sub> support were prepared in different methods: (a) Urea-gelation precipitation; (b) Step precipitation; (c) NH<sub>4</sub>OH precipitation 31 4.2 X-Ray diffraction (XRD) patterns of two types of support: (a) La-CeO<sub>x</sub>; (b) CeO<sub>2</sub> 32 4.3 X-Ray diffraction (XRD) of 1%wt Au/La-CeO<sub>x</sub> catalysts, using 33 different drying methods: (a) Freeze dried; (b) Oven dried 4.4 X-Ray diffraction (XRD) of Au/La-CeO<sub>x</sub> catalysts, with different gold loading: (a) 5%wt Au/La-CeO<sub>x</sub> catalysts; (b) 3%wt Au/La-CeO<sub>x</sub> catalysts; (c) 1%wt Au/La-CeO<sub>x</sub> catalysts; (d) Pure La-CeO<sub>x</sub> support 34 4.5 X-Ray diffraction (XRD) of 1%wt Au/La-CeO<sub>x</sub> catalysts, with different calcination temperature: (a) 500°C; (b) 400°C; 35 (c) 300°C; (d) uncalcined 4.6 UV-vis DRS spectra of 1%wt Au/La-CeO<sub>x</sub> samples with different support preparation methods; using oven dry technique and 36 calcined at 400°C. 4.7 UV-vis DRS spectra of 1%wt Au/La-CeO<sub>x</sub> samples with different drying techniques; calcined at 400°C and the support was prepared by NH<sub>4</sub>OH precipitation. 37 4.8 UV-vis DRS spectra of 1%wt Au/La-CeOx samples at different calcination temperatures; using freeze dry technique and the 38 support was prepared by NH<sub>4</sub>OH precipitation. 4.9 UV-vis DRS spectra of freeze dried Au/La-CeO<sub>x</sub> samples with 39 different gold loadings; calcined at 400°C

PAGE

## FIGURE

| 4.10 | TPR curves for 1%wt Au/La-CeO <sub>x</sub> catalysts using different            |    |
|------|---------------------------------------------------------------------------------|----|
|      | support preparation techniques: (a) NH4OH precipitation;                        |    |
|      | (b) Step precipitation; (c) Urea-gelation precipitation                         | 41 |
| 4.11 | TPR curves for Au/La-CeO <sub>x</sub> catalysts, using different drying         |    |
|      | methods: (a) Freeze dried; (b) Oven dried                                       | 42 |
| 4.12 | TPR curves of Au/La-CeO <sub>x</sub> catalysts, with different gold loadings:   |    |
|      | (a) 5%wt Au/La-CeOx catalysts; (b) 3%wt Au/La-CeOx catalysts;                   |    |
|      | (c) 1%wt Au/La-CeOx catalysts; (d) Pure La-CeOx support                         | 43 |
| 4.13 | TPR curves for 1%wt Au/La-CeO <sub>x</sub> with different calcination           |    |
|      | temperatures: (a) Calcined at 500°C; (b) Calcined at 400°C;                     |    |
|      | (c) Calcined at 300°C; (d) Uncalcined                                           | 44 |
| 4.14 | TEM images and the particle size distribution bar graph of freeze               |    |
|      | dried and oven dried 1%wt Au/La-CeOx catalysts; calcined at 400°C               |    |
|      | and the support is prepared by NH4OH precipitation technique.                   | 46 |
| 4.15 | TEM images of freeze dried Au/La-CeO <sub>x</sub> catalysts with different      |    |
|      | Au loadings; calcined at 400°C and the support is prepared by                   |    |
|      | NH <sub>4</sub> OH precipitation technique.                                     | 48 |
| 4.16 | TEM images of 1%wt Au/La-CeO <sub>x</sub> with different calcination            |    |
|      | temperatures; freeze dried and the support is prepared by                       |    |
|      | NH <sub>4</sub> OH precipitation technique.                                     | 51 |
| 4.17 | FTIR spectra of 1%wt Au/La-CeOx catalysts: (a) Fresh catalyst;                  |    |
|      | (b) After stability test; using freeze drying, calcined at 400°C and            |    |
|      | the support is prepared by NH4OH precipitation technique.                       | 54 |
| 4.18 | CO conversion and selectivity as a function of reaction temperature             |    |
|      | for PROX reaction over 1%wt Au/CeO <sub>2</sub> and 1%wt Au/La-CeO <sub>x</sub> | 56 |
| 4.19 | CO conversion and selectivity as a function of reaction temperature             |    |
|      | for PROX reaction over 1%wt Au/La-CeOx with different support                   |    |
|      | preparation techniques.                                                         | 57 |
| 4.20 | Effect of drying method on CO conversion and PROX selectivity                   |    |
|      | over 1%wt Au/La-CeO <sub>x</sub> catalysts                                      | 59 |

PAGE

| 4.21 | Catalytic activity of La-CeO <sub>x</sub> plain support(prepared by $NH_4OH$ |    |
|------|------------------------------------------------------------------------------|----|
|      | precipitation technique)                                                     | 60 |
| 4.22 | Effect of gold loading on CO conversion and PROX selectivity                 |    |
|      | over freeze dried Au/La-CeO <sub>x</sub> catalysts                           | 61 |
| 4.23 | Effect of calcination temperature on CO conversion and PROX                  |    |
|      | selectivity over freeze dried Au/La-CeO <sub>x</sub> catalysts               | 63 |
| 4.24 | CO conversion and PROX selectivity as a function of reaction                 |    |
|      | temperature for PROX reaction over oxygen pretreated 1%wt                    |    |
|      | Au/La-CeO <sub>x</sub> catalyst                                              | 65 |
| 4.25 | Deactivation test of oxygen pretreated 1%wt Au/La-CeO <sub>x</sub> catalyst; |    |
|      | using freeze dry technique, calcined at 400°C, and the support was           |    |
|      | prepared by NH <sub>4</sub> OH precipitation                                 | 67 |