HEAT EXCHANGER NETWORK RETROFIT IN CRUDE DISTILLATION UNIT

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University, and Institut Français du Pétrole 2011

Thesis Title:	Heat Exchanger Network Retrofit in Crude Distillation Unit
By:	Supachai Kosol
Program:	Petroleum Technology
Thesis Advisors:	Asst. Prof. Kitipat Seimanond

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

..... College Dean

(Asst. Prof. Fomthong Malakul)

Thesis Committee:

Kitipat Siemanard

(Asst. Prof. Kitipat Siemanond)

Kamoch D

(Assoc. Prof. Pramoch Rangsunvigit)

Rungthij Man.

(Dr. Rungroj Chuvaree)

ABSTRACT

5273021063:	Petroleum Technology Program
	Supachai Kosol: Heat Exchanger Network Retrofit in Crude
	Distillation Unit.
	Thesis advisors: Asst. Prof. Kitipat Siemanond 152 pp.
Keywords:	Heat exchanger network/HEN/Retrofit/Crude unit/Mixed integer
	linear programming/Pinch technology

For refineries throughout the world, energy management is an important element for controlling total operating costs. Over the past decades, there appears to be an urgent need to retrofit the existing Heat Exchanger Network (HEN) of Crude Distillation Units (CDU) to reduce the current utility consumption. In this paper two different retrofit methods to perform retrofit are compared: Pinch technology, and MILP method (Nguyen et al., 2010). To make the comparison even more fair, retrofit using Pinch Technology is improved by the incorporation of an optimization step is presented. From the comparison of the above two retrofit technologies; it was found that the pinch technology with optimization software is a powerful procedure to do HEN retrofit based on ease of use and systematic approach. However, the accuracy of pinch technology extremely depends on the selection of the best network from all possibilities. The limitations of the MILP model, even with the one-step computational procedure, cannot get the global optimum HEN retrofit design.

บทคัดย่อ

ศุภชัย โกศล: การปรับปรุงเครือข่ายเครื่องแลกเปลี่ยนความร้อนในกระบวนการกลั่น น้ำมันดิบ (Heat Exchanger Network Retrofit in Crude Distillation Unit) อ. ที่ปรึกษา: ผศ.คร. กิ ติพัฒน์ สีมานนท์ 152 หน้า

สำหรับโรงกลั่นน้ำมันทั่วโลก การจัดการพลังงานเป็นองค์ประกอบสำคัญในการควบคุม ด้นทุนทั้งหมดในการดำเนินงาน กว่าทศวรรษที่ผ่านมา มีความจำเป็นเร่งด่วนในการปรับปรุง เครือข่ายเครื่องแลกเปลี่ยนความร้อนของหน่วยกลั่นน้ำมันดิบ เพื่อลดการใช้ยูทิลิตี้ ในงานวิจัยนี้จะ นำเสนอการปรับปรุงเครือข่ายเครื่องแลกเปลี่ยนความร้อนที่แตกต่างกันสองวิธีคือ เทคโนโลยี พื้นซ์ และวีธีเอ็มไอแอลพี (เหงียน และคณะ, 2010) เพื่อการเปรียบเทียบที่ยุติธรรมมากขึ้น จึง นำเสนอการปรับปรุงเทคโนโลยีพื้นซ์ ในขั้นตอนของการเพิ่มประสิทธิภาพ จากการเปรียบเทียบ ของทั้งสองเทคโนโลยีข้างต้น พบว่าเทคโนโลยีพื้นซ์ร่วมกับซอฟต์แวร์การเพิ่มประสิทธิภาพ เป็น วิธีที่มีประสิทธิภาพในการปรับปรุงเครือข่ายเครื่องแลกเปลี่ยนความร้อน บนพื้นฐานของความ สะควกในการใช้งาน และระบบการคำนวณ แต่ความถูกต้องของเทคโนโลยีพื้นซ์ขึ้นอยู่กับการ เลือกเครือข่ายที่ดีที่สุดจากความเป็นไปได้ทั้งหมดอย่างมาก สำหรับข้อจำกัดของวิธีเอ็มไอแอลพี คือไม่สามารถออกแบบการปรับปรุงเครือข่ายเครื่องแลกเปลี่ยนความร้อนที่ดีที่สุด ถึงแม้วิธีการ คำนวณจะเป็นแบบขั้นตอนเดียว

ACKNOWLEDGEMENTS

There are several individuals who have contributed to my work and made it possible for me to conduct this thesis.

Initially I am indebted grateful to my advisors Asst. Prof. Kitipat Siemanond and Prof. Miguel Bagajewicz for his guidance and support throughout this research work. His whole-hearted enthusiasm, constant support, integral view on research has made a deep impression on me. Also, I would like to thanks Assoc. Prof. Pramoch Rangsunvigit and Dr.Rungroj Chuvaree for being my thesis committees. Their criticisms and recommendations are very valuable for this report.

I am deeply grateful and indebted to the National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials and the government budget, Chulalongkorn University for the Scholarship for my postgraduate degree. More, I would like to thank the Petroleum and Petrochemical College at Chulalongkorn University, especially members of the PPC for their kindness and support.

My gratitude to my colleagues at Chulalongkorn University for providing such a good studying atmosphere, I also want to thank them all for their help, support, interest and valuable suggestions. I wish to acknowledge all they made my time with them very pleasant. While I won't go through the list here, you know I hold you the greatest esteem and affection.

To all friends, I am especially grateful. I was greatly helped by the encouragement of my friends. I hesitate to list them because I do not wish to leave anyone out. Thank you all for the sincere and warm friendship you gave me over the years. Particularly, I would like to extend gratitude to my close friends at Bodindecha (Sing Singhaseni) School and Silpakorn University.

Though, I would like to express my gratitude to my father, Wichai Kosol, and my mother, Payao Kosol. Thank you for being such wonderful parents. Thanks for your boundless love and encouragement, and so much more. Words are not enough to express what you have done for me. I am simply happy and proud to be yours. Also, thanks for giving me great opportunity to study, support cost of living. To my brother, Kasem Kosol. I will never forget your love, generosity, and for always saving the best for me.

TABLE OF CONTENTS

PAGE

	Title P	age	i
	Abstra	ct (in English)	iii
	Title PageAbstract (in English)Abstract (in Thai)AcknowledgementsTable of ContentsList of TablesList of Figures HAPTER IINTRODUCTIONIILITERATURE REVIEW2.1Pinch Analysis Methods2.1.1Stream Data2.1.2Composite Curves and ΔT_{min} 2.1.3Supertargeting2.1.3.1Area Targeting2.1.3.2Vertical Heat Transfer2.1.3.4Optimum ΔT_{min} Value2.1.42.1.5Heat Exchanger Area2.2MILP Model for Grassroots Design2.2.2MILP Retrofit Design Model2.3Combining Pinch and Mathematical Programming Methods	iv	
		v	
	Table	of Contents	vi
	Title Page Abstract (in English) Abstract (in Thai) Acknowledgements Table of Contents List of Tables List of Figures CHAPTER I INTRODUCTION II LITERATURE REVIEW 2.1 Pinch Analysis Methods 2.1.1 Stream Data 2.1.2 Composite Curves and ΔT _{min} 2.1.3 Supertargeting 2.1.3.1 Area Targeting 2.1.3.2 Vertical Heat Transfer 2.1.3.4 Optimum ΔT _{min} Value 2.1.4 Heat Exchanger Matches 2.1.5 Heat Exchanger Area 2.2 Mil P Betrofit Design Model	ix	
	List of	Figures	xi
CHA	APTER		
	I	INTRODUCTION	1
	II	LITERATURE REVIEW	3
		2.1 Pinch Analysis Methods	3
		2.1.1 Stream Data	4
		2.1.2 Composite Curves and ΔT_{min}	6
		2.1.3 Supertargeting	10
		2.1.3.1 Area Targeting	10
		2.1.3.2 Vertical Heat Transfer	13
		2.1.3.3 Area Efficiency	14
		2.1.3.4 Optimum ΔT_{min} Value	17
		2.1.4 Heat Exchanger Matches	20
		2.1.5 Heat Exchanger Area	23
		2.2 Mathematical Programming Methods	25
		2.2.1 MINLP Model for Grassroots Design	26
		2.2.2 MILP Retrofit Design Model	33
		2.3 Combining Pinch and Mathematical Programming Methods	35

III	EXPERIMENTAL	39
	3.1 Software	39
	3.2 Methodology	39
	3.2.1 Doing Data Extraction from the Case Study	39
	3.2.2 Develop Grassroots and Retrofit Potential Program	39
	3.2.3 Applied the Retrofit Potential Program to the Real	
	Refinery Plant or Case Study	40
	3.2.4 Studying the Retrofit of CDU Using MILP Procedure	40
1	3.2.5 Compare the Ability of the Retrofit Model of HENs	
-	and Evaluate the most Effective and Useful	
	Methodology for CDU	40
IV	RESULTS AND DISCUSSION	41
	4.1 Example 1	41
	4.1.1 Discussion	43
	4.1.1.1 Process Pinch Results	43
	4.1.1.2 MILP Results	50
	4.1.1.3 Cost Comparison	52
	4.2 Example 2	53
	4.2.1 Discussion	57
	4.2.1.1 Process Pinch Results	57
	4.2.1.2 MILP Results	70
	4.2.1.3 Cost Comparison	71
V	CONCLUSIONS AND RECOMMENDATIONS	73
	REFERENCES	75
	APPENDICES	80
	Appendix A Collecting Process Data for Example 2	80

152

CHAPTER		PAGE
Appendix B	Manual for Grassroots and Retrofit Potential Programs	98

CURRICULUM VITAE

LIST OF TABLES

TABLE		PAGE
4.1	Stream properties for Example 1. (Ciric and Floudas, 1989)	41
4.2	Existing heat exchanger areas for Example 1	42
4.3	Retrofitted heat exchanger results (1 st alternative design at	
	$\Delta T_{\min} = 25.2 ^{\circ}C)$	47
4.4	Retrofitted heat exchanger results (2 nd alternative design at	
	$\Delta T_{min} = 25.2 ^{\circ}C)$	48
4.5	Retrofitted heat exchanger results (3rd alternative design at	
	$\Delta T_{min} = 25.2^{\circ}C)$	49
4.6	Physical properties of HEN for original HEN and Process	
	pinch	49
4.7	Cost summary for Example 1 for original HEN and Process	
	pinch	50
4.8	Retrofitted heat exchanger results for Example 1	51
4.9	Physical properties of HEN for original HEN, process pinch	
	and MILP	52
4.10	Cost summary for Example 1	52
4.11	Stream properties for Example 2	54
4.12	Existing exchangers in the network, Example 2	54
4.13	Utilities in the original network	55
4.14	Physical properties of HEN for original HEN and Process	
	pinch retrofit	65
4.15	Cost summary for Example 2 for original HEN and Process	
	pinch retrofit	66
4.16	Retrofitted heat exchanger results (6 th alternative design at	
	$\Delta T_{min} = 13 ^{\circ}C)$	69
4.17	Retrofitted heat exchanger results for Example 2	71

4.18	Physical properties of HEN for original HEN, process pinch	
	and MILP	71
4.19	Cost summary for Example 2	72
1A	Retrofitted heat exchanger results (1 st alternative design at	
	$\Delta T_{min} = 13 ^{\circ}C)$	80
2A	Retrofitted heat exchanger results (2 nd alternative design at	0.2
	$\Delta T_{min} = 13 ^{\circ}C)$	82
3A	Retrofitted heat exchanger results (3 rd alternative design at	i e j
	$\Delta T_{min} = 13 ^{\circ}C)$	84.
4A	Retrofitted heat exchanger results (4 th alternative design at	÷
	$\Delta T_{min} = 13 ^{\circ}C)$	86
5A	Retrofitted heat exchanger results (5 th alternative design at	
	$\Delta T_{min} = 13 \text{ °C}$)	88
6A	Retrofitted heat exchanger results (6th alternative design at	
	$\Delta T_{min} = 13 ^{\circ}C$)	90.
7A	Retrofitted heat exchanger results (7 th alternative design at	
	$\Delta T_{min} = 13 ^{\circ}C)$	92
8A	Retrofitted heat exchanger results (8 th alternative design at	
	$\Delta T_{min} = 13 ^{\circ}C)$	94
9A	Retrofitted heat exchanger results (9 th alternative design at	
	$\Delta T_{min} = 13 ^{\circ}C)$	96

LIST OF FIGURES

FIGURE

1.1	Crude distillation Unit (CDU)	2
2.1	Crude fractionation unit	4
2.2	An example of grid diagram	5
2.3	Construction of Composite Curves (Texas A&M University.	
	"Network Pinch Analysis." 22.)	6
2.4	An example of a hot and cold composite curve	7
2.5	Sink and Source Separated at Pinch	8
2.6	Cross pinch heat transfer	9
2.7	Grand Composite Curve	10
2.8	Area vs. Energy requirement diagram for typical network	
	(Texas A&M University. "Network Pinch Analysis." 123.)	11
2.9	Four possible option of doing retrofit (Texas A&M	
	University. "Network Pinch Analysis." 123.)	12
2.10	Vertical heat transfer area intervals (Texas A&M University.	
	"Network Pinch Analysis." 123.)	13
2.11	Area vs. Energy Requirement with Several Design Curve	
	Options (Texas A&M University. "Network Pinch Analysis."	
	123.)	15
2.12	Area vs. Energy Requirement - Area Locations	16
2.13	Impact of Alpha Value	16
2.14	Typical TAC vs. ΔT _{min} Diagram	18
2.15	Above pinch design	21
2.16	Below pinch design	21
2.17	Two-stage superstructure	27
2.18	Transportation and Transshipment Model	34
4.1	Original heat exchanger network for Example 1.	42
4.2	Composite curves of the existing network	43

FIGURE

4.3	HRAT versus NPV	44
4.4	Composite curves of HEN retrofit at $\Delta T_{min} = 25.2^{\circ}C$	44
4.5	Grid diagram for the original heat exchanger network for	
	Example 1	45
4.6	Retrofitted heat exchanger results (1 st alternative design at	
	$\Delta T_{min} = 25.2^{\circ}C)$	46
4.7	Retrofitted heat exchanger results (2 nd alternative design at	
	$\Delta T_{min} = 25.2^{\circ}C)$	47
4.8	Retrofitted heat exchanger results (3 rd alternative design at	
	$\Delta T_{min} = 25.2^{\circ}C)$	48
4.9	Retrofitted heat exchanger network for Example 1	51
4.10	Original heat exchanger network for Example 2	55
4.11	Grid diagram of Example 2	56
4.12	Composite curves of the existing HEN	57
4.13	HRAT versus NPV	58
4.14	Composite curves of HEN retrofit which maximize NPV at a	58
	ΔT_{min} of 13°C	
4.15	Cross pinch grid diagram for for Example 2	59
4.16	Above pinch retrofitted results (1 st alternative design at	
	$\Delta T_{min} = 13 \ ^{o}C)$	61
4.17	Above pinch retrofitted results (2 nd alternative design at	
	$\Delta T_{min} = 13 $ °C)	61
4.18	Above pinch retrofitted results (3 rd alternative design at	
	$\Delta T_{min} = 13 $ °C)	62
4.19	Below pinch retrofitted results (1 st alternative design at	
	$\Delta T_{min} = 13 \ ^{\circ}C)$	62
4.20	Below pinch retrofitted results (2 nd alternative design at	
	$\Delta T_{min} = 13 $ °C)	63

FIGURE

PAGE

4.21	Below pinch retrofitted results (3 rd alternative design at	
	$\Delta T_{min} = 13 \ ^{\circ}C)$	63
4.22	Retrofitted heat exchanger results (6 th alternative design at	
	$\Delta T_{min} = 13 \text{ °C}$)	68
4.23	Retrofitted heat exchanger network for Example 2	70
Al	Retrofitted heat exchanger results (1 st alternative design at	
	$\Delta T_{min} = 13 ^{\circ}C)$	81
A2	Retrofitted heat exchanger results (2 nd alternative design at	
	$\Delta T_{min} = 13 \text{ °C}$	83
A3	Retrofitted heat exchanger results (3 rd alternative design at	
	$\Delta T_{min} = 13^{\circ}C$	85
A4	Retrofitted heat exchanger results (4 th alternative design at	
	$\Delta T_{min} = 13 \text{ °C}$	87
A5	Retrofitted heat exchanger results (5 th alternative design at	
	$\Delta T_{min} = 13 ^{\circ}C)$	89
A6	Retrofitted heat exchanger results (6^{th} alternative design at	
	$\Delta T_{min} = 13 ^{\circ}C)$	91
A7	Retrofitted heat exchanger results (7 th alternative design at	
	$\Delta T_{min} = 13 \ ^{o}C)$	93
A8	Retrofitted heat exchanger results (8 th alternative design at	
	$\Delta T_{min} = 13 ^{\circ}C)$	95
A9	Retrofitted heat exchanger results (9 th alternative design at	
	$\Delta T_{min} = 13 ^{\circ}C$	97
Bl	MS office Program Feature	98
B2	Input FCp, h, Tin, and Tout	99
B3	HRAT, HRAT region for calculation, and Utility Data	100
B4	Economic Data	100
B5	Capital Cost Method for Supertargeting	101
B6	Calculate Supertargeting Button	101

B7	Main Results Feature	102
B8	Number of streams, Pinch temperature, Minimum utility, and	
	Utility cost	103
B9	All 13 command buttons	103
B10	Ideal area, Number of exchangers, Energy cost, and Capital	
	cost table	104
B11	Simple total annualized cost, Interest-based total annualized	
	cost, and Net present cost	104
B12	Supertargeting results and View all data command button	105
B13	Printing option for Composite Curves and Grand Composite	
	Curve	105
B14	Sheet "Tableau & Stream Cascade"	106
B15	Sheet "Composite Curves"	107
B16	Sheet "Grand Composite"	107
B17	Sheet "6 Streams"	108
B18	Sheet "Area Calculation Region"	109
B19	Sheet "Supertargeting"	109
B20	Sheet "IRR"	110
B21	Sheet "NPV"	110
B22	Sheet "ROI"	111
B23	Sort Data Function (in Module 4)	112
B24	Discount factor function (in Module 5)	114
B25	MS office Program Feature	141
B26	Input FCp, Tin, Tout, and h	142
B27	Plotting options for ΔT_{min} , Current data, and Area efficiency	142
B28	Economic data	142
B29	Option for Capital cost method for supertargeting	143
B30	Options for the optimum HEN	143

FIGURE

B31	Calculate Supertargeting Button	144
B32	Main Results Feature	145
B33	Number of streams, Pinch temperature, and Current Δ Tmin	145
B34	Command buttons	146
B35	Supertargeting Results by selected an option	146
B36	Printing option for graphs	147
B37	Capital Energy Trade-off Diagram	149
B38	Payback Diagram	150