INVESTIGATION OF CARBON FORMATION ON NICKEL-BASED CERIA ZIRCONIA CATALYSTS IN THE AUTOTHERMAL STEAM REFORMING OF ACETIC ACID

Thanakorn Thanasujaree

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University, and Institut Français du Pétrole

2015

Investigation of Carbon Formation on Ni-based Ceria-
Zirconia Catalysts in the Autothermal Steam Reforming of
Acetic Acid
Thanakorn Thanasujaree
Petrochemical Technology
Assoc. Prof. Thirasak Rirksomboon
Assoc. Prof. Vissanu Meeyoo

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

Me College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

Thinulh-

(Assoc. Prof., Thirasak Rirksomboon)

(Assoc. Prof. Vissanu Meeyoo)

amoel of

(Assoc. Prof. Pramoch Rangsunvigit)

S. Bengpiich

(Dr. Sitthiphong Pengpanich)

ABSTRACT

5671011063:	Petrochemical Technology Program
	Mr. Thanakorn Thanasujaree: Investigation of Carbon Formation on
	Ni-based Ceria Zirconia Catalysts in the Autothermal Steam
	Reforming of Acetic Acid.
	Thesis Advisors: Assoc. Prof. Thirasak Rirksomboon, and
	Assoc. Prof. Vissanu Meeyoo 81 pp.
Keywords:	Acetic acid/ Autothermal steam reforming/ Nickel/ Ceria/ Zirconia/
	Carbon formation

The acetic acid autothermal steam reforming (ATR) was investigated over Ni/Ce75Zr25Ox catalyst via coke characterization along the catalyst bed. The ATR, partial oxidation (POX), and steam reforming (SR) of acetic acid were individually conducted to study gaseous products and carbon deposition using a continuous flow fixed-bed reactor. Each reaction was carried out at atmospheric pressure and a constant temperature of 650 °C under the following conditions: a total flow rate of 170 ml/min, steam-to-carbon molar ratio of 3:1, and oxygen-to-acetic acid molar ratio of 0.35:1 by varying contact times from 0.088 to 0.352 g·h·mol⁻¹. Ce75Zr25Ox support was prepared via urea-hydrolysis followed by nickel (15 wt%) impregnation. It was apparent that a large amount of H₂ production was obtainable for SR but unattainable for POX. However, H₂ production under ATR conditions appears ca. 10 % lower than SR conditions. Besides, the products selectivity at the upper layer of the catalyst bed under ATR conditions behaved similar to the catalyst under POX conditions while its lower layer of the catalyst bed behaved similar to the catalyst under SR conditions. In addition, the results on coke characterization revealed that filamentous carbon was the main type of carbon deposited on spent catalyst for all processes whereas amorphous carbon was found in POX and only at the top portion of spent catalyst in ATR. This suggested that under ATR conditions, SR occurred when oxygen was completely consumed as well as the reaction zones were separately existed. Moreover, the advantage of ATR could be viable in lowering carbon formation compared with SR and POX operation.

บทคัดย่อ

ธนากร ธนาสุจารี : การศึกษากระบวนการเกิดคาร์บอนของนิกเกิลบนตัวรองรับตัวเร่ง ปฏิกิริยาซีเรียเซอร์ โคเนียในกระบวนการรีฟอร์มมิงด้วยใอน้ำแบบอาศัยสมดุลความร้อนของกรด แอซีติก (Investigation of Carbon Formation on Ni-based Ceria Zirconia Catalysts in the Autothermal Steam Reforming of Acetic Acid) อ. ที่ปรึกษา : รศ.ดร. ธีรศักดิ์ ฤกษ์สมบูรณ์ และ รศ.ดร. วิษณุ มีอยู่ 81 หน้า

งานวิจัยนี้ได้ศึกษากระบวนการรีฟอร์มมิงด้วยไอน้ำแบบอาศัยสมคุลความร้อนของกรด แอซีติก โดยการวิเคราะห์คุณลักษณะของคาร์บอนตลอดความสูงของชั้นตัวเร่งปฏิกิริยา Ni/Ce75Zr25Ox ที่ใช้แล้ว นอกจากนี้ได้ศึกษากระบวนการรีฟอร์มมิ่งด้วยไอน้ำและกระบวนการ ้ออกซิเคชันบางส่วนของกรคแอซีติก เพื่อพิสูงน์ความแตกต่างของการเกิคการ์บอนและผลิตภัณฑ์ ้ของแก๊ส โดยใช้เครื่องปฏิกรณ์แบบเบคคงที่ภายใต้สภาวะความดันบรรยากาศ อุณหภูมิคงที่ที่ 650 ้องศาเซลเซียส อัตราการใหลรวมเป็น 170 มิลลิลิตรต่อนาที อัตราส่วนโมลาร์ระหว่างไอน้ำต่อ ออกซิเจนเป็น 3:1 และอัตราส่วนโมลาร์ระหว่างออกซิเจนต่อกรดแอซีติกเป็น 0.35:1 ในขณะที่ ปรับระยะเวลาการสัมผัสในช่วง 0.088-0.352 กรัมชั่วโมงต่อโมล ตัวรองรับตัวเร่งปฏิกิริยา Ce75Zr25Ox เฮรียมโดยใช้วิธีโซลเจลด้วยปฏิกิริยาสลายตัวของยูเรีย การเติมนิกเกิลลงบนตัว รองรับใช้วิธีการทำให้เปียกชุ่มในปริมาณโลหะนิกเกิลคงที่ร้อยละ เร ของน้ำหนักตัวเร่งปฏิกิริยา ้ผลการศึกษาพบว่าภายใต้กระบวนการรีฟอร์มมิงด้วยไอน้ำผลิตไฮโดรเจนมากที่สุด ตามด้วย กระบวนการรีฟอร์มมิงด้วยไอน้ำแบบอาศัยสมดุลความร้อนและกระบวนการออกซิเดชันบางส่วน ตามลำดับ นอกจากนี้การเลือกผลิตของตัวเร่งปฏิกิริยาชั้นบนภายใต้กระบวนการรีฟอร์มมิงด้วยไอ น้ำแบบอาศัยสมคุลความร้อนแสดงคุณลักษณะเหมือนกับตัวเร่งปฏิกิริยาภายใต้กระบวนการ ้ออกซิเคชั่นบางส่วน ในทางตรงกันข้ามตัวเร่งปฏิกิริยาชั้นล่างแสดงคุณลักษณะเหมือนกับตัวเร่ง ปฏิกิริยาภายใด้กระบวนการรีฟอร์มมิงด้วยไอน้ำ และจากการวิเคราะห์คุณลักษณะของคาร์บอน แสดงให้เห็นว่า การ์บอนที่มีลักษณะเป็นเส้นใยเป็นการ์บอนหลักที่เกิดบนตัวเร่งปฏิกิริยาที่ใช้แล้ว ภายใต้ทุกกระบวนการ ในขณะที่อสัณฐานการ์บอนเกิดขึ้นบนตัวเร่งปฏิกิริยาที่ใช้แล้วเฉพาะใน กระบวนการออกซิเคชันบางส่วนและตัวเร่งปฏิกิริยาชั้นบนภายใต้กระบวนการรีฟอร์มมิงค้วยไอ น้ำแบบอาศัยสมคุลความร้อนเท่านั้น การทคลองสรุปได้ว่าภายใต้กระบวนการรีฟอร์มมิงด้วยไอ น้ำแบบอาศัยสมดุลความร้อน เกิดปฏิกิริยาแยกกันบนชั้นตัวเร่งปฏิกิริยาโดยกระบวนการรีฟอร์ม ้มิงด้วยไอน้ำเกิดขึ้นหลังจากออกซิเจนถูกใช้จนหมดและเกิดการ์บอนน้อยกว่ากระบวนการอื่นๆ

ACKNOWLEDGEMENTS

First of all, I would like to express my gratefully thanks to my advisors Assoc. Prof. Thirasak Rirksomboon and Assoc. Prof. Vissanu Meeyoo for useful recommendations, encouragement, and kind support throughout the course of my research work.

My sincere thanks go to Assoc. Prof. Pramoch Rangsunvigit and Asst. Prof. Sitthipong Pengpanich for giving me their valuable suggestion and being my thesis committee.

I deeply appreciate and thanks to all my friends and all staff from the Petroleum and Petrochemical College and Mahanakorn University of Technology for their support and cheerfulness.

I would like to extend the most sincere thanks to my lovely family for providing me their love and endless encouragement during my two years study at the college.

Finally, this research work was supported by the Petroleum and Petrochemical College, Chulalongkorn University and Centre for Advanced Materials and Environmental Research, Mahanakorn University of Technology, Thailand.

TABLE OF CONTENTS

			PAGE
	Title P	age	i
	Abstra	ct (in English)	iii
	Abstra	ct (in Thai)	iv
	Ackno	wledgements	v
	Table	of Contents	vi
	List of	Tables	ix
	List of	Figures	х
CHA	PTER		
	I	INTRODUCTION	1
	II	THEORETICAL BACKGROUND	
		AND LITERATURE REVIEW	3
		2.1 Hydrogen Production	3
		2.2 Pyrolysis of Biomass	3
		2.3 Steam Reforming	5
		2.3.1 Conventional Steam reforming	5
		2.3.2 Steam Reforming of Oxygenates	6
		2.3.3 Steam Reforming of Acetic Acid	7
		2.3.4 Catalysts Used in Steam Reforming of Acetic Acid	10
		2.4 Partial Oxidation	13
		2.4.1 Catalytic Partial Oxidation of Methane	13
		2.4.2 Partial Oxidation of Oxygenates	13
		2.4.3 Catalysts Used in Partial Oxidation of Methane	14
		2.5 Autothermal Steam Reforming	16
		2.5.1 Autothermal Steam Reforming Operation	17
		2.5.2 Autothermal Steam Reforming Mechanism	18
		2.5.3 Catalysts Used in Autothermal Steam Reforming	19
		2.6 Carbon Formation	21

CHAPTER

PAGE

Ш	EXPERIMENTAL	24
	3.1 Equipment and Materials	24
	3.1.1 Equipment	24
	3.1.2 Materials	24
	3.2 Experimental Procedures	25
	3.2.1 Catalyst Preparation	25
	3.2.2 Catalyst Characterization	25
	3.2.3 Experimental Setup	28
	3.2.4 Experimental Procedures	30
	3.2.5 Catalytic Activity Measurements	31
IV	RESULTS AND DISCUSSION	34
	4.1 Catalyst Characterization	34
	4.1.1 Elemental Analysis and BET Surface Area	
	Measurements	34
	4.1.2 X-ray Diffraction (XRD)	34
	4.1.3 Temperature Programmed Reduction of	
	Hydrogen (H ₂ -TPR)	36
	4.1.4 Scanning Electron Microscopy (SEM)	36
	4.2 Catalytic Activity Tests	37
	4.3 Characterization of Spent Catalyst	50
V	CONCLUSIONS AND RECCOMENDATIONS	61
	5.1 Conclusions	61
	5.2 Recommendations	61
	REFERENCES	62

APPENDICES	67
Appendix A Experimental Data of Gas Calibration for	
Shimadzu GC-14B	67
Appendix B Experimental Data of Gas Calibration for	
Shimadzu GC-17A	73
Appendix C Calibration Curve of Brooks 5850E Mass Flow	
Controllers	75
Appendix D Calibration Curve of Eldex ReciPro Liquid	
Metering Pumps	77
Appendix E Experimental Data of Catalytic Activity Tests	78
CURRICULUM VITAE	81

LIST OF TABLES

TABL	TABLE	
4.1	The chemical compositions and BET surface areas of the	
	support and catalyst synthesized	34
4.2	Crystallite sizes of NiO on various planes obtained from	
	XRD analysi	35
4.3	The reactions involved in SR, POX, and ATR of acetic acid	38
4.4	The chemical states of nickel with different electronic	
	binding energies	50
4.5	Ratios of the satellite peak to the main Ni peak of fresh,	
	reduced, and spent 15%Ni/Ce75Zr25Ox catalyst beds	50
4.6	Amounts of carbon formation on individual beds of spent	
	catalyst after proceeded through SR, POX, and ATR of	
	acetic acid	53
4.7	The chemical state of carbon with different electronic	
	binding energy	55
Al	Gas chromatograph with thermal conductivity detector	
	(GC-TCD, model: GC-14B) conditions	67
B1	Gas chromatograph with flame ionization detector	
	(GC-FID, model: GC-17A) conditions	73
El	Catalytic activity test of Ce75Zr25Ox and quartz wool at	
	650 °C, total flow rate 170 ml/min, W/F = $0.352 \text{ g} \cdot \text{h} \cdot \text{mol}^{-1}$,	
	S/C molar ratio = 6 (for SR and ATR), and O_2 /acetic acid	
	molar ratio = 0.35 (for POX and ATR)	78
E2	Catalytic activity test of 15%Ni/Ce75Zr25Ox catalyst at	
	650 °C, total flow rate 170 ml/min, S/C molar ratio = 6 (for	
	SR and ATR), and O_2 /acetic acid molar ratio = 0.35 (for	
	POX and ATR)	79

LIST OF FIGURES

FIGURE		PAGE
2.1	Simple flow diagram for the complete path from biomass to	
	synthesis gas via bio-oil steam reforming.	4
2.2	Acetic acid conversion as a function of reaction temperature.	10
2.3	Total amount of carbon deposited on catalysts and C-C	
	breakage conversion at 650 °C, S/C ratios of 1-6.	12
2.4	Different operating conditions for hydrogen production.	17
2.5	XPS profiles of the spent 12% Ni/ γ -Al ₂ O ₃ catalyst.	22
2.6	TEM images illustrating the different carbon morphologies	
	over Ni-based catalysts of a) filamentouse, b) encapsulating,	
	c) pyrolytic and, d) amorphous.	23
3.1	Schematic diagram of the catalyst packing for steam	
	reforming, partial oxidation, and autothermal steam	
	reforming of acetic acid.	29
3.2	Schematic diagram of the experimental system for steam	
	reforming, partial oxidation, and autothermal steam	
	reforming of acetic acid.	30
4.1	XRD patterns of (a) Ce75Zr25Ox and	
	(b) 15%Ni/Ce75Zr25Ox.	35
4.2	H ₂ -TPR profiles with heating rate of 10 °C/min, a reducing	
	gas containing 5 % H_2 in N_2 with a flow rate of 20 ml/min,	
	patterns of (a) Ce75Zr25Ox and (b) 15%Ni/Ce75Zr25Ox.	36
4.3	SEM images of (a) Ce75Zr25Ox and	
	(b) 15%Ni/Ce75Zr25Ox.	37
4.4	Conversion of reactants and C-C bond breakage conversion	
	over 15%Ni/Ce75Zr25Ox catalyst in relation to contact times	
	(W/F), S/C = 6 (for SR and ATR), O_2 /Acetic acid = 0.35 (for	
	POX and ATR), T = 650 °C, and total flow rate = 170 ml/min .	39

FIGURE

4.5	Hydrogen production over 15%Ni/Ce75Zr25Ox catalyst in	
	relation to contact times (W/F), $S/C = 6$ (for SR and ATR),	
	O_2 /Acetic acid = 0.35 (for POX and ATR), T = 650 °C, and	
	total flow rate = 170 ml/min.	41
4.6	Carbon dioxide production and selectivity over	
	15%Ni/Ce75Zr25Ox catalyst in relation to contact times	
	(W/F), S/C = 6 (for SR and ATR), O_2 /Acetic acid = 0.35 (for	
	POX and ATR), T = 650 °C, and total flow rate = 170 ml/min .	42
4.7	Carbon monoxide production and selectivity over	
	15%Ni/Ce75Zr25Ox catalyst in relation to contact times	
	(W/F), S/C = 6 (for SR and ATR), O_2 /Acetic acid = 0.35 (for	
	POX and ATR), T = 650 °C, and total flow rate = 170 ml/min .	43
4.8	Methane production and selectivity over 15%Ni/Ce75Zr25Ox	
	catalyst in relation to contact times (W/F), $S/C = 6$ (for SR	
	and ATR), O_2 /Acetic acid = 0.35 (for POX and ATR), T =	
	650 °C, and total flow rate = 170 ml/min.	45
4.9	Acetone production and selectivity over 15%Ni/Ce75Zr25Ox	
	catalyst in relation to contact times (W/F), $S/C = 6$ (for SR	
	and ATR), O_2 /Acetic acid = 0.35 (for POX and ATR), T =	
	650 °C, and total flow rate = 170 ml/min.	46
4.10	XPS spectra in Ni 2p _{3/2} region of (a) fresh	
	15%Ni/Ce75Zr25Ox catalyst, (b) reduced	
	15%Ni/Ce75Zr25Ox catalyst, (c) the 1 st spent catalyst bed, (d)	
	the 2^{nd} spent catalyst bed, (e) the 3^{rd} spent catalyst bed, and (f)	
	the 4 th spent catalyst bed over different processes (SR, POX,	
	and ATR).	48
4.11	TPO profiles of each spent catalyst bed for (a) SR, (b) POX,	
	and (c) ATR of acetic acid with a heating rate of 10 $^{\circ}$ C/min,	
	an oxidizing gas containing 5 $\%~O_2$ in He with a flow rate of	
	20 ml/min.	52

PAGE

FIGURE

4.12	Coke profiles by TPO and TG-DTA techniques on individual	
	beds of spent catalyst after proceeded through SR, POX, and	
	ATR of acetic acid.	54
4.13	TG-DTA profiles of the spent catalyst under different	
	processes (SR, POX, and ATR) with heating rate of	
	10 °C/min, an oxidizing gas containing O_2 in N_2 with a flow	
	rate of 20 ml/min; (a) the 1^{st} bed, (b) the 2^{nd} bed, (c) the 3^{rd}	
	bed, and (d) the 4 th bed.	56
4.14	XPS spectra in C 1s region of spent catalyst beds; (a) the 1^{st}	
	bed, (b) the 2^{nd} bed, (c) the 3^{rd} bed, and (d) the 4^{th} bed.	57
4.15	TEM images of the spent catalysts after activity tests of (a)	
	SR-the 1 st bed, (b) POX-the 1 st bed, (c) ATR-the 1 st bed, and	
	(d) ATR-the 3 rd bed.	58
4.16	The proposed mechanism diagrams of the reaction pathways	
	for ATR of acetic acid and coke formation on	
	15%Ni/Ce75Zr25Ox catalyst.	59
Al	Relationship between area and concentration of nitrogen.	67
A2	Relationship between area and concentration of nitrogen.	68
A3	Relationship between area and concentration of hydrogen.	68
A4	Relationship between area and concentration of hydrogen.	69
A5	Relationship between area and concentration of carbon	
	monoxide.	69
A6	Relationship between area and concentration of carbon	
	monoxide.	70
A7	Relationship between area and concentration of carbon	
	dioxide.	70
A8	Relationship between area and concentration of methane.	71
A9	Relationship between area and concentration of methane.	71
A10	Relationship between area and concentration of oxygen.	72
A11	Relationship between area and concentration of oxygen.	72

FIGURE

B1	Relationship between area and concentration of acetone.	73
B2	Relationship between area and concentration of acetic acid.	74
C1	Relationship between set point and volumetric flow rate of	
	nitrogen.	75
C2	Relationship between set point and volumetric flow rate of	
	hydrogen.	75
C3	Relationship between set point and volumetric flow rate of	
	oxygen.	76
Dl	Relationship between volume set point and volumetric flow	
	rate.	77