CATALYTIC CONVERSION OF GLYCEROL TO PROPYLENE GLYCOL OVER COPPER/ZINC OXIDE-BASED CATALYSTS: EFFECT OF CATALYST SUPPORTS

Natcha Wongpraphairoat

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University, and Institut Français du Pétrole 2013

I 28373078

561064

Thesis Title:	Catalytic Conversion of Glycerol to Propylene Glycol over
	Copper/Zinc Oxide-based Catalysts: Effect of Catalyst
	Supports
By:	Natcha Wongpraphairoat
Program:	Petroleum Technology
Thesis Advisors:	Asst. Prof. Siriporn Jongpatiwut
	Assoc. Prof. Thirasak Rirksomboon

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

(Asst. Prof. Siriporn Jongpatiwut)

(Almutt)

(Assoc. Prof. Thirasak Rirksomboon)

apoing C

(Assoc. Prof. Apanee Luengnaruemitchai)

SA

(Dr. Sutheerawat Samingprai)

ABSTRACT

5473007063: Petroleum Technology Program
Natcha Wongpraphairoat: Catalytic Conversion of Glycerol to
Propylene Glycol over Copper/Zinc Oxide-based Catalysts:
Effect of Catalyst Supports
Thesis Advisors: Asst. Prof. Siriporn Jongpatiwut and Assoc. Prof.
Thirasak Rirksomboon 67 pp.
Keywords: Cu-ZnO/Support/Glycerol/Propylene glycol

In this work, the catalytic conversion of glycerol to propylene glycol (PG) was investigated over the copper/zinc oxide-based catalysts prepared by different supports—i.e. Alumina (Al₂O₃), amorphous silica-alumina (ASA), magnesium oxide (MgO), and hydrotalcite (Mg₆Al₂CO₃(OH)₁₆•4(H₂O)). The prepared catalysts were tested for the catalytic activity in a packed-bed reactor at 250 °C and 500 psig under hydrogen atmosphere. CuZnO/Al₂O₃ gave the highest glycerol conversion and PG selectivity compared to CuZnO/MgO, CuZnO/Hydrotalcite, and CuZnO/ASA. This might be because the surface area of CuZnO/Al₂O₃ was larger than the other catalysts. Noticeably, CuZnO/MgO exhibited the highest performance in terms of stability. The effect of Na and K addition in feed was investigated on CuZnO/MgO and CuZnO/Al₂O₃. The results showed that the refined glycerol exhibited a higher conversion compared to the refined glycerol mixed with 0.1% Na or with 0.1% K over CuZnO/ Al_2O_3 . On the other hand, the refined glycerol mixed with 0.1% Na or with 0.1% K exhibited a higher conversion compared to the refined glycerol feed on CuZnO/MgO. The glycerol conversion of the regenerated CuZnO/MgO catalyst was as good as that of the fresh catalyst.

บทคัดย่อ

ณัชชา วงศ์ประไพโรจน์ : การผลิตโพรพิลีนไกลคอลจากกลีเซอรอลโดยตัวเร่งปฏิกิริยา ที่มีทองแดงและสังกะสีออกไซค์เป็นส่วนประกอบพื้นฐาน: ผลกระทบจากตัวรองรับของดัวเร่ง ปฏิกิริยา (Catalytic Conversion of Glycerol to Propylene Glycol over Copper/Zinc Oxide-based Catalysts: Effect of Catalyst Supports) อาจารย์ที่ปรึกษา: ผศ. คร. ศิริพร จงผาติวุฒิ และ รศ. คร. ธีรศักดิ์ ฤกษ์สมบรูณ์ 67 หน้า

ในงานวิจัยนี้ได้ศึกษาการผลิตโพรพิลีนไกลคอลจากกลีเซอรอลโดยตัวเร่งปฏิกิริยาที่มี ทองแคงและสังกะสีออกไซค์เป็นส่วนประกอบพื้นฐาน โคยเตรียมตัวเร่งปฏิกิริยาที่มีตัวรองรับ แตกต่างกัน ได้แก่ อลูมินา (Al₂O₄), อสัณฐานซิลิกาอลูมินา (Amorphous Silica Alumina), แมกนี้เซียมออกไซด์ (MgO), และไฮโดรทัลไดด์ (Hydrotalcite (Mg₆Al₂CO₃(OH)₁₆•4(H₂O))) ตัวเร่งปฏิกิริยาที่เตรียมขึ้นทั้งหมดถูกนำไปทดสอบประสิทธิภาพของการทำปฏิกิริยาในเครื่อง ้ปฏิกรณ์แบบต่อเนื่องชนิคเบคนิ่งที่อุณหภูมิ 250 องศาเซลเซียส ภายใต้ความคันของไฮโครเจนที่ 500 ปอนค์ต่อตารางนิ้วเกจ ผลการทคลองแสคงให้เห็นว่าตัวเร่งปฏิกิริยาทองแคงและสังกะสี ออกไซค์บนอลูมินา (CuZnO/Al,O,) ให้สัคส่วนการทำปฏิกิริยาของกลีเซอรอลและการเลือกเกิค โพลไพลีนไกลคอลมากที่สุด ซึ่งอางเกิดเนื่องมาจากพื้นที่พื้นผิวของตัวเร่งปฏิกิริยาทองแดงและ ้สังกะสีออกไซค์บนอลูมินามีมากที่สุด เป็นที่น่าสังเกตว่า ตัวเร่งปฏิกิริยาทองแดงและสังกะสึ ้ออกไซค์บนแมกนี้เซียมออกไซค์ (CuZnO/MgO) มีความเสถียรที่สูงที่สุด งานวิจัยนี้จึงศึกษา ผลกระทบของโซเคียมและโพแทสเซียมที่ผสมในสารตั้งต้นบนตัวเร่งปฏิกิริยาทองแคงและ สังกะสีออกไซด์บนแมกนี้เซียมออกไซด์และตัวเร่งปฏิกิริยาทองแคงและสังกะสีออกไซด์บนอลุมิ นา ผลการทดลองแสดงให้เห็นว่ากลีเซอรอลบริสุทธิ์ผสมกับ 0.1 เปอร์เซ็นต์ของโซเดียมและกับ 0.1 เปอร์เซ็นต์ของโพแทสเซียมให้สัดส่วนการทำปฏิกิริยาของกลีเซอรอลมากกว่ากลีเซอรอลบริ สุทธิ์ ในทางตรงกันข้ามกลีเซอรอลบริสุทธิ์ให้สัคส่วนการทำปฏิกิริยาของกลีเซอรอลมากกว่ากลีเซ ้อรอลบริสุทธิ์ผสมกับ 0.1 เปอร์เซ็นต์ของโซเดียมและกับ 0.1 เปอร์เซ็นต์ของโพแทสเซียม ตัวเร่ง ้าไฏ้กิริยาทองแคงและสังกะสืออกไซค์บนแมกนี้เซียมออกไซค์ที่น้ำกลับมาใช้ใหม่ให้สัคส่วนการ ทำปฏิกิริยาของกลีเซอรอลดีเท่ากับตัวเร่งปฏิกิริยาใหม่

ACKNOWLEDGEMENTS

This work would not have been possible if there is no the assistance of the following individuals.

First of all, I greatly appreciate Asst.Prof. Siriporn Jongpatiwut and Assoc. Prof. Thirasak Rirksomboon, my thesis advisors, for providing invaluable recommendations, creative comments, and kindly support throughtout the course of this research work.

I would like to thank Assoc. Prof. Apanee Luengnaruemitchai and Dr. Sutheerawat Samingprai for their kind advice and for being my thesis committee.

The author is grateful for the scholarship and for the research funding of the thesis work provided by the Petroleum and Petrochemical College, and Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Thailand

Special appreciation goes to all of the Petroleum and Petrochemical College's staff who help in various aspects, especially the research affairs staff who kindly help with the analytical instruments used in this work.

For my friends at PPC, I would like to give special thanks for their friendly support, encouragement, cheerfulness, and assistance. Without them, two years in the college will be meaningless for me. I had the most enjoyable time working with all of them.

Finally, I wish to thank my family for moral support, understanding, and always give me greatest love, willpower and financial support until this study completion.

TABLE OF CONTENTS

		PAGE
Titl	e Page	i
Acc	eptance Pages	ii
Abs	stract (in English)	iii
Abs	stract (in Thai)	iv
Ack	nowledgements	v
Tab	le of Contents	vi
List	of Tables	viii
List	of Figures	Х
СНАРТЕ	CR	
I	INTRODUCTION	1
Π	LITERATURE REVIEW	
	2.1 Properties of Glycerol	3
	2.1.1 Types of Glycerol	4
	2.1.2 Industrial Production of Glycerol	5
	2.1.3 Commodity Chemicals Derived from Glycerol	6
	2.2 From Glycerol to Propanediols	7
	2.2.1 Production of 1,2-Propanediol from Glycerol	9
	2.3 Deactivation and Regeneration	20
	2.3.1 Poisoning	22
	2.3.2 Fouling	24
	2.3.3 Thermal Degradation	25
	2.3.4 Mechanical Deactivation	26
	2.3.5 Corrosion/leaching	26
III	EXPERIMENTAL	
	3.1 Materials and Equipment	28

3.1.1 Chemicals 28

	3.1.2 Gases	28
	3.1.3 Equipment	29
	3.2 Experimental Procedure	29
	3.2.1 Catalyst Preparation	29
	3.2.2 Catalyst Characterization	29
	3.2.3 Catalytic Activity Measurement	33
	3.2.4 Catalyst Regeneration	34
IV	RESULTS AND DISCUSSION	
	4.1 Fresh Catalyst Characterization	35
	4.1.1 Brunauer-Emmett-Teller Method (BET)	35
	4.1.2 X-ray Diffraction (XRD)	38
	4.1.3 Temperature Programmed Reduction (TPR)	39
	4.1.4 Temperature Programmed Desorption of Carbon	
	Dioxide (CO ₂ -TPD)	40
	4.2 Catalytic Activity Testing	42
	4.2.1 Effect of Catalyst Supports	42
	4.2.2 Effect of alkaline (Na, K) addition in the feed	46
	4.3 Catalyst Deactivation and Catalyst Regeneration	54
	4.3.1 Coke Formation	54
	4.3.2 Catalyst Regeneration	55
V	CONCLUSIONS AND RECOMMENDATIONS	60
	5.1 Conclusions	60
	REFERENCES	61
	APPENDIX	65
	Appendix A Product Analysis	65
	CURRICULUM VITAE	67

LIST OF TABLES

TABL	TABLE	
2.1	Physical properties of glycarol at 20° C	Λ
2.1	Superification of classes life data de	4
2.2	Specification of glycerol feedstocks	2
2.3	Summary of conversion of glycerol, yield and selectivity of	
	propylene glycol from glycerol over various metal catalysts	13
2.4	Mechanisms of catalyst deactivation	21
2.5	Common poisons classified according to chemical structure	22
2.6	Effects of important reaction and catalyst variables on	
	sintering rates of supported metals based on GPLE data	27
4.1	BET surface area, pore volume, and pore size diameter of	
	the support and the catalysts	36
4.2	CuO and MgO crystallite sizes of the CuZnO-based catalysts	
	with different catalyst supports	39
4.3	Basicity of the prepared catalysts from TPD of CO_2	41
4.4	Conversion and selectivity to liquid products of the CuZnO-	
	based catalysts with different catalyst supports (Reaction	
	conditions: 80wt% glycerol feed, 250 °C, 500 psig,	
	H_2 :glycerol = 4:1, WHSV = 3.77 h ⁻¹ , and TOS of 24 h)	44
4.5	Conversion and selectivity to liquid products of	
	CuZnO/Al ₂ O ₃ on different impurities in the glycerol	
	feedstock (Reaction conditions: 80wt% glycerol feed, 250	
	°C, 500 psig, H ₂ :glycerol = 4:1, WHSV = 3.77 h^{-1} , and TOS	
	of 24 h)	49
4.6	Concentration of alkali on feedstock, product, and the spent	
	$CuZnO/Al_2O_3$ and $CuZnO/MgO$ catalyst analyzed by AAS	51

4.7

4.8

4.9

Conversion and selectivity to liquid products of			
CuZnO/MgO on different impurities in the glycerol			
feedstock (Reaction conditions: 80wt% glycerol feed, 250			
°C, 500 psig, H ₂ :glycerol = 4:1, WHSV = 3.77 h^{-1} , and TOS			
of 24 h)	53		
pH value analyzed by pH-indicator strips	53		
Conversion and selectivity to liquid products of the fresh and			
regenerated CuZnO/MgO catalysts (Reaction conditions:			
80wt% glycerol feed, 250 °C, 500 psig, H ₂ :glycerol = 4:1,			
WHSV = 3.77 h^{-1} , and TOS of 24 h)	57		

- A1 By-product of CuZnO/Al₂O₃ on 10 h TOS. analyzed by a
 GC-TOF 65
 A2 Retention times and response factors of standard chemicals
- analyzed by a GC/FID (Agilent GC 6890) 66

LIST OF FIGURES

FIGURE

PAGE

2.1	Structure of glycerol.	4
2.2	Overall reaction for production of biodiesel through	
	vegetable oil methanolysis.	5
2.3	Commodity chemicals from glycerol.	6
2.4	Different routes to 1,3-propanediol starting from ethene,	
	propene or glycerol.	9
2.5	Comparison of the reaction routes to 1,2-propanediol	
	starting from propene or glycerol.	10
2.6	Reaction mechanism for conversion of glycerol to	
	propylene glycol.	11
2.7	Possible reaction routes for catalytic hydrogenolysis of	
	glycerol.	12
2.8	Proposed reaction mechanism for conversion of glycerol	
	to propylene glycol.	14
2.9	Reaction scheme of glycerol hydrogenolysis and	
	degradation reactions.	15
2.10	Proposed bifunctional glycerol hydrogenolysis reaction	
	pathways.	16
2.11	Reaction route for the hydrogenolysis of glycerol to	
	glycols.	17
2.12	Hydrogenolysis of glycerol to 1,2-PDO.	19
2.13	Time scale of deactivation of various catalytic processes.	20
2.14	Major types of deactivation in heterogeneous catalysis.	21
2.15	Conceptual model of poisoning by sulfur atoms of a	
	metal surface during ethylene hydrogenation.	23
2.16	Three kinds of poisoning behavior in terms of normalized	
	activity vs. normalized poison concentration.	24

FIGURE

2.17	Two conceptual models for crystallite growth due to	
	sintering by (A) atomic migration or (B) crystallite	
	migration.	25
3.1	Flow diagram of the system used for dehydroxylation of	
	glycerol	32
4.1	Pore size distribution of different catalysts compared to	
	its support obtained for the support and the catalysts a)	
	CuZnO/Al ₂ O ₃ , b) CuZnO/ASA, c) CuZnO/MgO, d)	
	CuZnO/HT, and e) regenerated CuZnO/MgO	37
4.2	XRD patterns of the impregnated CuZnO-based catalysts	
	with different catalyst supports.	38
4.3	TPR profiles of the CuZnO-based catalysts with different	
	catalyst supports.	40
4.4	CO2-TPD profiles of the CuZnO-based catalysts with	
	different catalyst supports.	41
4.5	Plot of glycerol conversion as a function of time on	
	stream the CuZnO-based catalysts at different catalyst	
	supports (Reaction conditions: 80wt% glycerol feed, 250	
	°C, 500 psig, H_2 :glycerol = 4:1, and WHSV = 3.77 h ⁻¹).	43
4.6	Plot of selectivity to propylene glycol as a function of	
	time on stream with the CuZnO-based catalysts at	
	different catalyst supports (Reaction conditions: 80wt%	
	glycerol feed, 250 °C, 500 psig, H_2 :glycerol = 4:1, and	
	$WHSV = 3.77 h^{-1}$).	43
4.7	Plot of selectivity to acetol intermediate as a function of	
	time on stream with the CuZnO-based catalysts at	
	different catalyst supports (Reaction conditions: 80wt%	
	glycerol feed, 250 °C, 500 psig, H_2 :glycerol = 4:1, and	
	$WHSV = 3.77 h^{-1}$).	44

PAGE

FIGURE

4.8	The glycerol conversion mechanism.	45
4.9	TPO profiles of the spent CuZnO-based catalysts at	
	different catalyst supports after 24 h TOS (Reaction	
	conditions: 80wt% glycerol feed, 250 °C, 500 psig,	
	H_2 :glycerol = 4:1, and WHSV = 3.77 h ⁻¹).	46
4.10	Plot of glycerol conversion as a function of time on	
	stream over $CuZnO/Al_2O_3$ on different impurities in the	
	glycerol feedstock (Reaction conditions: 80wt% glycerol	
	feed, 250 °C, 500 psig, H_2 :glycerol = 4:1, and WHSV =	
	3.77 h ⁻¹).	47
4.11	Plot of selectivity to propylene glycol as a function of	
	time on stream over CuZnO/Al ₂ O ₃ on different impurities	
	in the glycerol feedstock (Reaction conditions: 80wt%	
	glycerol feed, 250 °C, 500 psig, H_2 :glycerol = 4:1, and	
	$WHSV = 3.77 h^{-1}$).	48
4.12	Plot of selectivity to acetol intermediate as a function of	
	time on stream over $CuZnO/Al_2O_3$ on different impurities	
	in the glycerol feedstock (Reaction conditions: 80wt%	
	glycerol feed, 250 °C, 500 psig, H_2 :glycerol = 4:1, and	
	$WHSV = 3.77 h^{-1}$).	48
4.13	TPO profiles of CuZnO/ Al_2O_3 on different impurities in	
	the glycerol feedstock after 24 h TOS (Reaction	
	conditions: 80wt% glycerol feed, 250 °C, 500 psig,	
	H_2 :glycerol = 4:1, and WHSV = 3.77 h ⁻¹).	50
4.14	Plot of glycerol conversion as a function of time on	
	stream over CuZnO/MgO on different impurities in the	
	glycerol feedstock (Reaction conditions: 80wt% glycerol	
	feed. 250 °C, 500 psig, H_2 :glycerol = 4:1, and WHSV =	
	3.77 h).	51

FIGURE

4.15	Plot of selectivity to propylene glycol as a function of	
	time on stream over CuZnO/MgO on different impurities	
	in the glycerol feedstock (Reaction conditions: 80wt%	
	glycerol feed, 250 °C, 500 psig, H_2 :glycerol = 4:1, and	
	$WHSV = 3.77 h^{-1}$).	52
4.16	Plot of selectivity to acetol intermediate as a function of	
	time on stream over CuZnO/MgO on different impurities	
	in the glycerol feedstock (Reaction conditions: 80wt%	
	glycerol feed, 250 °C, 500 psig, H ₂ :glycerol = 4:1, and	
	$WHSV = 3.77 h^{-1}$).	52
4.17	TPO profiles of CuZnO/MgO on different impurities in	
	the glycerol feedstock after 24 h TOS (Reaction	
	conditions: 80wt% glycerol feed, 250 °C, 500 psig,	
	H_2 :glycerol = 4:1, and WHSV = 3.77 h ⁻¹).	54
4.18	Coke profile of CuZnO/MgO as a function of time on	
	stream (Reaction conditions: 80wt% glycerol feed, 250	
	°C, 500 psig, H_2 :glycerol = 4:1, and WHSV = 3.77 h ⁻¹).	55
4.19	Plot of glycerol conversion as a function of time on	
	stream of the fresh and regenerated CuZnO/MgO	
	catalysts (Reaction conditions: 80wt% glycerol feed, 250	
	°C, 500 psig, H_2 :glycerol = 4:1, and WHSV = 3.77 h ⁻¹).	56
4.20	Plot of selectivity to propylene glycol as a function of	
	time on stream of the fresh and regenerated CuZnO/MgO	
	catalysts (Reaction conditions: 80wt% glycerol feed, 250	
	°C, 500 psig, H ₂ :glycerol = 4:1, and WHSV = 3.77 h^{-1}).	56
4.21	Plot of selectivity to acetol intermediate as a function of	
	time on stream of the fresh and regenerated $CuZnO/MgO$	
	catalysts (Reaction conditions: 80wt% glycerol feed, 250	
	°C, 500 psig, H ₂ :glycerol = 4:1, and WHSV = 3.77 h^{-1}).	57

PAGE

FIGURE

4.22	TPO profiles of the fresh and regenerated CuZnO/MgO	
	catalysts after 24 h TOS (Reaction conditions: 80wt%	
	glycerol feed, 250 °C, 500 psig, H_2 :glycerol = 4:1, and	
	WHSV = $3.77 h^{-1}$).	58
4.23	XRD patterns of the fresh and regenerated CuZnO/MgO	
	catalysts.	59
4.24	TPR profiles the fresh and regenerated CuZnO/MgO	
	catalysts.	59
Al	Chromatogram of $CuZnO/Al_2O_3$ on 10 h TOS. analyzed	
	by a GC/FID (Agilent GC 6890).	65