REFERENCES - Alhanash, A., Kozhevnikova, F.E., Kozhevnikov, I.V., (2008) Hydrogenolysis of glycerol to propanediol over Ru: polyoxometalate bifunctional catalyst. <u>Catalysis Letters</u>, 120, 307–311. - Auttanat, T. (2012) Dehydroxylation of Glycerol to Propylene Glycol over Cu-ZnO/Al₂O₃ Catalyst: Effect of Feed Purity. M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand. - Behr, A., Eilting, J., Irawadi, K., Leschinski, J., and Lindner, F. (2008) Improved utilisation of renewable resources: New important derivatives of glycerol. <u>Green Chemistry</u>, 10(1), 13–30. - Behrens, M., Studt, F., Kasatkin, I., Kühl, S., Hävecker, M., Abild-Pedersen, F., Zander, S., Girgsdies, F., Kurr, P., Kniep, B.-L., Tovar, M., Fischer, R. W., Nørskov, J. K., and Schlögl, R. (2012) The Active Site of Methanol Synthesis over Cu/ZnO/Al₂O₃ Industrial Catalysts Science, 336, 893-897. - Chaminand, J., Djakovitch, L., Gallezot, P., Marion, P., Pinel C., and Rosier, C. (2004) Glycerol hydrogenolysis on heterogeneous catalyst. <u>Green Chemistry</u>, 6, 359–361. - Che, T.M. and Westfield, N.J. (1987) Production of propanediols. U.S. <u>Patent</u>, 4,642,394. - Dimian, A.C. and Rothenberg, G. (2012) Production of fatty acid alkyl esters. European <u>Patent</u>, 2,457,648,A1. - Chirddilok, I. (2009) Dehydroxylation of glycerol to propylene glycol over copper/zinc oxide-based catalysts: Effect of catalyst preparation. M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand. - Chiu, C. (2006) Catalytic conversion of glycerol to proptlene glycol: Synthesis and technology assessment. Ph.D. Dissertation, The Faculty of the Graduate School, University of Missouri Columbia, USA. - Dasari, M.A. (2006) Catalytic conversion of glycerol and sugar alcohols to value—added products. Ph.D. Dissertation, The Faculty of the Graduate School, University of Missouri Columbia, USA. - Dasari, M.A., Kiatsimkul, P., Sutterlin, W.R., and Suppes, G.J. (2005) Low-pressuse hydrogenolysis of glycerol to propylene glycol. <u>Applied Catalysis</u> A: Genaral, 281(1-2), 225–231. - Delahay, G., Coq, B., Broussous, L. (1997) Selective catalytic reduction of nitrogen monoxide by decane on copper-exchanged beta zeolites. <u>Applied Catalysis B:</u> Environmental 12, 49-59. - Drent, E. and Jager, W.W. (2000) Hydrogenolysis of glycerol. U.S. <u>Patent</u>, 6,080,898. - El-Molla, S.A. (2005) Dehydrogenation and Condensation in Catalytic Conversion of iso-Propanol over CuO/MgO System Doped with Li₂O and ZrO₂, 9th International Electronic Conference on Synthetic Organic Chemistry, Chemistry Department, Faculty of Education, Ain Shams University, Cairo, Egypt. - El-Shobaky, H.G., Mokhtar, M., and El-Shobaky, G.A. (1999). Physicochemical surface and catalytic properties of CuO–ZnO/Al₂O₃ system. <u>Applied Catalysis A: Genaral</u>, 180(1-2), 335–344. - Ertl, G., Knözinger, H., and Weitkamp, J. (1999) Preparation of Solid Catalysis. Weinheim: Wiley-VCH. - Feng, J., Fu, H., Wang, J., Li, R., Chen, H., and Li, X. (2008) Hydrogenolysis of glycerol to glycols over ruthenium catalysts: Effect of support and catalyst reduction temperature. Catalysis Communications, 9(6), 1458–1464. - Fogler, H.S. (2006) Elements of Chemical Reaction Engineering. United States: Pearson Education. - Guo, X, Mao, D., Lu, G., Wang, S., Wu, G. (2011) CO₂ hydrogenation to methanol over Cu/ZnO/ZrO₂ catalysts prepared via a route of solid-state reaction. Catalysis Communications, 12, 1095–1098 - Kenar, J.A. (2007) Glycerol as a platform chemical: Sweet opportunities on the horizon. Lipid Technology, 19(11), 249–253. - Li, L., Wen, X., Fu, X., Wang, F., Zhao, N., Sun, Y. (2010) MgO/Al₂O₃ Sorbent for CO₂ Capture. Energy Fuels, 24, 5773–5780 - Maris, E.P., Davis, R.J. (2007) Hydrogenolysis of glycerol over carbon-supported Ru and Pt catalysts. Journal of Catalysis. 249, 328–337. - Maris, E.P., Ketchie, W.C., Murayama, M., Davis, R.J. (2007) Glycerol hydrogenolysis on carbon-supported PtRu and AuRu. <u>Journal of Catalysis</u>, 251, 281–294. - Miyazawa, T., Koso, S., Kunimori K., and Tomishige, K. (2007) Glycerol hydrogenolysis to 1,2-propanediol catalyzed by a heat-resistant ion-exchange resin combined with Ru/C. <u>Applied Catalysis A: General</u>, 329(1), 30–35. - Miyazawa, T., Kusunoki, Y., Kunimori, K., and Tomishige, K. (2006) Glycerol conversion in the aqueous solution under hydrogen over Ru/C + an ion-exchange resin and its reaction mechanism. <u>Journal of Catalysis</u>, 240(2), 213–221. - Montassier, C., Me'ne'zo, J.C., Hoang, L.C., Renaud, J., and Barbier, J. (1991) Aqueous polyol conversions on ruthenium and on sulfur-modified ruthenium. Journal of Molecular Catalysis, 70(1), 99–110. - Pagliaro, M., Rossi, M., Clark, J.H. and Kraus, G.A. (2010) <u>The Future of Royal</u> Society of Chemistry <u>Glycerol</u>, 1-2. - Pakhomov, N.A., and Buyanov, R.A. (2005) Current trends in the improvement and development of catalyst preparation methods. <u>Kinetics and Catalysis</u>, 46(5), 669–683. - Panyad, S., Jongpatiwut, S., Sreethawong, T., Rirksomboon, T., and Osuwan S. (2011) Catalytic dehydroxylation of glycerol to propylene glycol over Cu–ZnO/Al₂O₃ catalysts: Effects of catalyst preparation and deactivation. Catalysis Today, 174, 59–64 - Raton, B. (2006) CRC Handbook of Chemistry and Physics, 87th ed, the United States of America: CRC press Taylor & Francis Group. - Schlaf, M., Ghosh, P., Fagan, P. J., Hauptman, E., and Bullock, R.M. (2001) Metal-catalyzed selective deoxygenation of diols to alcohols. <u>Angewandte Chemie International Edition</u>, 40, 3887–3890. - Schüth, F., and Unger, K. (1997) Preparation and Coprecipitation, <u>Handbook of</u> Heterogeneous Catalysis. New York: Wiley-VCH. - Sitthisa, S. (2007) Dehydroxylation of glycerol for propanediols production. M.S. Thesis, The Petroleum and Petrochemaical College, Chulalongkorn University, Bangkok, Thailand. - Slater, J. C. (1964) "Atomic Radii in Crystals". <u>Journal of Chemical Physics</u>, 41 (10), 3199-3205. - Swangkotchakorn, C. (2008) Dehydroxylation of glycerol for propanediols production: Catalytic activity and stability Testing. M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand. - Tang, Y., Liu, Y., Zhu, P., Xue, Q., Chen, L., Lu, Y. (2009) High-Performance HTLcs-Derived CuZnAl Catalysts for Hydrogen Production via Methanol Steam Reforming. AIChE Journal, 55, 1217-1229 - Wan, Y., Wang, X., Sun, H., Li, Y., Zhang, K., Wu, Y. (2012) Corrosion Behavior of Copper at Elevated Temperature. <u>International Journal of Electrochemcal</u> Science, 7, 7902 7914 - Wang, S. and Liu, H. (2007) Selective hydrogenolysis of glycerol to propylene glycol on Cu–ZnO catalysts. <u>Catalysis Letters</u>, 117(1–2), 62–67. - Yuan, Z., Wu, P., Gao, J., Lu, X., Hou, Z., Zheng, X. (2009) Pt/solid-base: a predominant catalyst for glycerol hydrogenolysis in a base-free aqueous solution. Catalysis Letters, 130, 261–265. - Yuan, Z., Wang, J., Wang, L., Xie, W., Chen, P., Hou, Z. (2010) Biodiesel derived glycerol hydrogenolysis to 1,2-propanediol on Cu/MgO catalysts. Bioresource Technology, 101, 7088–7092 - Zheng, Y., Chen, X., and Shen, Y. (2008) Commodity Chemicals Derived from Glycerol, an Important Biorefinery Feedstock. <u>Chemical Reviews</u>, 108, 5253–5277 - Zhou, C., Beltramini, J.N., Fana, Y., and Lu., G.Q. (2008) Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. <u>Chemical Society Reviews</u>, 37, 527–549. ### **APPENDIX** # Appendix A Product Analysis The chemical products of CuZnO/Al₂O₃ on 10 h TOS were analyzed by gas chromatograph equipped with an FID detector (Agilent 6890) to identify peaks of compositions of feedstocks, intermediates, and products. A chromatogram of glycerol dehydroxylation to propylene glycol analyzed is shown in figure A1. Moreover, other by-products were analysed by GC-TOF, as shown in table A1. **Figure A1** Chromatogram of CuZnO/Al₂O₃ on 10 h TOS. analyzed by a GC/FID (Agilent GC 6890) **Table A1** By-product of CuZnO/Al₂O₃ on 10 h TOS. analyzed by a GC-TOF | Name | Formula | Similarity | |-------------------|---------------------------------|------------| | Acetone | C ₃ H ₆ O | 685 | | Methyl Alcohol | CH ₄ O | 897 | | Benzene | C ₆ H ₆ | 898 | | Isopropyl Alcohol | C ₃ H ₈ O | 814 | | Ethanol | C ₂ H ₆ O | 744 | | 1-Propanol | C ₃ H ₈ O | 866 | | 2,3-Hexanedione | $C_6H_{10}O_2$ | 870 | | Name | Formula | Similarity | |-------------------------------------|---------------------------------|------------| | Cyclohexanone | $C_6H_{10}O$ | 854 | | 3-Methylcyclopentanone | $C_6H_{10}O$ | 836 | | 4-Penten-2-ol | $C_5H_{10}O$ | 745 | | Acetol | $C_3H_6O_2$ | 891 | | 3-Pentanol | $C_5H_{12}O$ | 760 | | Butanoic acid, 2-propenyl ester | $C_7H_{12}O_2$ | 768 | | 2-Hydroxy-3-pentanone | $C_5H_{10}O_2$ | 820 | | 2-methy-Cyclopenten-1-one | C ₆ H ₈ O | 872 | | 5-hydroxy-4-octanone | $C_8H_{16}O_2$ | 809 | | 4-Penten-2-ol | $C_5H_{10}O$ | 700 | | 5-Hydroxy-4-octanone | $C_8H_{16}O_2$ | 792 | | Acetic acid | $C_2H_4O_2$ | 810 | | 1-hydroxy,propan-2-one | $C_3H_6O_2$ | 750 | | Propylene Glycol | $C_3H_8O_2$ | 769 | | Propanoic acid, 1-methylethyl ester | $C_6H_{12}O_2$ | 744 | | 5-Hydroxy-4-octanone | $C_8H_{16}O_2$ | 715 | | RS-2,3-hexanediol | $C_6H_{14}O_2$ | 780 | | Glycerin | $C_3H_8O_3$ | 895 | | n-Caproic acid vinyl ester | $C_8H_{14}O_2$ | 746 | The chemical standards were analysed by GC/FID detector (Agilent 6890) to identify peaks of compositions of feedstocks, intermediates, and products. The retention time and response factor for the standards are shown in Table A2. **Table A2** Retention times and response factors of standard chemicals analyzed by a GC/FID (Agilent GC 6890) | Standard chemical | Retention time (min) | Response factor | |-------------------|----------------------|-----------------| | Hexane | 1.43 | 1.00 | | Acetone | 2.50 | 0.35 | | Methanol | 3.78 | 0.13 | | 2-propanol | 4.57 | 0.37 | | Ethanol | 4.74 | 0.26 | | 1-propanol | 7.65 | 0.42 | | Acetol | 13.30 | 0.54 | | Propylene glycol | 18.07 | 0.27 | | Ethylene glycol | 18.60 | 0.16 | | Glycerol | 27.73 | 0.25 | ### **CURRICULUM VITAE** Name: Ms. Natcha Wongpraphairoat **Date of Birth:** December 13th, 1987 Nationality: Thai ## **University Education:** 2006–2010 Bachelor Degree of Science, Faculty of Science, ChulalongkornUniversity, Bangkok, Thailand ## Work Experience: 2010–2011 Position: Power Plant Operator Company: National Power Supply Public Company Limited, Prachinburi, Thailand. ### **Presentations:** - Wongpraphairoat, N.; Jongpatiwut, S. and Rirksomboon, T. (2013, April 11) Catalytic Conversion of Glycerol to Propylene Glycol over Copper/Zinc Oxide-based Catalysts: Effect of Catalyst Supports. <u>Poster presented at FineCat 2013</u> Symposium on Heterogeneous Catalysis for Fine Chemicals, Palermo, Italy. - Wongpraphairoat, N.; Jongpatiwut, S. and Rirksomboon, T. (2013, April 11) Catalytic Conversion of Glycerol to Propylene Glycol over Copper/Zinc Oxide-based Catalysts: Effect of Catalyst Supports. Proceedings of the 4th Research Symposium on Petrochemicals and Materials Technology and the 19th PPC Symposium on Petroleum, Petrochemicals, and Polymers, Ballroom, Queen Sirikit National Convention Center, Bangkok, Thailand.