SYNTHESIS AND APPLICATIONS OF M-MCM-48 (M = Ti, Ce, AND Cr) FROM SILATRANE PRECURSOR

8

Rujirat Longloilert

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University

2013

128372906

561052

Thesis Title:	Synthesis and Applications of M-MCM-48 ($M = Ti$, Ce, and
	Cr) from Silatrane Precursor
By:	Rujirat Longloilert
Program:	Polymer Science
Thesis Advisor:	Assoc. Prof. Sujitra Wongkasemjit

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Doctor of Philosophy.

..... College Dean (Asst. Prof. Pomthong Malakul)

Thesis Committee: !....

(Asst. Prof. Pomthong Malakul)

(Assoc. Prof. Sujitra Wongkasemjit)

Thauyalak Chaisu-

(Asst. Prof. Thanyalak Chaisuwan)

apour

(Assoc. Prof. Apanee Luengnaruemitchai)

B. Am

(Asst. Prof. Bussarin Ksapabutr)

ABSTRACT

5192001063: Polymer Science Program
Rujirat Longloilert: Synthesis and Applications of M-MCM-48
(M = Ti, Ce, and Cr) from Silatrane Precursor
Thesis Advisor: Assoc. Prof. Sujitra Wongkasemjit, 111 pp.
Keywords: MCM-48/ Silatrane/ Truncated Octahedral/ Oxidation of Styrene

Hydrothermal synthesis of cubic MCM-48 was carried out using silatrane as a silica precursor and CTAB as a structure directing agent. The effects of synthesis parameters, viz. crystallization temperature, crystallization time, surfactant concentration, quantity of NaOH, and silica source, on the product structure were investigated. To examine the properties of the synthesized materials, various techniques were introduced, viz. X-ray diffraction (XRD), nitrogen adsorptiondesorption measurement, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and surface area analysis. A high specific surface area and narrow pore size distribution were obtained. The materials showed a truncated octahedral shape and cubic *Ia3d* symmetry of pore structure. To improve the catalytic property of mesoporous silica the incorporation of metals (M =Cr, Ce and Ti) was studied, using the optimal synthesis of MCM-48 conditions. Both framework and extraframework of the metals were investigated by diffuse reflectance UV-visible spectroscopy (DR-UV). The catalytic performance of all materials was performed on the oxidation of styrene using hydrogen peroxide as an oxidant. The optimal conditions were studied as a function of reaction time, reaction temperature, ratio of oxidant/styrene, amount of catalyst, and metal content. The % conversion of styrene and the % selectivity of products depended on the nature of the metal loading. Additionally, the kinetic study of Cr-MCM-48 catalysts toward the styrene oxidation was also investigated.

บทคัดย่อ

รุจิรัตน์ ล่องลอยเลิศ: การสังเคราะห์ และการประยุกต์ M-MCM-48 (M = Ti, Ce, and Cr) จากสารตั้งด้นไซลาเทรน (Synthesis and Applications of M-MCM-48 (M = Ti, Ce, and Cr) from Silatrane Precursor) อ. ที่ปรึกษา: รองศาสตราจารย์ คร. สุจิตรา วงศ์เกษมจิตต์ 111 หน้า

มีการศึกษาการสังเคราะห์MCM-48 ที่มีลักษณะโครงสร้างแบบลูกเต๋าด้วยกระบวนการ ให้ความร้อนโดยใช้ไซลาเทรนเป็นสารตั้งค้นซิลิกา และใช้ CTAB เป็นสารแม่แบบ ผลกระทบ ของตัวแปรต่างๆมิต่อการสังเคราะห์และโครงสร้างของผลิตภัณฑ์ ได้แก่ อุณหภูมิ และเวลาที่ใช้ใน การสร้างเป็นผลึก, ความเข้มข้นของสารลดแรงตึงผิว, ปริมาณ โซเดียมไฮครอกไซด์ และชนิดของ ซิลิกา การศึกษาสมบัติต่างๆของวัสดุที่สังเคราะห์ได้นั้น ใช้เทคนิคการวิเคราะห์ต่างๆ เช่น เอ็กซเรย์คิฟแฟรกชัน, เครื่องมือวิเคราะห์พื้นที่ผิว และกล้องจุลทรรศน์อิเลคตรอนทั้งแบบส่องผ่าน และแบบส่องกราด ซึ่งพบว่าสารมีพื้นที่ผิวสูงและการกระจายตัวของขนาดรูพรุนน้อย อีกทั้งยังพบ ลักษณะรูปร่างเป็นแบบ truncated octahedral และลักษณะโครงสร้างของรูพรุนสมมาตรแบบ ้คิวบิกชนิด Ia3d การเพิ่มโลหะต่างๆ เข้าไปในโครงสร้างซิลิกาที่มีรูพรุนขนาดกลาง นับว่าเป็น สิ่งจำเป็นสำหรับการปรับปรุงสมบัติของสารในการเป็นตัวเร่งปฏิกิริยา ในการศึกษานี้ได้ใส่โลหะ โครเมียม, ซีเรียม, และ ไททาเนียม เพิ่มเข้าไปในวัสดุ MCM-48 โดยใช้สภาวะที่เหมาะสมจากการ สังเคราะห์ MCM-48 มาใช้ และศึกษาปริมาณของโลหะที่ใส่เพิ่มเข้าไปอีกด้วย นอกจากมีการ พิสูงน์เอกลักษณ์ทางโครงสร้างของโลหะในซิลิกา ทั้งที่อยู่ในโครงสร้างและนอกโครงสร้างโดย ใช้เครื่องวิเคราะห์ตัวอย่างที่เป็นของแข็งด้วยรังสียูวียังมีการศึกษาประสิทธิภาพในการเร่งปฏิกิริยา ของวัสดุทั้งหมดที่สังเคราะห์ได้ โดยศึกษาปฏิกิริยาออกซิเดชันของสไตรีน มีไฮโดรเงนเปอร์ ออกไซด์เป็นตัวออกซิไคซ์ และศึกษาสภาวะที่เหมาะสมของปฏิกิริยา ผลของเวลาและอุณหภูมิที่ ใช้ในการทำปฏิริยา, สัคส่วนของตัวออกซิไคซ์ต่อสไตรีน, ปริมาณของตัวเร่งปฏิกิริยา และ ปริมาณของโลหะ จากการศึกษาพบว่า เปอร์เซ็นต์ความสามารถในการเปลี่ยนสไตรีน และ เปอร์เซ็นต์ความเลือกจำเพาะของผลิตภัณฑ์ขึ้นอยู่กับลักษณะพื้นฐานของโลหะแต่ละชนิดที่ใส่เข้า ้ไปจลนศาสตร์ของปฏิกิริยาออกซิเคชันของสไตรีนจากการใช้โครเมียม-MCM-48 เป็นตัวเร่ง ปฏิกิริยาถูกศึกษาในงานวิจัยนี้ด้วย

ACKNOWLEDGEMENTS

Firstly, I would like to express my deep sense of thankfulness to my research advisor, Assoc. Prof. Sujitra Wongkasemjit, for giving me the opportunities to work in her group. I am deeply grateful for her valuable advice, encouragement, motivation, and experienced guidance. Besides the academic suggestion, she also recommended life philosophy and personality development.

I would like to sincerely thank one of my research committees, Asst. Prof. Thanyalak Chaisuwan who guided and supported me throughout studying Ph.D. program. I wish special thank her for the helpful discussion she gave me.

A deep gratitude is expressed to Prof. Ram Seshadri for being a very nice overseas guidance during my internship at UCSB (University of California, Santa Barbara). He gave me not only the opportunities to experience doing a research in his group, but also the creative guidance. I had great experience and good memories throughout my stay in California, USA.

I would like to express my appreciation to the Ph.D. scholarship from the Royal Golden Jubilee Ph.D. Program (PHD/0008/2551), the Thailand Research Fund for the financial support.

Special thanks go to all the SW's group members, PPC and UCSB friends for their kindness, helpfulness and encouragement. I also extend my appreciation to all PPC staffs for their helpfulness and great contributions throughout my study.

Lastly, I wish to convey my deepest gratitude to my parents for their understanding, endless love, and unequivocal support through my life, and dedicate this dissertation to them.

TABLE OF CONTENTS

	PAGE
Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	V
Table of Contents	vi
List of Tables	ix
List of Figures	xi
Abbreviations	xvi

CHAPTER

I	INTRODUCTION	1
II	THEORITICAL BACKGROUND AND LITERATURE	
	SURVEYS	3
III	SYNTHESIS OF MCM-48 FROM SILATRANE VIA	
	SOL-GEL PROCESS	10
	3.1 Abstract	10
	3.2 Introduction	11
	3.3 Experimental	12
	3.4 Results and Discussion	13
	3.5 Conclusions	21
	3.6 Acknowledgements	21
	3.7 References	22

IV	SYNTHESIS AND CHARACTERIZATION OF	
	M-MCM-48 (M = Cr, Ce) FROM SILATRANE VIA	
	SOL-GEL PROCESSREMOVAL	38
	4.1 Abstract	38
	4.2 Introduction	39
	4.3 Experimental	40
	4.4 Results and Discussion	42
	4.5 Conclusions	49
	4.6 Acknowledgements	49
	4.7 References	50

VSYNTHESIS, CHARACTERIZATION, AND CATALYTICPERFORMANCE OF Ti-MCM-48 FROM SILATRANE665.1 Abstract665.2 Introduction67

5.3	Experimental	68
5.4	Results and Discussion	69
5.5	Conclusions	72
5.6	Acknowledgements	72
5.7	References	73

VI	CATAYTIC ACITIVITY OF STYRENE OXIDATION	
	OVER Cr-MCM-48 AND Ce-MCM-48	84
	6.1 Abstract	84
	6.2 Introduction	85
	6.3 Experimental	86

	6.4 Results and Discussion	87
	6.5 Conclusions	91
	6.6 Acknowledgements	91
	6.7 References	92
VII	CONCLUSIONS AND RECOMMENDATIONS	103
	REFERENCES	105
	CURRICULUM VITAE	110

LIST OF TABLES

TABLE		PAGE		
	CHAPTER III			
3.1	The characteristics of the calcined samples prepared at			
	140 °C with different crystallization time (16h, 20, and 24 h)			
	using molar gel composition of			
	SiO ₂ :0.65CTAB:0.5NaOH:62H ₂ O	27		
3.2	The characteristics of the calcined samples synthesized with			
	the different CTAB/SiO ₂ ratios	28		
3.3	The effect of the alkalinity on the physical characteristics of			
	a calcined MCM-48	29		

CHAPTER IV

4.1	The unit cell parameter (a_0 , calculated by $a_0 = d_{211}(6)^{1/2}$) and	
	the d spacing of all synthesized samples with different	
	chromium and cerium contents	54
4.2	The characteristics of the calcined samples with a molar gel	
	composition of 1.0SiO ₂ :0.3CTAB:0.50NaOH:62.0H ₂ O:xCr	
	or yCe, where $0 \le x \le 0.01$ and $0 \le y \le 0.09$ (a ₀ was	
	calculated by $d_{211}(6)^{1/2}$ and wall thickness was calculated by	
	$a_0/3.0919 - pore diameter/2)$	55

TABLE

CHAPTER V

5.1	The characteristics of the calcined samples with a molar gel	
	composition of 1.0SiO ₂ :0.3CTAB:0.50NaOH:62.0H ₂ O:xTi	
	where $0.01 \le x \le 0.07$	76
5.2	Catalytic performances for the oxidation of styrene using	
	MCM-48 and Ti-MCM-48-x ($x = Ti/Si$ ratio)	77

CHAPTER VI

6.1	The catalytic activity results toward the oxidation of styrene	
	using Cr-MCM-48-0.005 and Cr-MCM-48-0.01	94
6.2	The rate constants calculated from linear least squares	
	method of the two-step and the three-step mechanisms using	
	Cr-MCM-48-0.005 and Cr-MCM-48-0.01 as catalysts	95
6.3	The catalytic activity results toward the oxidation of styrene	
	using Ce-MCM-48 catalysts with the reaction conditions of	
	80° C, 1:1 of H ₂ O ₂ /styrene ratio, and 6h	96

LIST OF FIGURES

FIGURE

4

CHAPTER II

2.1 Cubic unit cell of MCM-48 with two independent micelle systems (red and blue rods) separated by the pore wall (upper). The bottom represents the 2x4 cubic unit cells without the pore walls and two independent rod micelle systems (red and blue) moving towards the [100] direction [Meynen V. et al., 2009].

CHAPTER III

3.1	XRD-patterns of (a) the as-synthesized samples and (b) the	
	calcined samples prepared at 140 °C for 12,16, 20 and 24 h.	30
3.2	N ₂ -adsorption and desorption isotherms of the calcined	
	samples prepared at 140 °C for 16, (b) 20, and (c) 24 h. The	
	inset shows the BJH pore size distribution of calcined	
	sample (a) calculated from the desorption branch of	
	isotherm.	31
3.3	XRD-patterns of the calcined samples prepared at 140 °C for	
	16 h with molar gel composition of	
	SiO ₂ :xCTAB:0.5NaOH:62H ₂ O, where $0.15 \le x \le 0.65$.	32
3.4	N ₂ -adsorption and desorption isotherms and pore size	
	distribution (inset) of the calcined samples prepared at	
	140 °C for 16 h with molar gel composition of	
	SiO ₂ :0.3CTAB:0.5NaOH:62H ₂ O.	33

FIGURE

3.5	(a) XRD-patterns and (b) N_2 -adsorption and desorption		
	isotherms of the calcined samples prepared at 140 °C for		
	16 h with molar gel composition of		
	SiO ₂ :0.3CTAB:yNaOH:62H ₂ O, where y is <i>a</i> 0.45, <i>b</i> 0.5, and		
	<i>c</i> 0.55.	34	
3.6	(a-c) FE-SEM images of MCM-48 synthesized with a molar		
	gel composition of SiO ₂ :0.3CTAB:0.5NaOH:62H ₂ O at		
	140 °C for 16 h. (d) Schematic representation of the gyroid		
	surface according to space group <i>Ia3d</i> divides a regular		
	truncated octahedron in two, cutting six of the eight		
	hexagonal faces [44].	35	
3.7	FE-SEM images of MCM-48 synthesized with a molar gel		
	composition of SiO ₂ :0.65CTAB:0.5NaOH:62H ₂ O at 140 °C		
	for (a) 24, (b) 20, (c) 16 (x5000), and (d) 16 h (x10000).	36	
3.8	TEM images of MCM-48 synthesized with a molar gel		
	composition of SiO ₂ :0.3CTAB:0.5NaOH: 62H ₂ O at 140 °C		
	for 16 h with incident direction along (a) [110] and (b) [111].	37	

CHAPTER IV

4.1	The XRD patterns of the calcined Cr-MCM-48 samples with	
	different Cr contents over the range of (a) 2 theta = $2^{\circ}-8^{\circ}$	
	and (b) 2 theta = $10^{\circ}-60^{\circ}$.	56
4.2	The XRD patterns of the calcined Ce-MCM-48 samples with	
	different Ce contents over the range of (a) 2 theta = $2^{\circ}-8^{\circ}$	
	and (b) 2 theta = $10^{\circ}-60^{\circ}$.	57

PAGE

FIGURE

4.3	The N_2 adsorption and desorption isotherms and the BJH	
	pore-size distributions (calculated from desorption branch of	
	isotherm) of calcined Cr-MCM-48 with different Cr/Si ratios	
	of (a) 0, (b) 0.005 and (c) 0.01.	58
4.4	(a) The N ₂ adsorption and desorption isotherms and (b) the	
	BJH pore-size distributions (calculated from desorption	
	branch of isotherm) of calcined Ce-MCM-48 with different	
	Ce/Si ratios.	59
4.5	DR-UV-Vis spectra of calcined Cr-MCM-48 and Ce-MCM-	
	48 with different Cr/Si and Ce/Si ratios.	60
4.6	TGA plots of (a) Cr-MCM-48 and (b) Ce-MCM-48.	61
4.7	SEM images of (a) MCM-48 (x35000), (b) Cr-MCM-48	
	(0.005, x40000), (c) Cr-MCM-48 (0.01, x40000), and (d)	
	Cr-MCM-48 (0.005, x200000).	62
4.8	SEM images of Ce-MCM-48 with the Ce/Si ratio, y, of (a)	
	0.01, (b) 0.03, (c) 0.05, (d) 0.07, and (e) 0.09.	63
4.9	TEM images of Cr-MCM-48 (0.005) with incident direction	
	along (a) [100] and (b) [432]; and Cr-MCM-48-(0.01) with	
	incident direction along (c) [100] and (d) projection of [100].	64
4.10	TEM images with incident direction along (a) [531], (b)	
	[100] and (c) [111] of Ce-MCM-48-(0.01, 0.05 and 0.09),	
	respectively.	65

CHAPTER V

5.1	XRD patterns of the calcined Ti-MCM-48 samples with	
	different Ti contents, taken at (a) low-angle and (b) wide-	
	angle.	78
5.2	The N ₂ adsorption and desorption isotherms of calcined	
	Ti-MCM-48 with different Ti/Si ratios.	79
5.3	The BJH pore-size distributions (calculated from desorption	
	branch of isotherm) of the calcined Ti-MCM-48 with	
	different Ti/Si ratios.	80
5.4	DR-UV-Vis spectra of the calcined Ti-MCM-48 with	
	different Ti/Si ratios.	81
5.5	SEM images (x25000) of the calcined Ti-MCM-48 with	
	different Ti/Si ratios (a) 0.01, (b) 0.03, (c) 0.05 and (d) 0.07.	82
5.6	TEM images of the calcined Ti-MCM-48 with different	
	Ti/Si ratios and incident along directions [100] of (a) 0.01,	
	(b) 0.03, (c) 0.05, and [110] of (d) 0.07.	83
	Ti/Si ratios and incident along directions [100] of (a) 0.01,	
	(b) 0.03, (c) 0.05, and [110] of (d) 0.07.	83

CHAPTER VI

6.1	SEM images of (a) Cr-MCM-48-0.005 (x30000) and	
	(b) Cr-MCM-48-0.01(x35000).	97
6.2	SEM images of (a) Ce-MCM-48-0.01, (b) Ce-MCM-48-0.03	
	and (c) Ce-MCM-48-0.05 (x5000).	98
6.3	TEM images of (a) Cr-MCM-48-0.005 and (b) Cr-MCM-48-	
	0.01 with incident direction along [100].	99

FIGURE

PAGE

6.4	TEM images of (a) Ce-MCM-48-0.01 with incident direction	
	along [531], (b) Ce-MCM-48-0.03, (c) Ce-MCM-48-0.05	
	and (d) Ce-MCM-48-0.07 with incident direction along	
	[100].	100
6.5	The concentration of styrene as a function of time using	
	Cr-MCM-48-0.005 and Cr-MCM-48-0.01 at various reaction	
	temperatures.	101
6.6	The concentration of styrene as a function of time using	
	various H_2O_2 /styrene ratios of Cr-MCM-48-0.005 and	
	Cr-MCM-48-0.01.	102

ABBREVIATIONS

BET	Brunauer-Emmett-Teller
СТАВ	Cetyltrimethylammonium Bromide
DRUV	Diffuse Reflectance Ultraviolet Spectroscopy
EG	Ethylene Glycol
FE-SEM	Field Emission Scanning Electron Microscope
FTIR	Fourier Transform Infrared Spectroscopy
TEA	Triethanolamine
TEM	Transmission Electron Microscope
TEOS	Tetraethoxysilane
TETA	Triethylenetetramine
TGA	Thermogravimetric Analysis
XRD	X-ray Diffraction