THE STUDY OF SILK SERICIN/CLAY AEROGEL STRUCTURE

Saowanee Likitamporn

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University

2013

Thesis Title:	The Study of Silk Sericin/Clay Aerogel Structure
By:	Saowanee Likitamporn
Program:	Polymer Science
Thesis Advisors:	Assoc. Prof. Rathanawan Magaraphan

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

..... College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

R. Mayny

(Assoc. Prof. Rathanawan Magaraphan)

Thanyald Ch_

(Asst. Prof. Thanyalak Chaisuwan)

Dasa Dijen

(Dr. Orasa Onjun)

ABSTRACT

5472035063: Polymer Science Program

Saowanee Likitamporn: The Study of Silk Sericin/Clay Aerogel Structure.

Thesis Advisors: Assoc. Prof. Rathanawan Magaraphan 141 pp.Keywords:Silk sericin/ Clay aerogel/ Bentonite/ Scaffold/ Porous structure

Clay aerogel is light weight, low density and high porosity material produced from bentonite via freeze-drying technique which the morphology is suitable for several biotechnological applications including 3D scaffold. In this study, silk sericin/PVA/clay aerogel, the new material to use as scaffold for tissue engineering, was prosperously prepared. Silk sericin, the glue like protein from silk cocoon, is cooperated with clay aerogel due to the ability to enhance cell growth and cell viability. Silk sericin was extracted from 4 species of traditional Thai silk cocoon; Nang Noi, Nang Lai, Dok Bua and Luang Pairote. Nevertheless, silk sericin/clay aerogel forms fragile material. To over this problem, poly(vinyl alcohol) was employed to improve the mechanical properties. The aim of this study was to prepared silk-sericin/PVA/clay aerogel by freeze-drying technique using glutaraldehyde as cross-linked agent and studied the influence of silk sericin, clay contents, cross-linked agent and species of silk to the properties of the aerogel. The increasing of silk sericin content powerfully increased in thermal and mechanical properties. In contrast, the increasing of clay and glutaraldehyde strongly increased mechanical properties but reduced the thermal stability. Base on in vitro direct contact test and MTT assay using human gingival fibroblast cell, the silk sericin/PVA/clay aerogel can be a good candidate for 3D scaffold for tissue engineering in order to uses in periodontal disease. Additionally, silk sericin content, glutaraldehyde concentration, species of silk and variable of human cell had an influence on the cell viability and mitochondria activities.

บทคัดย่อ

เสาวนีย์ ลิขิตอัมพร : การศึกษาโครงสร้างเคลย์แอโรเจล/ผงไหมซิริซิน (The Study of Silk Sericin/Clay Aerogel Structure) อ. ที่ปรึกษา : รศ. คร. รัตนวรรณ มกรพันธุ์ 141 หน้า

เคลย์แอ โรเจลเป็นวัสดุที่มีน้ำหนักเบา ความหนาแน่นต่ำ และมีความเป็นรูพรุน ้สูง เคลย์แอโรเจลสามารถสร้างขึ้นจากการนำคินเบน โทไนต์ไปผ่านกระบวนการที่เรียนว่าการแช่ แข็งแห้ง เมื่อพิจารณาโครงสร้างของเคลย์แอโรเจลที่เกิดขึ้น โครงสร้างที่มีความพรุนสูงและรูพรุน เป็นแบบต่อเนื่องมีความเหมาะสมสำหรับการนำไปใช้ในงานทางค้านวัสคเทคโนโลยีชีวภาพ รวมถึง โครงเลี้ยงสามมิติ งานวิจัยนี้มีจุดประสงค์ในการเตรียมเคลย์แอโรเจล/ผงไหมซิริซินโคย กระบวนการแช่แข็งแห้ง เนื่องด้วยมีงานวิจัยพบว่าผงไหมซิริซินมีคุณสมบัติในการเร่งการ เงริญเติบโตทั้งในไฟโบรบลาสและออสทีโอบลาสเซลล์ เคลย์แอโรเจลชนิคใหม่นี้มุ่งหวังเพื่อ นำไปใช้เป็นโครงเลี้ยงเซลล์สามมิติเพื่อใช้สำหรับงานทางค้านวิศวกรรมเนื้อเยื่อ ม่งเน้นในการ รักษาโรคทางค้านปริทนต์ ผงไหมซิริซินถูกสกัดมาจากไหมแตกต่างสายพันธุ์ทั้งหมดสี่ชนิค คือ ้นางน้อย นางลาย คอกบัวและเหลืองไพโรจน์ เนื่องค้วยเคลย์แอโรเจล/ผงไหมซิริซินเกิคเป็นวัสคที่ มีสมบัติเชิงกลต่ำ คังนั้นพอลิไวนิลแอลกอฮอล์จึงถูกนำมาใช้เพื่อปรับปรุงสมบัติเชิงกล นอกจากนี้กลูตารัลดีไฮด์ถูกนำมาใช้เพื่อจุดประสงค์ให้เกิดการสร้างการเชื่อมขวางของผงไหมซิ ้ริซินและพอลิไวนิลแอลกอฮอล์เพื่อทำให้โครงสร้างของเคลย์แอโรเจลสามารถคงรูปอยู่ในอาหาร ้เลี้ยงเซลล์ได้ จากงานวิจัยพบว่า การเพิ่มปริมาณของผงไหมซิริซินส่งผลให้เกิดการปรับปรุง ทางด้านสมบัติเชิงกลและสมบัติทางความร้อน แต่เมื่อปริมาณของคินเบนโทไนต์และกลูตารัลคึ ้ไฮด์มากขึ้นส่งผลให้เกิดการปรับปรุงสมบัติเชิงกล แต่สมบัติทางความร้อนต่ำลง จากการศึกษาการ เจริญเติบโตของเซลล์ภายใต้สภาวะเลียนแบบร่างกายมนุษย์ โคยใช้เซลล์เหงือกจากอาสาสมัคร พบว่า เคล์แอโรเจล/ผงใหม่ซิริซินสามารถนำไปใช้เป็นโครงเลี้ยงเซลล์สามมิติทางค้านวิศวกรรม ้เนื้อเยื่อเพื่อรักษาโรคทางค้านปริทนต์ได้ โดยการเจริญเติบโตของเซลล์ขึ้นอยู่กับปริมาณของผง ใหมซิริซิน ความเข้มข้นของกลูตารัลคีไฮค์ สายพันธุ์ของใหม รวมถึงความแตกต่างของเซลล์ใน แต่ละบุคคลด้วย

ACKNOWLEDGEMENTS

This work would not have been achieved without the assistance of the following individuals.

First of all, this thesis would not be possible without sincerely acknowledging Assoc. Prof. Rathanawan Magaraphan, my research advisor for her intensive suggestions, valuable guidance, encouragement and vital help throughout research work. The author would like to gratefully thank Asst. Prof. Thanyalak Chaisuwan and Dr, Orasa Onjun for kindly serving on her thesis committees.

The author is grateful for the scholarship and funding of the thesis work provided by the Petroleum and Petrochemical College; and the National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, Thailand. The author would also thanks the National Research Council of Thailand (NRCT) and the government budget 2012 for the funding support.

Special thanks go to Prof. Somporn Swasdison for her meanuseful knowledge and recommendation on the biological testing and fundamental of dental implant and also her assistant, Mr. Somchai Yodsanga for his kindly support. Furthermore, the author greatly appreciates all of the Petroleum and Petrochemical college faculties for their beneficial knowledge and to the all of college staff for their voluntarily support and reassurance.

Finally, I would like to take this opportunity to thank all of my PPC friends and my seniors especially RM and HM groups and MS 37 friends for their great friendship, helpfulness, cheerfulness, creative suggestions and encouragement.

Finally, all of this achievement would not be accomplish if there was no supporting, understanding, encouragement and carefulness from my family.

TABLE OF CONTENTS

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	ix
List of Figures	xi
Abbreviations	xix
Symbols	XX

CHAPTER

Ι	INTRODUCTION	1
II	LITERATURE REVIEW	5
	2.1 Silk sericin	5
	2.2 Clay mineral-Sodium bentonite	14
	2.3 Tissue engineering	26
III	EXPERIMENTAL	29
	3.1 Materials	29
	3.2 Experimental Procedures	29
	3.3 Characterizations	30
IV	CHARACTERISTIC OF TRADITIONAL THAI SILK C	COCOON
COMPARISON BETWEEN NANG NOI, NANG LAI, DO		OK BUA
	AND LUANG PAIROTE SPECIES	36
	4.1 Abstract	36

	INCL
4.2 Introduction	36
4.3 Experimental	38
4.4 Results and Discussion	41
4.5 Conclusions	48
4.6 Acknowledgements	48
4.7 References	49
V SILK SERICIN/CLAY AEROGEL NANOCOMPOSITES	51
5.1 Abstract	51
5.2 Introduction	51
5.3 Experimental	53
5.4 Results and Discussion	55
5.5 Conclusions	70
5.6 Acknowledgements	70
5.7 References	71
VI PREPARATION OF SILK SERICIN/PVA/CLAY AEROG	EL
CROSSLINKED BY GLUTARALDEHYDE FOR	
BIOTECNOLOGY APPLICATION	73
6.1 Abstract	73
6.2 Introduction	74
6.3 Experimental	76
6.4 Results and Discussion	80
6.5 Conclusions	115
6.6 Acknowledgements	116
6.7 References	116
VII CONCLUSIONS AND RECOMMENDATIONS	119
REFERENCES	122

CHAPTER		P	AGE
	APPENDIC	ES	126
	Appendix A	Total amino acid composition of silk sericin from	
		four different species of Thai silk cocoon	126
	Appendix B	Thermal Stability of silk sericin/PVA/clay aerogel	129
	Appendix C	Mechanical properties of	
		silk sericin/PVA/clay aerogel	132
	Appendix D	The biotechnological test of cross-linked	
		silk sericin/PVA/clay aerogel	135
	Appendix E	The density of silk sericin/PVA/clay aerogel	139

CURRICULUM VITAE

viii

140

LIST OF TABLES

TABLE

PAGE

CHAPTER II

2.1	Amino acid composition in degumming solution compared	
	with reference sericin	6
2.2	Chemical formula and characteristic parameter of commonly	
	used 2:1 phyllosilicates	15
2.3	The initial modulus and reinforcing efficiency of	
	nanocomposites	24
2.4	Studies defining optimal pore size for bone regeneration	28

CHAPTER IV

4.1	The characteristic and background of four species of Thai	
	silk	41
4.2	Solid content of silk sericin from four species of Thai silk	
	cocoon	43
4.3	Total amino acid compositions of silk sericin from four	
	different species of Thai silk cocoons	44
4.4	Thermal stability of Thai silk sericin from four different	
	species	48

CHAPTER V

5.1	Density of silk sericin/PVA/clay aerogels with various	
	clay and silk sericin contents	57
5.2	Effect of clay contents on thermal stability of silk	
	sericin/PVA/clay aerogel	65

PAGE

5.3	Effect of silk sericin contents on thermal stability of silk	
	sericin/PVA/clay aerogel	65
5.4	Effect of clay content on mechanical properties of silk	
	sericin/PVA/clay aerogels	67
5.5	Effect of silk sericin content on mechanical properties of	
	silk sericin/PVA/clay aerogels	67

CHAPTER VI

6.1	Thermal stability of cross-linked silk sericin/PVA/clay	
	aerogels with various clay contents	91
6.2	Thermal stability of cross-linked silk sericin/PVA/clay	
	aerogels with various silk sericin contents	91
6.3	Thermal stability of uncross-linked and cross-linked silk	
	sericin/PVA/clay aerogels with various glutaraldehyde	
	contents	94
6.4	Mechanical properties of cross-linked silk sericin/PVA/clay	
	aerogels at 7 μ l/ml of GT with various silk sericin and clay	
	contents	96
6.5	Mechanical properties of cross-linked silk sericin/PVA/clay	
	aerogel with and without glutaraldehyde	98
6.6	The optical density obtained from MTT assay of the first	
	human donor as a function of silk sericin contents	110
6.7	The optical density obtained from MTT assay of the first	
	human donor as a function of GT concentrations	112
6.8	The optical density obtained from MTT assay of the first	
	human donor as a function of different species of silk	
	sericin	114
6.9	The percentage of sulfur contained in four different species	
	of Thai silk sericin	115

LIST OF FIGURES

FIGURE

PAGE

CHAPTER II

2.1	FTIR spectra of (A) sericin Dok-Bua, (B) sericin Nang-Noi,	
	(C) sericin Jul.	8
2.2	Effect of sericin and collagen on the attachment of Human	
	Skin Fibroblasts.	9
2.3	SEM images of the surfaces of sericin films prepared from	
	various solutions after soaking in the 1.5 SBF for 7 days.	10
2.4	Scanning electron microscope (SEM) photographs of porous	
	sericin material's surface. (a) Top-surface; (b) under-surface.	11
2.5	Peripheral quantitative computed tomography (pQCT)	
	images of rabbit tibiae. The squares on the images indicate	
	the sites where α -PB and α -PB/Ser were implanted for 4	
	weeks.	13
2.6	Density histograms of rabbit tibiae where α -PB and α -	
	PB/Ser were implanted for 4 weeks.	13
2.7	Diagrammatic sketch of the structure of smectites.	15
2.8	Schematically illustration of three different types of	
	achievable polymer/clay nanocomposites.	16
2.9	The effect of the incubation with different biocomposites	
	(10 mg/ml) for variable intervals 4 days (white bars), 8 days	18
2.10	(graybars), and 16 days (black bars) on the proliferation rate	
	of Saos-2cells.	18
2.11	The type of death in Saos-2 cells after being seeded with 10	
	mg/ml of cytotoxic biocomposites 1, 2, 3, and 7 for 16 days.	
	Synthesis of clay aerogels.	20
2.12	SEM image of freeze dried clay to form Clay Aerogel super	
	gallery spacing ~200µm.	20

FIGURE

2.13	The morphology formation of clay aerogel.	21
2.14	SEM micrograph of NR/3MMT.	22
2.15	Hardness results for samples prepared via slow freezing rate:	
	F2 = chitosan/xanthan gum and $MF2 = chitosan/xanthan$	
	gum/Na-MMT.	25

CHAPTER III

3.1	The schematic draw of cell cultured plate for direct contact	
	test.	34
3.2	The schematic draw presented the principle of MTT assay.	35
3.3	Schematic draw showed the seeding of the cell onto the 24-	
	wellplates for MTT assay test.	35

CHAPTER IV

4.1	Four species of Thai silk cocoons : A. Nang Noi, B. Nang	
	Lai, C. Dok Bua and D. Luang Pairote.	41
4.2	FTIR spectra of freeze-dried silk sericin extracted from four	
	species of Thai silk cocoons.	42
4.3	HPLC chromatogram of silk sericin from Nang Noi species.	45
4.4	HPLC chromatogram of silk sericin from Nang Lai species.	45
4.5	HPLC chromatogram of silk sericin from Dok Bua species.	46
4.6	HPLC chromatogram of silk sericin from Luang Pairote	
	species.	46
4.7	TGA thermograms of silk-sericin from four different species	
	of Thai silk cocoons.	47

CHAPTER V

5.1	Schematic model of the formation of silk	
	sericin/PVA/Na-bentonite aerogels.	56
5.2	The physical appearance of (a), (b) silk sericin/clay	
	aerogels, and (c), (d) silk sericin/PVA/clay aerogels.	57
5.3	FE-SEM micrographs of neat Na-MMT aerogels at 8	
	wt% of clay.	58
5.4	FE-SEM micrographs of silk sericin/PVA/clay aerogels	
	(a) C2PVA5SS1, (b) C4PVA5SS1, (c) C6PVA5 SS1 and	
	(d) C8PVA5SS1.	60
5.5	FE-SEM micrograph of C8PVA5SS1 with trapped air	
	bubbles.	60
5.6	FE-SEM micrographs of silk sericin/PVA/clay aerogels	
	(a) C6PVA5SS1, (b) C6PVA5SS2, (c) C6PVA5SS3 and	
	(d) C6PVA5SS4.	61
5.7	FE-SEM micrographs of silk sericin/PVA on the surface	
	of clay templates in C8PVA5SS2.	61
5.8	TGA thermograms of silk sericin/PVA/clay aerogels with	
	various clay contents.	63
5.9	DTG thermograms of silk sericin/PVA/clay aerogels with	
	various clay contents.	63
5.10	TGA thermograms of silk sericin/PVA/clay aerogels with	
	various silk sericin contents.	64
5.11	DTG thermograms of silk sericin/PVA/clay aerogels with	
	various silk sericin contents.	64
5.12	Stress-strain curves of silk sericin/PVA/clay aerogels	
	with various clay contents.	66
5.13	Stress-strain curves of silk sericin/PVA/clay aerogels	
	with various silk sericin contents.	67

5.14	XRD patterns of Na-bentonite, silk sericin, PVA, and silk	
	sericin/PVA/clay aerogels with various clay contents.	69
5.15	XRD pattern of silk sericin/PVA/clay aerogel with 2 theta	
	under 5°.	69

CHAPTER VI

6.1	Silk sericin/PVA/clay aerogels cross-linked by PEG-DE.	81
6.2	Silk sericin/PVA/clay-TEOS aerogels cross-linked by	
	PEG-DE.	82
63	Silk sericin/PVA/clay aerogels cross-linked by	
	glutaraldehyde.	82
6.4	Purposed cross-linked mechanism of silk sericin protein	
	by glutaraldehyde (A) Lysine and (B) Serine.	83
6.5	Purposed cross-linked mechanism of poly(vinyl alchohol)	
	by glutaraldehyde.	84
6.6	Purposed cross-linked mechanism between silk sericin	
	protein and poly(vinyl alchohol) by glutaraldehyde.	84
6.7	FTIR spectra of uncross-linked and cross-linked silk	
	sericin/PVA/clay aerogel.	85
6.8	FE-SEM micrograph of silk sericin/PVA/clay aerogels	
	cross-linked by glutaraldehyde: (a) C2PVA5SS1 7GT,	
	(b) C4PVA5SS1 0.7GT, (c) C6PVA5SS1 0.7GT and	
	(d) C8PVA5SS1 0.7GT.	86
6.9	FE-SEM micrograph of silk sericin/PVA/clay aerogels	
	cross-linked by glutaraldehyde: (a) C6PVA5SS1 0.7GT,	
	(b) C6PVA5SS2 0.7GT, (c) C6PVA5SS3 0.7GT and (d)	
	C6PVA5SS4 0.7GT.	87

FIGURE

PAGE

6.10	10 FE-SEM micrographs of cross-linked silk sericin/PVA on		
	the surface of clay templates of C6PVA5SS1 0.7GT.		
6.11	TGA thermograms of cross-linked silk sericin/PVA/clay		
	aerogels with various clay contents.	89	
6.12	DTG thermograms of cross-linked silk sericin/PVA/clay		
	aerogels with various clay contents various clay contents.	89	
6.13	TGA thermograms of cross-linked silk sericin/PVA/clay		
	aerogels with various silk sericin contents.	90	
6.14	DTG thermograms of cross-linked silk sericin/PVA/clay		
	aerogels with various silk sericin contents.	90	
6.15	TGA thermograms of uncross-linked and cross-linked		
	silk sericin/PVA/clay aerogels with various		
	glutaraldehyde contents.	92	
6.16	DTG thermograms of uncross-linked and cross-linked		
	silk sericin/PVA/clay aerogels with various		
	glutaraldehyde contents.	93	
6.17	Stress-strain curves of cross-linked silk sericin/PVA/clay		
	aerogels with various clay contents.	95	
6.18	Stress-strain curves of silk sericin/PVA/clay aerogels		
	with various silk sericin contents.	96	
6.19	Stress-strain curves of silk sericin/PVA/clay aerogels at		
	the composition of C6PVA5SS1 with uncross-linked and		
	cross-linked with 3, 5 and 7 μ l/ml of glutaraldehyde.	97	
6.20	Swelling ratio of cross-linked silk sericin/PVA/clay		
	aerogels plotted as a function of time at the composition		
	of silk sericin 1 wt%, PVA 5 wt% and GT 3 $\mu l/ml$ with		
	different clay loading.	99	

FIGURE

PAGE

6.21	Swelling ratio of cross-linked silk sericin/PVA/clay	
	aerogels plotted as a function of time at the composition	
	of silk sericin 1 wt%, PVA 5 wt% and GT 5 $\mu l/ml$ with	
	different clay loading.	100
6.22	Swelling ratio of cross-linked silk sericin/PVA/clay	
	aerogels plotted as a function of time at the composition	
	of silk sericin 1 wt%, PVA 5 wt% and GT 7 $\mu l/ml$ with	
	different clay loading.	100
6.23	Swelling ratio of cross-linked silk sericin/PVA/clay	
	aerogels plotted as a function of time at the composition	
	of clay 6 wt%, PVA 5 wt% and GT 3 μ l/ml with different	
	silk sericin contents.	101
6.24	Swelling ratio of cross-linked silk sericin/PVA/clay	
	aerogels plotted as a function of time at the composition	
	of clay 6 wt%, PVA 5 wt% and GT 5 μ l/ml with different	
	silk sericin contents.	102
6.25	Swelling ratio of cross-linked silk sericin/PVA/clay	
	aerogels plotted as a function of time at the composition	
	of clay 6 wt%, PVA 5 wt% and GT 7 $\mu l/ml$ with different	
	silk sericin contents.	102
6.26	Swelling ratio of cross-linked silk sericin/PVA/clay	
	aerogels plotted as a function of time at the composition	
	of C6PVA5SS1 with different glutaraldehyde	
	concentrations.	103
6.27	Swelling ratio of cross-linked silk sericin/PVA/clay	
	aerogels plotted as a function of time at the composition	
	of C6PVA5SS1 with different species of Thai silk	
	cocoon.	104

- 6.28 Optical photograph were taken by inverted phase contrast microscope presented the interaction between HGF and sponge with different silk sericin contents in 48 and 72 hr ; A) C6PVA5SS1 0.3GT at 48 hr., B) C6PVA5SS1 0.3GT at 72 hr., C) C6PVA5SS2 0.3GT at 48 hr., D) C6PVA5SS2 0.3GT at 72 hr., E) C6PVA5SS3 0.3GT at 48 hr., F) C6PVA5SS3 0.3GT at 72 hr., G) C6PVA5SS4 0.3GT at 48 hr. and H) C6PVA5SS4 0.3GT at 72 hr.
- 6.29 Optical photographs were taken by inverted phase contrast microscope presented the interaction between HGF and sponge with different glutaraldehyde concentration in 48 and 72 hr ; A) C6PVA5SS1 0.3GT at 48 hr., B) C6PVA5SS1 0.3GT at 72 hr., C) C6PVA5SS1 0.5GT at 48 hr., D) C6PVA5SS1 0.5GT at 72 hr., E) C6PVA5SS1 0.7GT at 48 hr. and F) C6PVA5SS1 0.7GT at 72 hr.
- 6.30 Optical photographs were taken by inverted phase contrast microscope presented the interaction between HGF and sponge with different species of Thai silk cocoon at the composition of C6PVA5SS1 0.3GT in 48 and 72 hr; A) Nang Noi species at 48 hr., B) Nang Noi species at 72 hr., C) Nang Lai species at 48 hr., D) Nang Lai species at 72 hr., E) Dok Bua species at 48 hr., F) Dok Bua species at 72 hr., G) Luang Pairote species at 48 hr. and H) Luang Pairote species at 72 hr.

PAGE

106

107

108

xviii

FIGURE

PAGE

6.31	The MTT assay results: A and B showed the 24-	
	wellplated of cell cultured by cell culture media from the	
	releasing of sponge at 37°C for 24 hr., C and D showed	
	the 24-wellplates of cell cultured after reacting with MTT	
	solution for 48 hr.	109
6.32	MTT assay of HGF on different content of silk sericin	
	compared with control.	111
6.33	MTT assay of HGF on different concentration of	
	glutaraldehyde compared with control.	112
6.34	MTT assay of HGF on different species of Thai silk	
	cocoon compared with control; NN = Nang Noi,	
	NL =Nang Lai, DB =Dok Bua and LP =Luang Pairote.	114

ABBREVIATIONS

Cel	Cellulose
DB	Dok Bua species
Gel	Gelatin
GC	Glyceraldehyde
GT	Glutaraldehyde
HGF	Human gingival fibroblast cell
LP	Luang Pairote species
MBA	N, N-methylene-bisacrylamide
MMT	Montmorillonite clay
MTT	(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)
NL	Nang Lai species
NN	Nang Noi species
NR	Natural rubber
OD	Optical density
PVA	Poly(vinyl alcohol)
SS	Silk sericin
(ID	
SR	Swelling ratio

SYMBOLS

ρ	Mass density
ρ	Mass density

- M Mass
- V Volume
- d Interlayer spacing
- λ X-ray wavelength
- 0 Diffraction angle