REFERENCES

- Alba-Rubio, A., Santamar-Gonzalez, J., Merida-Robles, J.M., Moreno-Tost, R., Martin-Alonso, D., and Jimenez-Lopez, A. (2010) Heterogeneous transesterification processes by using CaO supported on zinc oxide as basic catalysts. <u>Catalysis Today</u>, 149, 281-287.
- Austrian Biofuels Institute. (2003). Review of the commercial production of biodiesel worldwide. A report prepared by the Austrian biofuels institute commissioned by the international energy agency, Vienna, 1-75.
- Banerjee, A., and Chakraborty, R. (2009) Parametric sensitivity in transesterification of waste cooking oil for biodiesel production-a review.

 Resources, Conservation and Recycling, 53(9), 490-497.
- Borges, M.E., and Díaz, L. (2012) Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: a review." Renewable and Sustainable Energy Reviews, 16(5), 2839-2849.
- Chen, G., and Fang, B. (2011) Preparation of solid acid catalyst from glucose-starch mixture for biodiesel production. <u>Bioresource Technology</u>, 102, 2635-2640.
- Cho, Y.B., and Seo, G. (2010) High activity of acid-treated quail eggshell catalyst in the transesterification of palm oil with methanol. <u>Bioresource Technology</u>, 101, 8515-8519.
- Clark, S. J., Wagner, L., Schrock, M.D., and Piennaar, P.G. (1984) Methyl and ethyl soybean esters as renewable fuels for diesel engines. <u>Journal of the American Oil Chemists' Society</u>, 61(10), 1632-1638.
- Corro, G., Tellez, N., Ayala, E., and Marinez-Ayala, A. (2010) Two-step biodiesel production from Jatropha curcas crude oil using SiO2: HF solid catalyst for FFA esterification step. <u>Fuel</u>, 89, 2815-2821.
- Demirbas, A. (2002) Biodiesel from vegetable oils via transesterification in supercritical methanol. <u>Energy Conversion & Management</u>, 43, 2349-2356.
- De Oliveira, D., Di Luccio, M., Faccio, C., Dalla Rosa, C., Bender, J.P., Lipke, N., Menoncin, S., Amroginski, C., and De Oliveira, J.V. (2004) Optimization

- of enzymatic production of biodiesel from castor oil in organic solvent medium. <u>Applied Biochemistry and Biotechnology</u>, 113-116, 771-780.
- Emrani, J., and Shahbazi, A. (2012) A single bio-based catalyst for bio-fuel and bio-diesel. <u>Biotechnology & Biomaterials</u>, 2, 1-7
- Faidl, N., Foidl, G., Sanchez, M., mittelbach, M., and Hackel, S. (1996) Jartropha curcas as a source for the production of biofuel in Nicaragua. <u>Bioresource</u> Technology, 58, 77-82.
- Gunstone, F. (2003) Early forecasts for world supplies of oilseeds and vegetable oil in 2003-04. <u>Inform</u> 14, 668.
- Haas, W., Sterk, H., and Mittelbach, M. (2002) Novel 12-Desoxy-16-hydroxyphorbol diesters Isolated from the seed oil of Jatropha curcas.

 Journal of Natural Products, 65(10), 1434-1440.
- Hanna, M.A., and Ali, Y. (1997) Fuel properties of methyl ester of beef tallow.

 Recent Research Developments in Oil Chemistry, 1, 309-320.
- Hsu, A.F., Jones, K., Marmer, W.N., and Foglia, T.A. (2001) Production of alkyl ester from tallow and grease using lipase immobilized in a phyllosilicate sol-gel. <u>Journal of the American Oil Chemists' Society</u>, 76(6), 585-588.
- Jacobson, K., Gopinath, R., Meher, L.C., and Dalai, A.K. (2008) Solid acid catalyzed biodiesel production from waste cooking oil. <u>Applied Catalysis</u>
 B: Evironmental, 85, 86-91.
- Jitputti, J., Kitiyanan. B., Rangsunvigit, P., Bunyakiat. K., Attanatho, L., and Jenvanitpanjakul, P. (2006) Transesterification of crude palm kernel oil and crude coconut oil by different solid catalysts. <u>Chemical Engineering</u> Journal, 116, 61-66.
- Lee, J.H. (2002) One stage process for feed and biodiesel and luvricant oil. US Patent US 04400229299 AL.
- Liu, T., Li, Z., Li, W., Shi, C., and Wang, Y. (2013) Preparation and characterization of biomass carbon-based solid acid catalyst for the esterification of oleic acid with methanol. <u>Bioresource Technology</u>, 133, 618-621.

- Lotero, E., Liu, Y., Lopez, D.E., Suwannakarn, K., Bruce, D.A., and Jr, J.G. (2005)

 Synthesis of biodiesel via acid catalysis. <u>Industrial & Engineering</u>

 Chemistry Research, 44, 5353-5363.
- Lu, H., Gui, Y., Zheng, L., and Liu, X. (2013) Morphological, crystalline, thermal and physicochemical properties of cellulose nanocrystals obtained from sweet potato residue. <u>Food Research International</u>, 50, 121-128.
- Math, M.C., Kumar, S.P., and Chetty, S.V. (2010) Technologies for biodiesel production from used cooking oil:A review. <u>Energy for Sustainable Development</u>, 14, 339-345.
- Medina, A., Béjar, L., Borjas, S.E., Zarate, J., Vargas, R., Herrera, G., and Ruiz, A.(2012) Characterization of ZnO nanoparticles with short-bar shape produced by chemical precipitation. Materials Letters, 71, 81-83.
- Mittelbach, M., and Tritthart, P. (1988) Diesel fuel derived from vegetable oil, III emission tests using methyl ester of used frying oil. <u>Journal of the American Oil Chemists</u> Society, 65(7), 1185-1187.
- Mittelbach, M., Silberholz, A., and Koncar, M. (1996) Novel aspects concerning acid catalyzed alcoholysis of triglycerides. Oils-fats-lipids. Proceeding of the 21st WorldCongress of the international society for fat research (ISF). The Hague, 3, 497-499.
- Murphy, D. J. (2003) Working to improve the oil palm crop. <u>Inform</u>, 14(11), 670-671.
- Nakajima, K., and Hara, M. (2007) Environmentally benign production of chemicals and energy using a carbon-based strong solid acid. <u>The Journal-of American Ceramic Society</u>, 90(12), 3725-3734.
- Nelson, L.A., Foglia, T.A., and Marmer, W.N. (1996) Lipase-catalyzed production of biodiesel. <u>Journal of the American Oil Chemists' Society</u>, 73(8), 1191-1195.
- Nye, M.J., Williamson, T.W., Deshpande, S., Schrader, J.H., Snively, W.H., Yurkewich, T.P., and French, C.L. (1983) Conversion of used frying oil to diesel fuel by transesterification: preliminary tests. <u>Journal of the American Oil Chemists Society</u>, 60(8), 1598-1601.

- Pryde, E.H. (1984) Vegetable oils as fuel alternatives-symposium overview.

 Journal of the American Oil Chemists Society, 61, 1609-1610.
- Pua, F., Fang, Z., Zakaria, S., Guo, Feng., and Chia, C. (2011) Direct production of biodiesel from high-acid value Jatropha oil with solid acid catalyst derived from lignin. Biotechnology for Biofuels, 4, 56-63.
- Rattanaphra, D., Harvey, P. D., Thanapimmetha, A., and Srinophakun, P. (2012) Simmultaneous transesterification and esterification for biodiesel production with and without a sulphated zircinia catalyst. <u>Fuel</u>, 97,467-475.
- Shu, Q., Zhang, Q., Xu, G., Nawaz, Z., Wang, D., and Wang, J. (2009) Synthesis of biodiesel from cottonseed oil and methanol using a carbon-based solid acid catalyst. <u>Fuel Processing Technology</u>, 90, 1002-1008.
- Schuchardt, U., Sercheli, R., and Vargas, R.M. (1998) Transesterification of vegetable oils: a review. <u>Journal of the Brazilian Chemical Society</u>, 9(1), 199-210.
- Sha, S., Shorma S., and Gupta, M.N. (2004) Biodiesel preparation by lipase-catalalyzed transesterification of Jatropha oil. <u>Energy & Fuels</u>, 18, 154-159.
- Srivastava, A., and Prassad, R. (2000) Triglycerides-based diesel fuels. <u>Renewable</u> and <u>Sustainable Energy Reviews</u>, 4.111-133.
- Suganuma, S., Nakajima, K., Kitano, M., Yamaguchi, D., Kato, H., Hayashi, S., and Hara, M., (2008) Hydrolysis of cellulose by amorphous carbon bearing SO₃H, COOH, and OH Groups. <u>Joint Academic Coding System articles</u>, 130, 12787-12793
- Tomasevic, A.V., and Siler-Marinkovic, S.S. (2003) Methanolysis of used frying oil. <u>Fuel Processing Technology</u>, 81, 1-6.
- Vicente, G., Martínez, M., and Aracil, J. (2003) Integrated biodiesel production: a comparison of different homogeneous catalysts systems. <u>Bioresource Technology</u>, 92(3), 297-305.
- Viriya-empikul, N., Krasae, P., Puttasawat, B., Yoosuk, B., Chollacoop, N., and Faungnawakij, K. (2010) Waste shells of mollusk and egg as biodiesel production catalyst. Bioresource Technology, 101, 3765-3767.
- Vyas, A.P., Verma, J.L., and Subrahmanyam, N. (2010) A review on FAME production processes. <u>Fuel</u>, 89(1), 1-9.

- Wang, Y., Ou, S., Liu, P., Xue, F., and Tang, S. (2006) Comparison of two different processes to synthesize biodiesel by waste cooking oil. <u>Journal of Molecular Catalysis A: Chemical</u>, 252, 107-112.
- Wang, L., Tang, Z., Xu, W., and Yang, J. (2007) Catalytic transesterification of crude rapeseed oil by liquid organic amine and co-catalyst in supercritical methanol. <u>Catalysis Communications</u>, 8(10), 1511-1515.
- Xie, W., and Li, H. (2006) Alumina-supported potassium iodide as a heterogeneous catalyst for biodiesel production from soybean oil. <u>Journal of Molecular Catalysis A: Chemical</u>, 255(1-2), 1-9.
- Yakuphanoglu, F. (2010) Electrical characterization and device characterization of ZnO microring shaped films by sol-gel method. <u>Journal of Alloys and</u> Compounds, 507, 184-189.
- Yan, S., Mohan, S., DiMaggio, C., Kim, M., Ng, K.Y.S., and Salley, S.O. (2010) Long term activity of modified ZnO nanoparticles for transesterification. Fuel, 89, 2844-2852.
- Yoo, S. J., Lee, H.S., Veriansyah, B., Kim, J., Kim, J.D., and Lee, Y.W. (2010) Synthesis of biodiesel from rapeseed oil using supercritical methanol with metal oxide catalysts. <u>Bioresource Technology</u>, 101(22), 8686-8689.
- Yoosuk, B., Udomsap, P., Puttasawat, B., and Krasae, P. (2010) Modification of calcite by hydration-dehydration method for heterogeneous biodiesel production process: the effects of water on properties and activity.

 Chemical Engineering Journal, 162, 135-141.
- Zhang, H.Y., Hanna, M.A., Ali, Y., and Nan, L. (1996) Yellow nut-scdge (Cyperus esculentus L.) tuber Oil as a fuel. <u>Industrial Crops and Products</u>, 5, 177-181.
- Zhang, L., Zhao, J., Lua, H., Gong, L., Li, L., Zheng, J., Li, H., and Zhu, Z. (2011) High sensitive and selective formaldehyde sensors based on nanoparticle-assembled ZnO micro-octahedrons synthesized by homogeneous precipitation method. Sensors and Actuators B, 160, 364-370.
- Zhang, Y., Wong, T.W., and Yung F, K., (2014) Biodiesel production via esterification of oleic acid catalyzed by chlorosulfonic acid modified zirconia. <u>Applied Energy</u>, 116, 191-198.

APPENDICES

Appendix A Titration Method

1. Standardization of NaOH was measured by using potassium acid phatalate (Equation 1)

Normality =
$$(Wp*1000)/(MW*(V-Vb))$$
 (1)

Where Wp = Weight of potassium acid phatalate (g)

V = Amount of NaOH was used in titration sample (ml)

Vb = Amount of NaOH was used in titration blank (ml)

MW = Molecular weight of potassium acid phatalate

2. A 0.02 M of NaOH solution was used to measure the concentration of HCl solution.

$$NaOH + HCl \rightarrow H_2O + NaCl$$

To evaluate the acidity of catalysts was calculated as follows (Equation 2)

$$c(H^{+}) = \frac{c(OH) \times \Delta V}{m}$$
 (2)

Where $c(H^+)$ = the acid quantity of sulfonated samples

c(OH) = the concentration of the NaOH solution

 ΔV = the volume of the NaOH solution consumed in titration

M = the quality of the catalyst samples in ultrasonic oscillation reaction

 Table A.1 Calculation the acid site of catalysts

Sample	No.	Volume (ml)		Weight of Catalyst	NaOH	Total Acid site	Avg.
		Start	Final	(g)	(ml)	(mmol/g)	
Catalyst sulfonated of	1	0.00	3.55	0.0514	3.55	1.38	
110 °C 5 h	2	0.00	3.65	0.0550	3.65	1.33	1.36
	3	0.00	3.50	0.0512	3.50	1.37	
Catalyst sulfonated of	1	0.00	3.00	0.0549	3.00	1.09	1.12
130 °C 5 h	2	0.00	2.85	0.0497	2.85	1.15	
Catalyst sulfonated of	1	0.00	2.95	0.0504	2.95	1.17	
150 °C 5 h	2	0.00	3.15	0.0527	3.15	1.20	1.17
	3	0.00	2.95	0.0514	2.95	1.15	
Catalyst sulfonated of	1	0.00	3.00	0.0495	3.00	1.21	
110 °C 3 h	2	0.00	3.15	0.0531	3.15	1.19	1.19
	3	0.00	3.20	0.0551	3.20	1.16	
Catalyst sulfonated of	1	0.00	2.80	0.0515	2.80	1.09	
110 °C 7 h	2	0.00	2.85	0.0493	2.85	1.16	1.13
	3	0.00	2.90	0.0511	2.90	1.14	

Appendix B Gas Chromatography (GC)

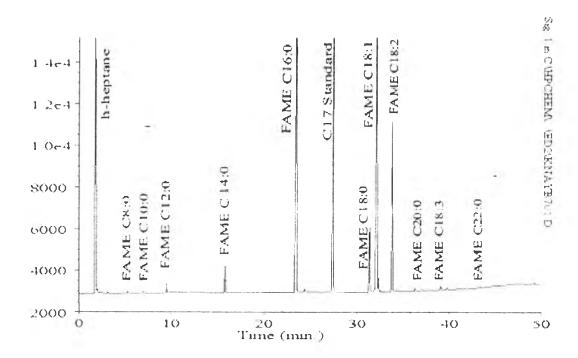


Figure B.1 Chromatogram of fatty acid methyl ester (FAMEs) in biodiesel.

The methyl ester content, yield, and conversion were determined using Equation (3).

$$C = \frac{\left(\sum A\right) - A_{EI}}{A_{EI}} \times \frac{C_{EI} \times V_{EI}}{m} \times 100$$
(3)

('	Methyl ester content or Fatty acid methyl ester (FAME)
$\sum A$	The overall area of methyl ester from C_{14} to C_{24}
A_{EI}	The peak area of that which is aligned with
	methylheptadecanoate solution
C_{EI}	Concentration in mg/ml of methyl heptadecanoate solution
V_{EI}	Volume of methyl heptadecanoate solution
m	Weight in mg of sample

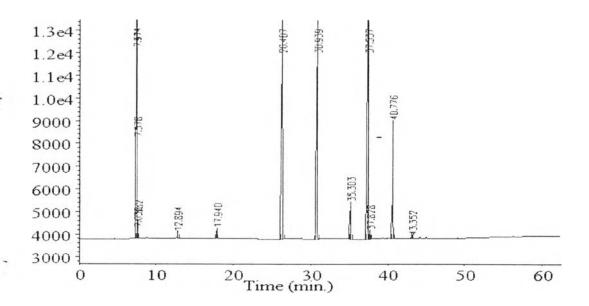


Figure B.2 Methyl ester content of biodiesel from catalyst sulfonated of 110 °C 5 h

Table B.2 The methyl ester contents data of biodiesel from catalyst sulfonated of 110 °C 5 h analyzed by using a Hewlett Packard GC model 5890

Peak	Ret Time	Type	Width	Area	Start Time	End Time
1	7.823	ВН	0.024	6951003	7.757	7.87
2	7.888	НВ	0.03	54205	7.87	8.147
3	7.998	BB	0.034	3483	7.958	8.05
4	18.645	BB	0.092	2576	18.517	18.9
5	19.427	BB	0.084	883	19.327	19.577
6	27.123	BB	0.117	24789	26.937	27.603
7	29.371	BB	0.114	2303	29.217	29.617
8	29.811	BV	0.124	15770	29.653	30.17
9	30.294	MM	0.179	1148	30.183	30.582
10	31.721	BB	0.121	98439	31.433	32.36
11	34.091	BB	0.101	2076	33.92	34.333

Table B.2 (cont.) The methyl ester contents data of biodiesel from catalyst sulfonated of 110 °C 5 h analyzed by using a Hewlett Packard GC model 5890

Peak	Ret Time	Туре	Width	Area	Start Time	End Time
12	36.051	BB	0.112	6251	35.853	36.37
13	37.534	-BV	0.157	4478	37.27	37.66
14	37.757	VV	0.145	4096	37.66	37.96
15	38.386	VV	0.136	283447	37.96	38.541
16	38.621	VB	0.104	22255	38.541	39.07
17	39.191	MM ~	0.099	605	39.075	39.325
18	39.496	MM	0.131	898	39.325	39.775
19	40.233	MM	0.151	1118	39.881	40.464
20	40.807	BV	0.118	2001	40.607	41.013
21	41.14	VB	0.104	1550	41.013	41.357
22	41.551	BV	0.104	54838	41.357	42.027
23	44.063	MM	0.125	822	43.907	44.324
24	44.84	MM	0.152	706	44.529	45.041
25	45.204	BB	0.097	1852	45.047	45.417
26	45.996	BB	0.097	3621	45.863	46.293
27	48.966	BB	0.095	1488	48.817	49.177

CURRICULUM VITAE

Name: Ms. k

Ms. Kanokwan Namwong

Date of Birth:

October 25, 1989

Nationality:

Thai

University Education:

2008–2011 Bachelor Degree of Industrial Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand

Work Experience:

2010

Position:

Internship Student

Company Name:

Amata B.Grimm Ltd.

Proceedings:

Namwong, K.; and Luengnaruemitchai. A. (2014. April 23) Biodiesel Production
Using Solid Acid Catalyst via Esterification of Oleic Acid. <u>Proceedings of the 5th
Research Symposium on Petroleum, Petrochemical, and Advanced Materials and
20th PPC Symposium on Petroleum, <u>Petrochemical</u>, and <u>Polymers</u>, Bangkok,
Thailand.
</u>

 Namwong, K.; and Luengnaruemitchai, A. (2014, March 10-13) Heterogeneous Catalysts for Biodiesel Production via Esterification from Oleic Acid. <u>International Conference on Catalysis and Chemistry (NCCC 2014)</u>, Netherlands