REFERENCES

- Alexandru, H.V., Berbecaru, C., Ioachim, A., Toacsen, M.I., Banciu, M.G., Nedelcu,
 L., and Ghetu, D. (2004) Oxides ferroelectric (Ba, Sr)TiO₃ for microwave
 devices. <u>Materials Science and Engineering: B</u> 109(1-3), 152-159.
- Berbecaru, C., Alexandru, H., Porosnicu, C., Velea, A., Ioachim, A., Nedelcu, L., and Toacsan, M. (2008) Ceramic materials Ba_(1-x)Sr_xTiO₃ for electronics—
 Synthesis and characterization. <u>Thin Solid Films 516(22)</u>, 8210-8214.
- Carter, C.B. and Norton, M.G. (2007). Locally Redistributing Charge. New York: Springer
- Chiang, C.K. and Popielarz, R. (2002) Polymer Composites with High Dielectric Constant. <u>Ferroelectrics</u> 275(1), 1-9.
- Dias, C.J. and Das-Gupta, D.K. (1996) Inorganic ceramic/polymer ferroelectric composite electrets. <u>Dielectrics and Electrical Insulation, IEEE</u> <u>Transactions on</u> 3(5), 706-734.
- Edlund, U. and Albertsson, A.C. (2003) Polyesters based on diacid monomers. Advanced Drug Delivery Reviews 55(4), 585-609.
- Fang, F., Yang, W., Zhang, M., and Wang, Z. (2009) Mechanical response of barium-titanate/polymer 0–3 ferroelectric nano-composite film under uniaxial tension. <u>Composites Science and Technology</u> 69(5), 602-605.
- Fujimaki, T. (1998) Processability and properties of aliphatic polyesters,
 'BIONOLLE', synthesized by polycondensation reaction. <u>Polymer</u>
 <u>Degradation and Stability</u> 59(1-3), 209-214.
- Haertling, G.H. (1999) Ferroelectric ceramics: history and technology. Journal of the American Ceramic Society 82(4), 797-818.
- Hu, T., Juuti, J., and Jantunen, H. (2007) RF properties of BST-PPS composites. Journal of the European Ceramic Society 27(8-9), 2923-2926.
- Hu, T., Juuti, J., Jantunen, H., and Vilkman, T. (2007) Dielectric properties of BST/polymer composite. Journal of the European Ceramic Society 27(13– 15), 3997-4001.

- Ichikawa, Y. and Mizukoshi, T. (2012) Bionolle (Polybutylenesuccinate). <u>Synthetic</u> <u>Biodegradable Polymers</u> 245, 285-313.
- Ikada, Y. and Tsuji, H. (2000) Biodegradable polyesters for medical and ecological applications. <u>Macromolecular Rapid Communications</u> 21(3), 117-132.
- Ishioka, R., Kitakuni, E., and Ichikawa, Y. (2002) Aliphatic polyesters: "Bionolle". Biopolymers Online.
- Kao, K.C. (2004) <u>Dielectric phenomena in solids: with emphasis on physical</u> <u>concepts of electronic processes</u>. Manitoba: Elsevier.
- Moulson, A.J. and Herbert, J.M. (2003) <u>Elementary Solid State Science</u>. Chichester: -John Wiley.
- Muralidhar, C. and Pillai, P.K.C. (1987) Dielectric behaviour of barium titanate (BaTiO₃)/polyvinylidene fluoride (PVDF) composite. <u>Journal of Materials</u> <u>Science Letters</u> 6(3), 346-348.
- Nakagawa, T., Nakiri, T., Hosoya, R. and Tajitsu, Y. (2004) Electrical properties of biodegradable polylactic acid film. <u>IEEE Transaction on Industry</u> <u>Applications</u> 40(4), 1020-1024.
- Nakiri, T., Kawachi, Y., Honda, M., Imoto, K., Yamakita, T. and Tajitsu, Y. (2007) Development of electric wire using biodegradable polymer. <u>IEEE</u> <u>Transaction on Industry Applications</u> 43(4), 1069-1074.
- Newnham, R.E., Skinner, D.P. and Cross, L.E. (1978) Connectivity and piezoelectric-pyroelectric composites. <u>Materials Research Bulletin</u> 13(5), 525-536.
- Ohki, Y. and Hirai, N. (2007) Electrical Conduction and Breakdown Properties of Several Biodegradable Polymers. <u>IEEE Transactions on Dielectrics and</u> Electrical Insulation 14(6), 1559-1566.
- Olszowy, M., Pawlaczyk, C., Markiewicz, E., and Kułek, J. (2005) Dielectric and pyroelectric properties of BaTiO₃-PVC composites. <u>Physica Status Solidi</u> (a) 202(9), 1848-1853.
- Pant, H.C., Patra, M.K., Verma, A., Vadera. S.R., and Kumar, N. (2006) Study of the dielectric properties of barium titanate-polymer composites. <u>Acta</u> <u>Materialia</u> 54(12), 3163-3169.

- Popielarz, R., Chiang, C.K., Nozaki, R., and Obrzut, J. (2001). Dielectric Properties of Polymer/Ferroelectric Ceramic Composites from 100 Hz to 10 GHz. <u>Macromolecules</u> 34(17), 5910-5915.
- Popovici, D., Okuyama, M., and Akedo, J. (2011) Barium Titanate-Based Materials
 Window of Application Opportunities. In Lallart, M. <u>Ferroelectrics</u> <u>Material Aspects</u>. Rijika, Croatia: InTech.
- Sebastian, M.T. and Jantunen, H. (2010) Polymer-ceramic composites of 0-3 connectivity for circuits in electronics: A review. <u>International Journal of</u> <u>Applied Ceramic Technology</u> 7(4), 415-434.
- Sharma, H.B., Tandon, R.P., Mansingh, A., and Rup, R. (1993) Dielectric and piezoelectric properties of sol-gel-derived barium titanate ceramics. <u>Journal</u> <u>of materials science letters</u> 12(22), 1795-1796.
- Shiibashi, H., Matsuda, H., and Kuwabara, M. (1999) Low-temperature preparation of (Ba, Sr) TiO₃ perovskite phase by sol-gel method. <u>Journal of Sol-Gel</u> <u>Science And Technology</u> 16(1-2), 129-134.
- Somani, V. and Kalita, S.J. (2007) Synthesis and characterization of nanocrystalline Barium Strontium Titanate powder via sol-gel processing. <u>Journal of</u> <u>Electroceramics</u> 18(1-2), 57-65.
- Sonoda, K., Hu, T., Juuti, J., Moriya, Y., and Jantunen, H. (2010) Fabrication and properties of composites from BST and polypropylene-graft-poly(styrene-stat-divinylbenzene). Journal of the European Ceramic Society 30(2), 381-384.
- Su, B. and Button, T.W. (2004) Microstructure and dielectric properties of Mgdoped barium strontium titanate ceramics. <u>Journal of Applied Physics</u> 95(3), 1382-1385.
- Tai, H.-J. (2007) Dielectric spectroscopy of poly(butylene succinate) films. <u>Polymer</u> 48(15), 4558-4566.
- Wodecka-Duś, B., Lisińska-Czekaj, A., Orkisz, T., Adamczyk, M., Osińska, K., Kozielski, L., and Czekaj, D. (2007) The sol-gel synthesis of barium strontium titanate ceramics. <u>Materials Science-Poland</u> 25(3), 275-294.

- Xie, S.-H., Zhu, B.-K., Wei, X.-Z., Xu, Z.-K., and Xu, Y.-Y. (2005)
 Polyimide/BaTiO₃ composites with controllable dielectric properties.
 <u>Composites Part A: Applied Science and Manufacturing</u> 36(8), 1152-1157.
- Xu, J. and Guo, B.-H. (2010) Microbial Succinic Acid, Its Polymer Poly(butylene succinate), and Applications. In Chen G.-Q., <u>Plastics from Bacteria</u>. Chap.14 (347-388). Berlin: Springer.
- Xu, J. and Guo, B.-H. (2010) Poly(butylene succinate) and its copolymers: Research, development and industrialization. <u>Biotechnology Journal</u> 5(11), 1149-1163.
- Xu, S., Qu, Y., and Zhang, C. (2009) Effect of Mg²⁺ content on the dielectric properties of Ba_{0.65}. _xSr_{0.35}Mg_xTiO₃ ceramics. <u>Journal of Applied Physics</u> 106(1), 014107.
- Yu, L., Ke, S., Zhang, Y., Shen, B., Zhang, A., and Huang, H. (2011) Dielectric relaxations of high-k poly(butylene succinate) based all-organic nanocomposite films for capacitor applications. <u>Journal of Materials</u> Research 26(19), 2493-2502.
- Yu, L., Zhang, Y., Tong, W., Shang, J., Shen, B., Lv, F., and Chu, P.K. (2012)
 Green dielectric materials composed of natural graphite minerals and biodegradable polymer. <u>RSC Advances</u> 2(23), 8793-8796.
- Zhou, J., Wang, X., Hua, K., Duan, C.e., Zhang, W., Ji, J., and Yang, X. (2013) Enhanced mechanical properties and degradability of poly(butylene succinate) and poly(lactic acid) blends. <u>Iranian Polymer Journal</u> 22(4), 267-275.

71

APPENDICES

Appendix A Lattice Parameter Calculations

Table A1 The identification of XRD peaks of the $Ba_{0.7}Sr_{0.3}Mg_0TiO_3$ powder

2-	Theta	d(A)	h	k	1	a-Axis	c-Axis
22	2.509	3.9468	1	0	0	3.9468	
31	1.947	2.799	1	1	0	3.9584	
39	9.353	2.2877	1	1	1	3.9468	3.9941
45	5.753	1.9815	2	0	0	3.9629	
51	1.496	1.7731	2	0	1	3.9468	4.0398
56	5.812	1.6192	2	1	1	3.9468	4.0679
		Average	Lattice Co	onstants =		3.9514	4.0339
						c/a	1.0209

able AZ The identification of ARD peaks of	1 me Da0.695310 3Mg0.005 1103 powdel

2-Theta	d(A)	h	k	1	a-Axis	c-Axis
22.47	3.9536	1	0	0	3.9536	
31.907	2.8024	1	1	0	3.9632	
39.315	2.2898	1	1	1	3.9536	3.9911
45.711	1.9832	2	0	0	3.9663	
51.455	1.7745	2	0	1	3.9536	4.0261
56.774	1.6202	2	1	1	3.9536	4.0464
	Average	Lattice Co	onstants =		3.9573	4.0212
		_				
					c/a	1.016

.

2-Theta	d(A)	h	k	1	a-Axis	c-Axis
22.48	3.9518	1	0	0	3.9518	
31.92	2.8013	l	1	0	3.9617	
39.329	2.289	1	. 1	1	3.9518	3.9907
45.73	1.9824	2	0	0	3.9648	
51.479	1.7737	2	0	1	3.9518	4.0248
56.771	1.6203	2 -	1	1	3.9518	4.0572
	Average	Lattice Co	onstants =		3.9556	4.0242
-						
					c/a	1.0173

Table A3 The identification of XRD peaks of the $Ba_{0.69}Sr_{0.3}Mg_{0.01}TiO_3$ powder

Table A4 The identification of XRD peaks of the $Ba_{0.68}Sr_{0.3}Mg_{0.02}TiO_3$ powder

2-Theta	d(A)	h	k	1	a-Axis	c-Axis
22.433	3.9599	1	0	0	3.9599	
31.877	2.8051	1	1	0	3.9669	
39.282	2.2916	1	1	1	3.9599	3.9881
45.679	1.9845	2	0	0	3.969	
51.409	1.7759	2	0	1	3.9599	4.0169
56.712	1.6218	2	1	1	3.9599	4.0383
	Average	Lattice Co	onstants =		3.9626	4.0144
					c/a	1.0131

4

Table A5 The identification of XRD peaks of the $Ba_{0.6}Sr_{0.4}Mg_0TiO_3$ powder

2-Theta	d(A)	h	k	1	a-Axis ⁻	c-Axis
22.524	3.9442	1	0	0	3.9442	
32.012	2.7935	1	1	0	3.9506	
39.446	2.2825	1	1	1	3.9442	3.9719
45.872	1.9766	2	0	0	3.9532	
51.634	1.7687	2	0	1	3.9442	3.9992
56.965	1.6152	2	1	I	3.9442	4.0197
	Average	Lattice Co	onstants =		3.9468	3.9969
					c/a	1.0127

.

•

.

2-Theta	d(A)	h	k	1	a-Axis	c-Axis
22.496	3.9491	1	0	0	3.9491	
31.983	2.796	1	1	0	3.9542	
39.41	2.2845]	1	1	3.9491	3.9.726
45.817	1.9788	2	0	0	3.9577	
51.574	1.7707	2	0	1	3.9491	4.0009
56.916	1.6165	2	1	1	3.9491	4.0135
	Average	Lattice Co	nstants =		3.9514	3.9957
			644	-		
					c/a	1.0112

Table A6 The identification of XRD peaks of the $Ba_{0.595}Sr_{0.4}Mg_{0.005}TiO_3$ powder

Table A7 The identification of XRD peaks of the $Ba_{0.59}Sr_{0.4}Mg_{0.01}TiO_3$ powder

2-Theta	d(A)	h	k	l	a-Axis	c-Axis
22.463	3.9547	1	0	0	3.9547	
31.922	2.8012]	1	0	3.9615	
39.342	2.2883	1	1	1	3.9547	3.981
45.746	1.9817	- 2	0	0	3.9634	
51.507	1.7728	2	0	1	3.9547	4.0024
56.836	1.6186	2	1	1	3.9547	4.0156
	Average	Lattice Co	onstants =		3.9573	3.9997
					c/a	1.0107

Table A8 The identification of XRD peaks of the $Ba_{0.58}Sr_{0.4}Mg_{0.02}TiO_3$ powder

2-Theta	d(A)	h	k	1	a-Axis	c-Axis
22.504	3.9476	1	0	0	3.9476	
31.989	2.7955	1	1	0	3.9534	
39.423	2.2838	1	1	1	3.9476	3.9717
45.832	1.9782	2	0	0	3.9564	
51.603	1.7697	2	0	1	3.9476	3.9963
56.931	1.6161	2	I	1	3.9476	4.0152
	Average	Lattice Co	onstants =		3.95	3.9944
					c/a	1.0112

÷

2-Theta	d(A)	h	k	1	a-Axis	c-Axis
22.61	3.9293	1	0	0	3.9293	
32.123	2.7841	1	1	0	3.9373	
39.583	2.2749	1	1	1	3.9293	3.9624
45.999	1.9714	2	0	0	3.9429	
51.814	1.763	2	0	1	3.9293	3.9952
57.137	1.6108	2	1	1	3.9293	4.0299
	Average	Lattice Co	nstants =		3.9329	3.9958
					c/a	1.0160
				_		

Table A9 The identification of XRD peaks of the $Ba_{0.5}Sr_{0.5}Mg_0TiO_3$ powder

Table A10 The identification of XRD peaks of the $Ba_{0.495}Sr_{0.5}Mg_{0.005}TiO_3$ powder

-

2-Theta	d(A)	h	k	1	a-Axis	c-Axis
22.586	3.9335	1	0	0	3.9335	
32.094	2.7866	1	1	0	3.9408	
39.536	2.2775	1	1	1	3.9335	3.9677
45.974	1.9724	2	0	0	3.9449	
51.766	1.7645	2	0	1	3.9335	3.9953
57.129	1.611	2	1	1	3.9335	4.0107
	Average	Lattice Co	onstants =		3.9366	3.9912
					c/a	1.0139

Table A11 The identification of XRD peaks of the $Ba_{0.49}Sr_{0.5}Mg_{0.01}TiO_3$ powder

2-Theta	d(A)	h	k	l	a-Axis	c-Axis
22.572	3.9359	1	0	0	3.9359	
32.071	2.7886	1	1	0	3.9436	
39.514	2.2787	1	1	1	3.9359	3.969
45.942	1.9738	2	0	0	3.9475	
51.707	1.7664	2	0	1	3.9359	4.0069
57.08	1.6122	2	1	1	3.9359	4.0176
	Average	Lattice Co	onstants =		3.9391	3.9978
					c/a	1.0149

-

2-Theta	d(A)	h	k	1	a-Axis	c-Axis
22.537	3.9419	1	0	0	3.9419	
32.06	2.7894	1	1	0	3.9448	
39.503	2.2793	1	1	1	3.9419	3.9602
45.926	1.9744	2	0	0	3.9488	
51.734	1.7655	2	0	1	3.9419	3.9721
57.059	1.6128	2	1	1	3.9419	3.9945
	Average	3.9435	3.9756			
					c/a	1.008

Table A12 The identification of XRD peaks of the $Ba_{0.48}Sr_{0.5}Mg_{0.02}TiO_3$ powder

Appendix B Frequency-dependent Dielectric Properties of Magnesium-Doped Barium Strontium Titanate Powder and PBS-Composite Thin Film

Ba _{1-x-y} Sr _x Mg _y TiO ₃		Frequency					
x	у	1E+06	5E+06	1E+07	5E+07	1E+08	
	0	602.60	428.23	422.93	421.87	420.27	
0.3	0.005	524.12	372.68	369.12	369.47	368.34	
0.5	0.01	485.93	341.84	337.99	337.69	336.13	
	0.02	426.91	302.31	299.19	299.52	298.66	
	0	486.87	345.33	341.28	340.52	338.63	
0.4	0.005	470.00	333.91	330.17	330.25	329.07	
0.4	0.01	459.37	327.31	324.15	324.23	323.03	
	0.02	381.76	270.70	268.34	268.63	267.34	
	0	470.76	332.90	328.80	328.29	326.53	
0.5	0.005	446.90	316.42	313.00	312.74	311.00	
	0.01	416.78	295.69	292.88	293.42	292.43	
	0.02	233.97	164.68	163.10	163.60	163.01	

Table	B2]	Frequ	ency-c	lepend	ent	loss	tangent	of	magnesi	um	-doped	barium	strontiu	m
titanate	e pov	wder												

Ba _{1-x-y} Sr _x	Mg _y TiO ₃	Frequency						
X	у	1E+06	5E+06	1E+07	5E+07	1E+08		
	0	0.1127	0.0165	0.0171	- 0.0168	0.0146		
0.3	0.005	0.1057	0.0115	0.0125	0.0127	0.0106		
0.5	0.01	0.1099	0.0148	0.0154	0.0140	0.0111		
	0.02	0.1057	0.0120	0.0129	0.0130	0.0110		
	0	0.1084	0.0148	0.0155	0.0153	0.0128		
0.4	0.005	0.1088	0.0132	0.0143	0.0131	0.0101		
0.4	0.01	0.1072	0.0126	0.0143	0.0132	0.0105		
	0.02	0.1047	0.0100	0.0120	0.0119	0.0094		
	0	0.1097	0.0159	0.0160	0.0145	0.0116		
0.5	0.005	0.1093	0.0139	0.0143	0.0138	0.0110		
	0.01	0.1051	0.01-13	0.0114	0.0114	0.0089		
	0.02	0.0998	0.0095	0.0106	0.0108	0.0080		

-

-

.

÷

DDC/DCT			Frequency		
r 65/651	1E+07	5E+07	1E+08	5E+08	1E+09
100/0	4.56	3.63	3.14	2.24	1.99
90/10	5.26	3.63	3.23	2.70	2.55
80/20	9.08	4.72	4.09	3.30	3.08
70/30	12.13	5.57	4.56	3.63	3.36
60/40	16.70	6.75	5.21	3.42	2.94
- 50/50	18.70	8.75	7.21	5.42	4.94

 Table B3 Frequency-dependent dielectric constant of PBS-composite thin film

 Table B4 Frequency-dependent loss tangent of PBS-composite thin film

.

-

DDC+DCT			Frequency		
r b5/b51	1E+07	5E+07	1E+08	5E+08	1E+09
100/0	0.3749	0.2612	0.2902	0.2511	0.2045
90/10	0.4004	0.2866	0.2400	0.1340	0.0962
80/20	0.5114	0.4528	0.3472	0.1891	0.1409
70/30	0.5647	0.5757	0.4431	0.2113	0.1587
60/40	0.7203	0.5856	0.4579	0.2283	0.1559
50/50	0.7473	0.6126	0.4849	0.2553	0.1829

Appendix C Data Sheet Of Poly(Butylene Succinate) Grade Blown Film Extrusion (AZ91TN)

Properties _	Test method	Unit	AZ91TN
MFR (190°C/21.18 N)	ISO1133	g/10 min	4
Specific gravity	ISO1183	g/cm ³	1.26
Flexural modulus	ISO178	MPa	530
Flexural strength	ISO178	MPa	34
Yield stress	ISO527	MPa	37
Stress at break	ISO527	MPa	37
Strain at break	ISO527	0⁄0	300
Izod impact strenght (23 °C)	ISO180	kJ/m ²	8.2
-Deflection temperature under load (0.45 MPa)	ISO75-2	C	84
Rockwell hardness (R scale)	ISO2039-2	-	96

-

-

.

-

-

4

Table C1 Data sheet of poly(butylene succinate) grade blown film extrusion

(AZ91TN)

Appendix D Breakdown Strength and Effects of Corona-poling of Poly(butylene succinate)/Barium Strontium Titanate Thin-film Composites on Dielectric Constant at Low-Frequency

.

.

 Table D1 Breakdown strength of poly(butylene succinate)/barium strontium titanate

 thin-film composites

BST content	Breakdown Strength (kV/mm)
0 wt%	26.30
10 wt%	- 24.76
20 wt%	24.00
30 wt%	18.10
40 wt%	16.40
50 wt%	15.30

Table D2 Frequency-dependent dielectric constants of poly(butylenesuccinate)/barium strontium titanate thin-film composites(poled at 12.5 kV/mm, 80 °C, and 30 min)

Frequency	State	Frequency						
		1.00E+02	1.00E+03	1.00E+04	1.00E+05	1.00E+06		
$0 \text{ wt}^{0/2}$	unpoled	3.11	- 3.07	3.03	2.95	2.22		
0 W170	poled	2.99	2.98	2.93	2.83	1.91		
10 m/t%	unpoled	3.23	3.19	3.12	3.02	2.76		
10 wt/8	poled	2.05	2.01	1.98	1.92	1.78		
20 wt%	unpoled	4.02	3.98	3.91	3.80	3.54		
	poled	3.92	3.88	3.81	3.69	3.43		
20 wt0/	unpoled	7.88	7.57	7.17	6.80	6.43		
50 W170	poled	5.91	5.67	5.38	5.10	4.82		
40+0/	unpoled	8.52	8.19	7.92	7.64	7.26		
40 Wl%	poled	6.82	6.55	6.33	6.11	5.81		
50 wt%	unpoled	17.11	16.79	16.48	16.11	15.61		
	poled	14.54	14.27	14.00	13.69	13.27		

Appendix E Experimental Data Fitting of Poly(butylene succinate)/Barium Strontium Titanate Thin-film Composites

The prediction of dielectric constant of polymer matrix composite in 0-3 connectivity system as the function of dielectric constant of each phase and filler volume fraction. The equations below were used to calculate the dielectric constant of PBS-BST composite at low filler volume fraction.

Series mixing rule :

$$\frac{1}{\varepsilon'_{eff}} = \frac{V_f}{\varepsilon'_{filler}} + \frac{(1 - V_f)}{\varepsilon'_{matrix}}$$

Modified-Lichtnecker's mixing rule :

$$\log \varepsilon'_{eff} = \log \varepsilon'_{matrix} + (1-n)V_{f} \log(\frac{\varepsilon'_{filler}}{\varepsilon'_{matrix}})$$

Maxwell-Wagner equation :

$$\varepsilon'_{eff} = \varepsilon'_{matrix} \left[\frac{2\varepsilon'_{matrix} + \varepsilon'_{filler} + 2V_f(\varepsilon'_{filler} - \varepsilon'_{matrix})}{2\varepsilon'_{matrix} + \varepsilon'_{filler} - V_f(\varepsilon'_{filler} - \varepsilon'_{matrix})} \right]$$

Where ε'_{eff} , ε'_{filler} , and ε'_{matrix} are the dielectric constant of the composite, filler, and polymer matrix, respectively, V_f is the volume fraction of the filler. In Modified-Lichtnecker's equation, *n* is fitting parameter, which was reported to be 0.3 in well-dispersed system. In this work, the experimental data was mostly fitted to the Modified-Lichtnecker's equation where n = 0.28 and at the filler volume fraction between 0.2 and 0.4, which can be implied that the fillers phase were essentially dispersed in matrix phase.

Figure E1 Dielectric constant of PBS/BST composites as a function of volume fraction of BST filler and experimental data fitting.

Appendix F Poly(butylene succinate)/modified - Barium Strontium Titanate Composite Thin-film Characterizations

Preparation of modified - Barium Strontium Titanate

The PBS-nanocomposite with the PBS:BST ratio of 90:10 were taken into further investigation on the effect of surface treatment in BST powder using Triethoxyvinylsilane coupling agent, Ethylene glycol and Propylene glycol as surface treatment agents. Firstly, barium strontium titanate powder were stirred in ethanol for 10 min at 60 °C. Secondly, each surface treatment agent was slowly dropped for 10%(v/v) and taken to sonicated bath for 30 min. Then, the mixture were taken to centrifugal machine at 5000 rpm for 10 min to separate the surface treated powder and ethanol, dried in the heating oven for 24 hr. Finally, the surface treated BST powder were mixed with PBS pellets by using solution mixing method following by compression molding.

Morphological Investigation

Figure F1 SEM image of surface treated BST/PBS composite a) non-treated b) Triethoxyvinyl silane-treated c) Ethylene glycol-treated d) Propylene glycol-treated.

Mechanical Properties

Figure F2 Tensile strength of surface treated BST/PBS composite.

Figure F3 Strain at break of surface treated BST/PBS composite.

84

Figure F4 Tensile modulus of surface treated BST/PBS composite.

Frequency-dependent Dielectric Properties

Figure F5 Dielectric constant of surface treated BST/PBS composite.

Figure F6 Loss tangent of surface treated BST/PBS composite.

CURRICULUM VITAE

Name: Mr. Kittichin Plungpongpan

Date of Birth: February 13, 1987

Nationality: Thai

University Education:

2007–2010 Bachelor Degree of Materials Engineering, Faculty of Engineering, Kasetsart University, Bangkok, Thailand.

Working Experience:

2010 – 2011 Plastic Part Approval, Faculty Engineering Department, Panasonic AVC Network co. ltd

Presentations:

 Kittichin Plungpongpan, Kulkeerati Koyanukkul, Attaphon Kaewvilai, Nollapan Nootsuwan, Prartana Keawsuwan, Apirat Laobuthee (2012, December 8) Preparation of PVP/MHEC Blended Hydrogels via Gamma Irradiation and their Calcium ion Uptaking and Releasing Ability. Poster presented at <u>10th Eco-Energy and Materials</u> <u>Science and Engineering Symposium</u>, Ubolratchathanee, Thailand.

2. Kittichin Plungpongpan, Nollaphan Nootsuwan, Nattamon Koonsaeng, Apirat Laobuthee, Hathaikarn Manuspiya (2013, December 18-21) Magnesium Dopant Effect on Dielectric Permittivity of Mg-doped Barium Strontium Titanate (Ba _{0.7}-_xSr_{0.3}Mg_xTiO₃) Derived via Sol-Gel Process. Poster presented at <u>11th Eco-Energy and</u> <u>Materials Science and Engineering Symposium</u>, Ubolratchathanee, Thailand.

3. Kittichin Plungpongpan, Nollaphan Nootsuwan, Nattamon Koonsaeng, Apirat Laobuthee, Hathaikarn Manuspiya (2014, April 22) Preparation and Characterization of Poly(Butylene Succinate) Thin-film Composite Incorporated with Barium Strontium Titanate Powder. Paper presented at <u>the 5th Research Symposium on</u> <u>Petrochemical and Materials Technology and the 20th PPC Symposium on Petroleum.</u> <u>Petrochemicals and Polymers</u>, Bangkok, Thailand.