CHAPTER VI
RESULT AND DISCUSSION

Five examples of different sizes are presented to verify the proposed
improved stage-wise superstructure model and to determine the efficiency of the
proposed model. These examples were implemented in GAMS (version 24.2.1) and
solved by DICOPT on a PC machine (i7 2.00GHz, 8 GB RAM, 64 hit-Operation
system). The number of main-stage and sub-stage that were used for this work, are
set at the solving limitation of GAMS program (4 main-stage and 5 sub-stage).

6.1 Examples from Literature

6.L1 Example 1
This example was taken from Huang and Karimi (2012). It involves
with one hot process stream (11), two cold process streams (J1-J2), one hot utility,
and one cold utility. The data for this example is presented in Table 6.1. The Heat
exchanger cost ( ) is 6,600+670(Area)°&

Table 6.1 Example 1data
Stream  TIN(°C) TOUT(°C) h(kWim2°C) F(KWI°C) Cost($/kW-yr)

il 167 Il 2 22
J 16 157 2 20
22 47 % 0.67 15
cu 21 47 1 - 20
HU 21 21 1 - 120

EMAT = °c
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Figure 6.1 First Heat Exchanger Configuration result from First MILP, First NLP, and Second MILP of Example L
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Figure 6.2 First Heat Exchanger Configuration result from Second NLP of Example 1
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Figure 6.3 Best Heat Exchanger Configuration result from MINLP of Example 1
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Although we obtained the same number of exchangers as different
from their HENS. Qur TAC is $73,684 with a total area of 174 m2 which are lower
than the results from Huang and Karimi (2012) ($76,327, area = 182.5 m2) It showed
that with a better TAC and area at the first iteration. This example show that
provinding arised due to solving MINLP with good feasible initial point can help
obtianing better solution.

The HEN configuration obtained from First MILP, First NLP, and
Second MILP (Figure 6.1) are the same. This case can be happened when the first
initial flow variables satisfy the next NLP.

From Figure 6.2, all the by-pass streams are eliminated from all stages
where no heat exchanger exists. From this step, the result from solving Second NLP,
except branch flow variables, which are obtained from Second MILP, are used as
initial values for solving MINLP.

By comparing our solution with the result from Huang and Karimi
(2012) (Figures 6.3 and 6.4), this example illustrated that synthesizing HEN problem
with good feasible initial points can result in obtaining a better solution.

Table 6.2 Comparison of example 1 result of our model with literature

Comparison our model Huangi 26161{12;(arimi Bjork arzgo\(l)\ée)sterlund
Total area(m?) 174 1825 Not report
Number of HE 3 3 3
Annualized  utility

cost($)

Investment cost(§) 73,695 16,327 76,330
TAC($) 73,695 16,327 76,330

Max CPU time(s) 2,978 3,600 938
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6.1.2 Example 2

This example was taken from Bjork and Westerlund (2002). They
used this example to illustrate the impact of non-isothermal mixing. The problem
consists of three hot streams, two cold streams, one hot utility and one cold utility.
The data for this example is presented in Table 6.3. The Heat exchanger cost ( ) Is
6,000+600(Area)°&. Our model yields a HEN with four exchangers and a TAC of
$94,880 which is slightly lower than the best network reported in literature(Bjork et
al., 2002; Huang et a1, 2012). While Bjork and Westerlund (2002) reported the same
HEN configuration as their best network with a TAC of $96,001. Huang and Karimi
(2012) also solved the same problem and obtained the same HEN configuration as
Bjork and Westerlund (2002) with a TAC of $95,643 as summarized in Table 6.4.

Table 6.3 Example 2 cata
Stream TIN(’C) TOUT(’C) h(kWimi-°C) F(kWI°C) Cost(SkW-yr)

il 155 30 2 8
12 80 40 2 15
13 200 40 2 15
J 20 160 2 20
J2 20 100 2 15
cu 290 300 2 20
HU '680 680 2 120

EMAT = I°c
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Figure 6.5 One of Heat Exchanger Configuration result from First MILP and First NLP of Example 2.
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Figure 6.6 One of Heat Exchanger Configuration result from Second MILP of Example 2.
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Figure 6.7 One of Heat Exchanger Configuration result from Second NLP of Example 2
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Figure 6.8 One of Heat Exchanger Configuration result from MINLP after solving each iteration of Example 2.



kW/°C
8 155X

kW/°C
15 80°C

kW/°C 1200 kw
1315 200°% 120X

160°c 160°C

100X

Figure 6.9 Final Heat Exchanger Configuration result of Example 2 after second iteration by applying a TACU constraint,

100X0

600 kW
0 4Q°cC

1200 kW

0 40X

>

14.4X £

Total area (m?2) 218.1
Annualized utility cost
Investment cost $95,743

Total annualized cost $95,743

1000 kw
0 30aC 30N
40°c.
40X

-V

kW /°C
11.031 20K 20 g1
KW /°C
20X 15 )2



kW/°C 1000 kw
1 8 155°(

A 3 30t>c.
1
kW/OC 600 kW
40°c
12 1 15 I 80°c \A/g 40°i:
kw/eC 1200 KW 1200 kw
13 1 15 I 200°c £fcl20°c I k 40°c 40°C
IN o~
y .
’ 4 o 0
c ™ cD
o e ©
' ' 135.3*0 » fc 8.669
kW/°C
160°c 160°c 1788°C é.k 72 9°C’\ % 11.331 20°c | 20 I J-1
kW /°C
100 . 100-c 4. 20-c 1 15 132
Total area (m?2) 215.5
Annualized utility cost
Investment cost $94,880

Total annualized cost $94.880

Figure 6.10 The best Heat Exchanger Configuration result from MINLP of Example 2 after third iteration by applying a TAC1
constraint of previous iteration (895,743).
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Figure 6.11 Best Heat Exchanger Configuration result from Huang and Karimi (2012) of Example 2.

30°c

40°c

KW/°C
20°cc 20 21

kwW/°C
20°¢c 15 J2



59

By Comparing between the First MILP and Second MILP (Figures
6.5 and 6.6 respectively), although the total area and TAC obtained from these two
models are equal, the HEN configurations are slightly different. That is because
solving MILP by using initial value can result in rearranging the result, which is used
as initial value for the next model. Hence, good initial values can gradually tune the
model to give solution to a desirable direction corresponding to each solving step.

We use the TAC ($180,753) as an upper bound to solve second
iteration and it obtains a HEN with TAC of $95,743 (Figure 6.9). Finally, from this
strategy, we obtained the best result of this problem (Figure 6.10) with a TAC of
$94,880. The result comparison of our work and literature are shown in Table 6.4.
The HEN configuration are different but our TAC is slighly better. This likely arises
because of linear approximation technique in our objective function.

Table 6.4 Comparison of example 2 result of our model with literature

Comparison Our model Huang(zagldz)Karimi Bjork arz(zjovalze)sterlund
Total area(m?2) 215.5 217.8 219.2
Number of HE 4 4 4
Annualized utility

cost($)

Investment cost($) 94,880 95,643 96,001
TAC($) - 94,880 95,643 96,001

Max CPU time(s) 3,353 3,600 96

From examples 1and 2, the outlet temperature of hot and cold branch
streams can be cooled or heated to a temperature lower or high than its parent
stream's final temperature. As shown in example 1 (Figure 6.3), the outlet
temperature if the HE3 sub-steam is 68.9°c which lower than its parent stream Il
with a final temperature of 77°c. Similarly, at the cold stream J1 of example 2
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(Figure 6.10), the outlet temperature of HEL sub streams (178.8°C) is higher than the
final temperature of its parent stream JL (160°C). In contrast, many previous HENS
(Yee et al., 1990; Bjork et al., 2002; Bergamini et al., 2008), models did not allow
these case to happen. Huang and Karimi (2012) demonstrated that by limitating the
sub-stream temperatures to be within the initial and final temperatures of their parent
stream can miss other possibly HEN configurations. They proved effect of bounding
temperature by proposing the method for synthesizing HEN with their non-
isothermal mixing strategy by adding new variables. In this work, we bound all the
temperature variables based on possible maximum and minimum temperature of the
two matching parent streams. From this technique, all our temperature variables
whether hot stream or cold stream can be located at any possible values.

6.1.3 Example 3

This example (Table 6.5) was also taken from Bjork and Westerlund
(2002). It includes two hot and four cold process streams with one hot and one cold
utility. The exchanger cost () is 8,000450(Area)°75. Bjork and Westerlund (2002)
reported their best model with six HEs, one heater, one cooler, and the best TAC of
$139,083 with thier non-isothermal strategy. Their TAC is lower than the $140,367
reported by Bergamini et al.(2007) as the global optimal solution from their strategy
while Bjork and Westerlund (2002) did not report their HEN configuration. Also,
Huang and Karimi (2012) model obtained a lower TAC of $§128,169 (Figure 6.17).
Comparing with our model, the TAC is about $123,637 (Figure 6.16).

Oursolving strategy of this problem started with guessing initial value
of branch flow. After changing initial value when first iteration is infeasible, the first
feasible result TAC is $123,637. Then, this TAC was used as upper bound TAC for
next solving iteration. After solving by using upper bound TAC of $123,637, the
final result is infeasible although changing initial point based on the aforementioned
solving strategy. We then conclude that the final result with a TAC of $123,637 is
the best result. Figures 6.11 to 6.15 are the results ofeach step to the final result.



Comparison the result between solving First MILP (Figure 6.12) and
NLP (Figure 6.13), the heat (FIU1) and cold (CU2) utilities are decreased while heat
exchange value (HE2) increases. That is because the objective function of First NLP
is to minimize utility consumption while branch flow variable are not fixed.

Table 6.5 Example 3 data

Stream TIN(°C) TOUT(°C) h(kWW-°C) F(kW/°C) Cost($/kW-yr)

11 180 75 -2 30
12 240 60 2 40
i 40 230 15 20
12 120 260 L5 15
13 40 130 2 25
)4 80 190 2 20
cu 25 25 1 - 20
HU 325 325 2 : 120
EMAT = [°c

The results from Second MILP and Second NLP (Figures 6.14 and
6.15) illustrate that these are sub-optimal results compare with the final MINLP
result. In contrast, to example 1 where, optimum solution was obtained after solving
the Second NLP step. This is solely caused by the size of the problem. Solving a
bigger size problem is more challenge since there are more alternative possibility
results. Moreover, due to solving each step with fixing one variable to find the other
can cause sub-optimal result of each step. Therefore, using all initial value from
Second NLP for solving MINLP can cause the model fails because of sup-optimal
result that occur from each step.
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Figure 6.12 Heat Exchange Configuration result from First MILP of Example 3.
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Figure 6.13 Heat Exchange Configuration result from First NLP of Example 3.
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Figure 6.15 Heat Exchange Configuration result from Second NLP of Example 3.
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Figure 6.16 Final Heat Exchange Configuration result from MINLP of Example 3,
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Figure 6.17 Best Heat Exchange Configuration result from Huang and Karimi (2012) for Example 3.
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Table 6.6 Comparison ofexample 2 result of our model with literature

Comparison Our model
Total area(m?2) 1,338.3
Number of HE 8
Annualized utility

cost($) 44,100
Investment cost($) 79,537
TAC($) 123,637
Max CPU time(s) 19,108

6.1.4 Example 4

Huang and Karimi

Bergamini et al.

(2012) (2007)
1728.4 1190.3
8 10
44,100 44,100
84,069 96,267
128,169 140,367
7,200 Not report

This example (Table 6.7) was originally taken from Yee and

Grssmann (1990). It involves five hot (11-15) and one cold (JI) process streams with

one hot and one cold utility. A main propose of this example is to compare the

isotheram| and non-isothermal strategies. The exchanger cost is 1200(Area)°6 $/m2.

Huang and Karimi (2012) reported their best model with six HEs, one heater, one
cooler, and the best TAC of $571,657 (Figure 6.18) while the best result reported
(Figure 6.20) by Khorasany and Fesanghary (2009) was $572,'476-These results are
lower than the two solutions that reported by Yee and Grossmann (1990) (8576,640
via the isothermal strategy and $575,595 by the sequential approach). Comparing

with our model, the HEN configuration consists of seven HEs, one heater, and one
cooler, the our best TAC isof $565,704 (Figure 6.18).
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Figure 6.18 Final Heat Exchange Configuration result from MINLP of Example 4.
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Figure 6.19 Best Heat Exchange Configuration result from Huang and Karimi (2012) for Example 4.
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Table 6.7 Example 4 data

Stream  TIN(°C) TOUT(°C) h(kW/m*“°C) F(kW/°C) Cost($/kW-yr)

il 227 47 2 6
12 207 107 . 2 4
13 187 87 2 6
14 107 87 2 20
15 107 47 2 12
J1 17 387 2 18
cu 27 47 2 - 10
HU 427 4217 2 - 140
EMAT = 5°

This example consists only one large cold steam, giving a high possibility
of splitting the cold stream. Therefore, the outlet temperature of sub-stream can
affect the HEN configuration significanly (Huang €t aI., 2012). Our solution uses
higher number of HEs and annualized utility consumption, but lower heat exchanger
area.



Table 6.8 Comparison of example 4 result of our model with literature

Comparison Our model Huang(za(glldz;mrimi Fe'é:r?gr?]ﬁ;y(;ggg)
Total area(m?2) 186.9 257.9 265.9
Number of HE 9 8 8
ﬁ\o”srt‘(”g)”zed utility 519171 499,263 498,950
Investment cost($) 55,533 - 72,394 73,526
TAC($) 565,704 571,657 572,476
Max CPU time(s) 417 3600 t930

6.2 Example from Real Industrial Process

This example consists of eleven hot and two cold process streams with one
hot and one cold utility."The data for the example is presented in Table 6.10. the
fixed cost of units is 127,129$/unit, and the area cost coefficient is 271.2 $/m2. Oue
model yields nine HEs, one heater, four cooler, and the best TAC of $6,751,330
(Figure 6.21) and the maximum PC time is 25,775  The main propose of this

example isto compare the effect ef problem size with computational time.
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Table 6.9 Example from real industrial process

Stream TIN(°C) TOUT(°C) h(kW/m2°C) F(kW/°C) Cost($/kW -yr)

1 140.2 39.5 2 382.3

12 248.8 110 2 115.2

13 170.1 60 2 121.6

14 277 121.9 2 90.1

15 250.6 90 2 471.2

16 210 163 2 4243 -

17 303.6 270.2 2 840.7

18 360 115 2 140.8

19 1 50 2 4419

no 178.6 108.9 2 170.4

111 359.6 280 2 87.3

Il 30 130 2 720

J2 130 350 2 1051

cu 25 25 2 . 2.78
HU 370 370 2 - 27.78

EMAT = 10°¢c
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Total area (m?2) 6,296.7
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Total annualized cost $6,751,330

Figure 6.21 Final Heat'Exchanger configuration from MINLP of Example from real
industrial process:
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