OXIDATIVE BROMINATION OF METHANE BY BARIUM OXIDE OR TUNGSTEN OXIDE ON SILICA CATALYSTS: EFFECT OF CATALYSTS PREPARATION

.

Korn Somjit

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University and Institut Français du Pétrole 2015

0

1

Thesis Title:	Oxidative Bromination of Methane by Barium Oxide or
	Tungsten Oxide on Slica Catalysts: Effect of Catalysts
	Preparation
By:	Korn Somjit
Program:	Petrochemical Technology
Thesis Advisor:	Asst. Prof. Boonyarach Kitiyanan

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

College Dean (Asst. Prof. Pomthong Malakul)

Thesis Committee:

3. Kottyouran

(Asst. Prof. Boonyarach Kitiyanan)

Pranjoeh /

(Assoc. Prof. Pramoch Rangsunvigit)

T. Dain these ····

(Dr. Tanate Danuthai)

ABSTRACT

5671013063: Petrochemical Technology Program

Korn Somjit: Oxidative Bromination of Methane by Barium Oxide or Tungsten Oxide on Silica Catalysts: Effect of Catalysts Preparation.

Thesis Advisor: Asst. Prof. Boonyarach Kitiyanan 71 pp.

Keywords: Oxidative bromination/ Methane/ Methyl bromide/ Ba/SiO₂ catalyst/ W/SiO₂ catalyst

Oxidative bromination of methane (OBM) has been proposed for methane activation. In this work, methane was brominated by HBr/H₂O solution with oxygen as an oxidizing agent to produce methyl bromide. Barium oxide or tungsten oxide on silica were chosen as the catalysts to improve the activity and selectivity of the reaction. The catalysts were prepared by 2 techniques, incipient wetness impregnation and sol-gel method. The effects of catalyst preparations on oxidative bromination of methane were investigated. The reaction was carried out in a fixed-bed continuous-flow reactor at atmospheric pressure. The catalysts were characterized by BET and XRD techniques. The results showed that, under the same condition (20 ml/min of CH₄, 5 ml/min of O₂, 5 ml/min of N₂, 6.5 ml/h of 48 wt% HBr/H₂O and temperature at 660 °C), the sol-gel catalysts exhibited higher methane conversion and methyl bromide selectivity than impregnated catalysts.

บทคัดย่อ

กรณ์ สมจิตร : ออกซิเคทีฟโบรมิเนชันของมีเทนโคยใช้ตัวเร่งปฏิกิริยาแบเรียมออกไซต์ หรือทั้งสเตนออกไซต์บนตัวรองรับซิลิกา : ผลของการเตรียมตัวเร่งปฏิกิริยา (Oxidative Bromination of Methane by Barium Oxide or Tungsten Oxide on Silica Catalysts: Effect of Catalysts Preparation) อาจารย์ที่ปรึกษา : ผศ. คร. บุนยรัชต์ กิติยานันท์ 71 หน้า

ปฏิกิริยาออกซิเดทีฟโบรมิเนชันเป็นปฏิกิริยาสำหรับกระตุ้นความว่องไวของมีเทน ใน งานวิจัยนี้มีเทนจะถูก โบรมิเนทโดยสารละลายกรดไฮโดร โบรมิกและมีออกซิเจนเป็นตัวกระตุ้น ให้เกิดปฏิกิริยาออกซิเดชันเพื่อผลิตเมทิลโบรไมด์ โดยได้ใช้แบเรียมออกไซต์หรือทังสเตนออก ไซต์ บนตัวรองรับซิลิกาเป็นตัวเร่งปฏิกิริยาเพื่อปรับปรุงการเลือกเกิดของเมทิลโบรไมด์ ซึ่งตัวเร่ง ปฏิกิริยาจะเตรียมด้วยวิธีที่แตกต่างกัน 2 วิธี คือ วิธีการเอิบชุ่ม และ วิธีการโซลเจล โดยผลของการ เตรียมตัวเร่งต่อปฏิกิริยาออกซิเดทีฟโบรมิเนชันของมีเทนจะถูกศึกษา สารตั้งต้นทั้งหมดจะถูก ไปอนเข้าสู่เตาปฏิกรณ์แบบต่อเนื่องและทำปฏิกิริยาที่ความดันบรรยากาศ ตัวเร่งปฏิกิริยาจะถูก วิเคราะห์ด้วยเทคนิกต่างๆ เพื่อหาพื้นที่ผิวและความเป็นผลึก จากผลการทดลองพบว่าที่สภาวะการ ทดลองเดียวกัน (20 มิลลิลิตรต่อนาทีของมีเทน, 5 มิลลิลิตรต่อนาทีของออกซิเจน, 5 มิลลิลิตรต่อ นาทีของไนโตรเจน และ6.5 มิลลิลิตรต่อชั่วโมงของกรดไฮโครโบรมิก และ อุณหภูมิการทำ ปฏิกิริยาเท่ากับ 660 องศาเซลเซียส) ตัวเร่งปฏิกิริยาที่เตรียมด้วยวิธีโซลเจลจะให้ก่าการแปรผัน ของมีเทนและค่าการเลือกเกิดของเมทิลโบรไมด์สูงกว่าตัวเร่งปฏิกิริยาฏิกิริยาจากวิธีการเอิบชุ่ม ซึ่งอาจจะเป็นเหตุผลมาจากโลหะออกไซต์ของตัวเร่งปฏิกิริยาแบบโซลเจลมีขนาดเล็กว่าตัวเร่ง ปฏิกิริยาแบบเอิบชุ่ม

o

ACKNOWLEDGEMENTS

This research project would not have been possible without the support of many people. First, the author wishes to express my profound gratitude and deep regards to my advisor, Asst. Prof. Boonyarach Kitiyanan who is abundantly helpful and offered invaluable assistance, support and guidance. Deepest gratitude is also due to the members of the supervisory committee, Assoc. Prof. Pramoch Rangsunvigit and Dr. Tanate Danuthai. If the author is without whose knowledge and assistance, this study will not have been successful.

In addition, the author would also like to convey thanks to The Petroleum and Petrochemical College Chulalongkorn University and The National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, Thailand. Special thanks also all my PPC friends for creative suggestions and encouragement.

Moreover, this research work was partially supported by the Ratchadapisek Sompoch Endowment Fund (2013), Chulalongkorn University (CU-56-900-FC) and Thailand Research Fund (IRG5780012).

Last, the author wishes to express my love and gratitude to my families for their understanding and cheerfulness, through the duration of my studies.

σ

0

TABLE OF CONTENTS

PAGE

.

Т	tle Page	i
А	bstract (in English)	iii
А	bstract (in Thai)	iv
А	cknowledgements	v
Т	able of Contents	vi
L	st of Tables	viii
L	st of Figures	xi
CHAP	ſER	
I	INTRODUCTION	1
II	LITERATURE REVIEW	3
	2.1 Utilization of Methane	3
	2.2 Halogenation of methane	4
	2.3 Oxidative Bromination of Methane (OBM)	7
	2.4 Related Articles of Oxidative Bromination of Methane	11
	2.5 Related Articles of Methylation with Alkylating Agent	17
II	Ι ΜΕΤΗΟDOLOGY	22
	3.1 Materials and Equipments	22
	3.1.1 Chemicals	22
	3.1.2 Gases	22
	3.1.3 Equipments	22
	3.2 Experimental Procedures	23
	3.2.1 Catalyst Preparation	23
	3.2.2 Catalyst Characterization	24
	3.2.3 Catalytic Activity Testing	25

σ

1-0

CHAPTER			PAGE
IV	RESULTS AND DISCUSS	SION	27
	4.1 Catalytic Activity Testin	ng	27
	4.1.1 Product Distribut	ion for the OBM Reaction	27
	4.1.2 Effect of Ba/SiO ₂	and W/SiO ₂ Catalyst Preparation	
	on the OBM Rea	ction	28
	4.1.3 Effect of Metal L	oading on Impregnated Catalyst	
	on the OBM Read	tion	32
	4.1.4 Effect of Metal L	oading on Sol-gel Catalyst	
	on the OBM Read	tion	35
	4.2 Catalyst Characterizatio	n	38
	4.2.1 X-ray Diffraction	(XRD)	38
	4.2.2 Surface Area Ana	lysis (BET)	40
V	CONCLUSIONS AND RE	COMMENDATIONS	42
	5.1 Conclusions		42
	5.2 Recommendations		43
	REFERENCES		44
	APPENDICES		47
	Appendix A Calculation o	f Methane Conversion	
	and Product S	Selectivity	47
	Appendix B Calculation of	f Catalyst Composition	50
	Appendix C Calibration D	ata and Feed Flow Calibration	52
	Appendix D Raw Data of 2	Reaction Results	56
	CURRICULUM VITAE		71

-

: **

a

-

LIST OF TABLES

TA	BLE
----	-----

 \hat{f}

•

PAGE

2.1	Enthalpy and free energy of formation of methane-halogen reactions	7
2.2	Methane oxidative bromination results over Ru/SiO ₂	12
2.3	Methane oxidative bromination results over Ru/SiO ₂ catalyst	12
2.4	Catalyst performance for OBM reaction	14
2.5	OBM reaction on different supported metal oxide catalysts	17
3.1	Abbreviation of barium oxide or tungsten oxide on silica catalysts	24
4.1	Abbreviation of barium oxide or tungsten oxide on silica catalysts	29
4.2	Crystalline size of metal oxide impregnated catalysts by Scherrer's	
	equation	40
4.3	Specific surface area, pore volume and average pores size s of the	
	support and prepared catalysts	41
A1	Peak area of exhaust stream	48
A2	Response factor (obtained from Calibration Data)	48
A3	Mol of each chemical species in the exhaust stream	48
A4	Methane conversion	49
A5	Total mol of Product	49
B1	The ingredients of impregnated catalyst	51
B2	The ingredients of sol-gel catalyst	52
C1	The response factors calculated from the Single Point	
	External Standard	53
C2	The response factors calculated from the Multiple Point	
	External Standard	55

÷

Dl	The results of the reaction with 20 ml/min of CH_4 , 5 ml/min of O_2 , 5	5
	ml/min of N ₂ , 6.5 ml/h of 48 wt% HBr/H ₂ O, reaction temperature	
	660 °C	56
D2	The results of the reaction with 20 ml/min of CH_4 , 5 ml/min of O_2 , 5	5
	ml/min of N ₂ , 6.5 ml/h of 48 wt% HBr/H ₂ O, reaction temperature	
	660 °C, and 2 g of commercial SiO_2	57
D3	The results of the reaction with 20 ml/min of CH_4 , 5 ml/min of O_2 , 5	5
	ml/min of N ₂ , 6.5 ml/h of 48 wt% HBr/H ₂ O, reaction temperature	
	660 °C, and 2 g of sol-gel SiO_2	58
D4	The results of the reaction with 20 ml/min of CH ₄ , 5 ml/min of O ₂ ,	5
	ml/min of N ₂ , 6.5 ml/h of 48 wt% HBr/H ₂ O, reaction temperature	
	660 °C, and 2 g of 1Ba/SiO ₂ -I	59
D5	The results of the reaction with 20 ml/min of CH ₄ , 5 ml/min of O ₂ ,	5
	ml/min of N ₂ , 6.5 ml/h of 48 wt% HBr/H ₂ O, reaction temperature	
	660 °C, and 2 g of 2Ba/SiO ₂ -I	60
D6	The results of the reaction with 20 ml/min of CH_4 , 5 ml/min of O_2 ,	5
	ml/min of N ₂ , 6.5 ml/h of 48 wt% HBr/H ₂ O, reaction temperature	
	660 °C, and 2 g of 3Ba/SiO ₂ -I	61
D7	The results of the reaction with 20 ml/min of CH_4 , 5 ml/min of O_2 ,	5
	ml/min of N ₂ , 6.5 ml/h of 48 wt% HBr/H ₂ O, reaction temperature	
	660 °C, and 2 g of 1Ba/SiO ₂ -S	62
D8	The results of the reaction with 20 ml/min of CH ₄ , 5 ml/min of O ₂ ,	5
	ml/min of N ₂ , 6.5 ml/h of 48 wt% HBr/H ₂ O, reaction temperature	
	660 °C, and 2 g of 2Ba/SiO ₂ -S	63
D9	The results of the reaction with 20 ml/min of CH_4 , 5 ml/min of O_2 ,	5
	ml/min of N ₂ , 6.5 ml/h of 48 wt% HBr/H ₂ O, reaction temperature	
	660 °C, and 2 g of 3Ba/SiO ₂ -S	64

PAGE

Ø

D10	The results of the reaction with 20 ml/min of CH_4 , 5 ml/min of O_2 , 5	
	ml/min of N ₂ , 6.5 ml/h of 48 wt% HBr/H ₂ O, reaction temperature	
	660 °C, and 2 g of 1W/SiO ₂ -I	: 65
D11	The results of the reaction with 20 ml/min of CH_4 , 5 ml/min of O_2 , 5	
	ml/min of N ₂ , 6.5 ml/h of 48 wt% HBr/H ₂ O, reaction temperature	
	660 °C, and 2 g of $2W/SiO_2$ -I	66
D12	The results of the reaction with 20 ml/min of CH_4 , 5 ml/min of O_2 , 5	
	ml/min of N ₂ , 6.5 ml/h of 48 wt% HBr/H ₂ O, reaction temperature	
	660 °C, and 2 g of 3W/SiO ₂ -I	67
D13	The results of the reaction with 20 ml/min of CH_4 , 5 ml/min of O_2 , 5	
	ml/min of N ₂ , 6.5 ml/h of 48 wt% HBr/H ₂ O, reaction temperature	
	660 °C, and 2 g of 1W/SiO ₂ -S	68
D14	The results of the reaction with 20 ml/min of CH_4 , 5 ml/min of O_2 , 5	
	ml/min of N ₂ , 6.5 ml/h of 48 wt% HBr/H ₂ O, reaction temperature	
	660 °C, and 2 g of 2W/SiO ₂ -S	69
D15	The results of the reaction with 20 ml/min of CH_4 , 5 ml/min of O_2 , 5	
	ml/min of N ₂ , 6.5 ml/h of 48 wt% HBr/H ₂ O, reaction temperature	
	660 °C, and 2 g of 3W/SiO ₂ -S	70

σ

x

o

LIST OF FIGURES

FIGURE

2.1	Possible pathway for CH3Br and CO formation.	8
2.2	Partial oxidation of alkanes via bromination followed by the	
	reaction with solid metal oxide mixtures.	9
2.3	Product distribution in the reaction of CH_4 with CH_2Br_2 in	
	the presence of I_2 .	10
2.4	The influence of 40 (wt.%)HBr/H ₂ O flow rates on OBM	
	reaction	15
2.5	Methane oxidative bromination as a function of temperature	
	at CH ₄ , O ₂ , and 40.0 (wt.%) HBr/H ₂ O (liquid) flow rates of	
	5.0, 5.0, 8.0 mL/h, respectively.	16
2.6	Mechanism of toluene alkylation with methanol using	
	H-zeolite.	18
2.7	Process for preparation of para-xylene from the alkylation of	
	toluene with CH ₃ Br.	18
2.8	Catalytic performance comparison of P/HZSM-5, Si/HZSM-	
	5 and Si-P/HZSM-5.	19
2.9	Possible reaction mechanism over Si-P/HZSM-5 catalyst.	20
3.1	The catalyst preparation flow diagram of the incipient	
	wetness method.	23
3.2	The catalyst preparation flow diagram of the sol-gel method.	23
3.3	Procedure flow scheme for oxidative bromination of	
	methane reaction.	25
3.4	Experimental setup for oxidative bromination of methane	
	reaction	26

-

0

PAGE

FIGU	RE	PAGE
4 1		
4.1	Methane conversion and product distributions as a function	
	of time on stream. Reaction conditions: 20 ml/min of CH4, 5	
	ml/min of O2, 5 ml/min of N2, 6.5 ml/h of 48 wt%	
	HBr/H2O, reaction temperature 660 °C.	28
4.2	Methane conversions as a function of time on stream at	
	various catalysts. Reaction conditions: 20 ml/min of CH ₄ , 5	
	ml/min of O ₂ , 5 ml/min of N ₂ , 6.5 ml/h of 48 wt% HBr/H ₂ O,	
	reaction temperature 660°C.	30
4.3	Methyl bromide selectivity as a function of time on stream at	
	various catalysts. Reaction Conditions: 20 ml/min of CH ₄ , 5	
	ml/min of O ₂ , 5 ml/min of N ₂ , 6.5 ml/h of 48wt% HBr/H ₂ O,	
	reaction temperature 660°C.	31
4.4	Methyl bromide yield of various catalysts at the same	
	reaction condition.	32
4.5	Methane conversion of different metal loading on	
	impregnated catalysts at the same reaction condition.	33
4.6	Methyl bromide selectivity of different metal loading on	
	impregnated catalysts at the same reaction condition.	34
4.7	Methyl bromide yield of different metal loading on	
	impregnated catalysts at the same reaction condition.	35
4.8	Methane conversion of different metal loading on sol-gel	
	catalysts at the same reaction condition.	36
4.9	Methyl bromide selectivity of different metal loading on sol-	
	gel catalysts at the same reaction condition.	37
4.10	Methyl bromide yield of different metal loading on sol-gel	
	catalysts at the same reaction condition.	38
Cl	Response factors from GC FID as a function of injection	
	volume of methyl bromide.	54

0

-

.

FIGURE PAGE C2 Response factors from GC FID as a function of injection volume of dibromomethane. 54

0