LIFE CYCLE ASSESSMENT OF ASPHALT: A FOCUS ON END OF LIFE AND RECLAIMED ASPHALT PAVEMENT (RAP)

Pongtorn Naiyaboot

A Thesis Submitted in Partial Fulfilment of the Requirements
for the Degree of Master of Science

The Petroleum and Petrochemical College, Chulalongkorn University
in Academic Partnership with

The University of Michigan, The University of Oklahoma,
Case Western Reserve University and Institut Français du Pétrole

2014

Thesis Title: Life Cycle Assessment of Asphalt: A Focus on End of Life

and Reclaimed Asphalt Pavement (RAP)

By: Pongtorn Naiyaboot

Program: Petroleum Technology

Thesis Advisors: Asst. Prof. Pomthong Malakul

Dr. Thawach Chatchupong

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

......College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

(Asst. Prof. Pomthong Malakul)

(Dr. Thawach Chatchupong)

(Asst. Prof. Marit Nithitanakul)

(Asst. Prof. Kitipat Siemanond)

ABSTRACT

5573027063: Petroleum Technology Program

Pongtorn Naiyaboot: Life Cycle Assessment of Asphalt: A Focus on

End of Life and Reclaimed Asphalt Pavement (RAP)

Thesis Advisors: Asst. Prof. Pomthong Malakul and Dr. Thawach

Chatchupong, 140 pp.

Keywords: Hot-mixed asphalt (HMA)/ Warm-mixed asphalt (WMA) / Life cycle

assessment (LCA)/ Reclaim Asphalt Pavement (RAP)

Asphalt is an important product of oil refineries-that is extensively used for road pavement. When an asphalt concrete pavement reaches the end of its designed life, the road surfacing is milled, creating a milling waste material known as reclaimed asphalt pavement (RAP) containing aggregate and asphalt binder. In this study, a cradle-to-grave life cycle assessment (LCA) was performed to evaluate the environmental impacts of hot-mixed asphalt (HMA) and warm-mixed asphalt (WMA) in terms of global warming potential (GWP) and energy input, with a focus on different end-of-life management scenarios of the asphalt pavement and the use of RAP. The study scope covered the entire life cycle of asphalt including raw materials, production, pavement (use) and end of life. The studied end-of-life processes were reuse (cold in-place recycling), recycle (hot in-place and in-plant recycling) and landfill (disposal). The functional unit was set to be 7 m x 1 km x 0.05 m of road pavement. The inventory data were collected from both primary and secondary data and analyzed by using commercial LCA software, SimaPro 7.3. The results show that recycling is the best end-of-life management for asphalt pavement. WMA has better performance than HMA in both GWP and energy consumption, but the benefits are not significant (<5 %). The comparison between the BAU (business as usual) case and the best case of HMA and WMA revealed a reduction of energy consumption by ~8 % and GHG emission by ~22 %.

บทคัดย่อ

พงศ์ธร นัยบุตร : การประเมินผลกระทบสิ่งแวคล้อมและพลังงานตลอควัฏจักรชีวิต ของแอสฟิลต์คอนกรีตโดยเน้นศึกษาการจัดการแอสฟิลต์ที่ถูกใช้แล้วและการนำกลับมาใช้ใหม่ (Life Cycle Assessment of Asphalt: A Focus on End of Life and Reclaimed Asphalt Pavement (RAP)) อ. ที่ปรึกษา: ผศ. คร. ปมทอง มาลากุล ณ อยุธยา และ คร. ธวัช ฉัตรชูพงศ์ 140 หน้า

งานวิจัยนี้ทำการประเมินผลกระทบด้านสิ่งแวคล้อมและพลังงานของแอสฟัลต์คอนกรีต โดยเน้นศึกษาการจัดการแอสฟัลต์ที่ถูกใช้แล้วและการนำกลับมาใช้ใหม่ โดยมีการเปรียบเทียบ ผลกระทบระหว่างแอสฟิลต์คอนกรีตแบบใช้ความร้อนต่ำกับแอสฟิลต่ำคอนกรีตแบบใช้ความร้อน ปกติแบบเดิม โดยใช้กระบวนการประเมินผลกระทบตลอดวัฏจักรชีวิตในการวิเคราะห์ การศึกษา ้นี้จะทำการวิเคราะห์ผลกระทบโดยจะเน้นศึกษาในส่วนของแอสฟัลต์ที่สิ้นสุดอายุการใช้งาน และ เทคโนโลยีในการจัดการแอสฟัลต์ที่ถูกใช้แล้ว รวมไปถึงเทคโนโลยีในการนำแอสฟัลต์กลับมาใช้ ใหม่ ทั้งนี้การศึกษายังครอบคลุมไปถึงการวิเคราะห์สัคส่วนในการจัดการแอสฟิลต์ที่ถูกใช้แล้วใน ประเทศไทย และนำเสนอแผนของสัคส่วนในการจัดการแอสฟัลต์ที่ถูกใช้แล้วที่ช่วยลดการใช้ พลังงานและผลกระทบต่อสิ่งแวคล้อมในอนาคต โคยในการศึกษาจะนำแอสฟัลต์แบบใช้ความ ร้อนต่ำและแอสฟัลต์คอนกรีตแบบใช้ความร้อนปกติมาเปรียบเทียบกัน ขอบเขตของการศึกษา ครอบคลุมตลอดวัฏจักรตั้งแต่วัตถุคิบ การผลิตแอสฟิลต์ การขนส่ง การปูถนน จนถึงการกำจัดและ การนำกลับมาใช้ใหม่ของแอสฟัลต์คอนกรีต โดยการศึกษาครั้งนี้ มีหน่วยของการศึกษา คือถนน ขนาดความกว้าง 7 เมตร ความยาว 1 กิโลเมตรและความหนา 5 เซนติเมตร ข้อมูลต่างๆ ที่เก็บ รวบรวมจะถูกนำมาวิเคราะห์โดยใช้โปรแกรม SimaPro 7.3 ด้วยวิธี Eco-Indicator 95 และ CML baseline 2000 เพื่อประเมินภาระด้านสิ่งแวดล้อมด้านต่างๆ โดยเน้นที่ผลกระทบด้านภาวะโลก ร้อนและพลังงานที่ใช้ จากผลการศึกษาแสดงให้เห็นว่า หากมีการนำแอสฟิลต์กลับมาใช่ใหม่ใน กระบวนการใช้ความร้อน ทั้งแบบผลิตที่โรงงานและแบบผลิต ณ จุดรื้อถอนจะสามารถลดการใช้ พลังงานและผลกระทบต่อสิ่งแวดล้อมได้คีกว่าการนำกลับไปใช้ใหม่ในรูปหินรองพื้นถนนและ การนำไปฝังกลบ นอกจากนี้แอสฟัลต์ออนกรีตแบบใช้ความร้อนต่ำมีผลกระทบค้านภาวะโลก ร้อนและพลังงานที่ใช้ในกระบวนการต่ำกว่าแอสฟัลต์คอนกรีตแบบใช้ความร้อนปกติแต่ต่ำกว่าไม่ มาก ซึ่งคาดว่าการลดอุณหภูมิในการผลิตมากขึ้นจะช่วยลดผลกระทบต่อสิ่งแวดล้อมมากขึ้นด้วย

ACKNOWLEDGEMENTS

This work would not have been possible without the assistance of the following individuals:

First and foremost, I sincerely appreciate Asst. Prof. Pomthong Malakul, my advisor, and Dr. Thawach Chatchupong, my co-advisor, for providing invaluable knowledge, creative comments, untouchable experience in classroom, and kind support throughout this research work.

I would like to thank Asst. Prof. Manit Nithitanakul and Asst. Prof. Kitipat Siemanond for being my thesis committee. Their suggestions and comments are very beneficial for me and this work.

I also thank Mr. Seksan Papong for your kind suggestion and kind support throughout this research work.

This thesis work is funded by the Petroleum and Petrochemical College and PTT Research and Technology Institute of PTT Public Company Limited, Thailand

I greatly appreciate all PPC staffs and my friends who gave me support and encouragement.

Finally, I am deeply indebted to my family for their love, understanding, encouragement, and support for me at all time.

TABLE OF CONTENTS

			PAGE
	Title	Page	i
	Absti	ract (in English)	iii
	Abstı	ract (in Thai)	iv
	Ackn	owledgements	v
	Table	e of Contents	vi
	List	of Tables	xi
	List o	of Figures	xii
CL	IAPTEI		
CI	I	INTRODUCTION	1
	-		•
	II	THEORETICAL BACKGROUND AND LITERATURE	4
		REVIEW	
		2.1 Asphalt	4
		2.1.1 Asphalt Application	6
		2.2 Hot-Mixed Asphalt (HMA)	8
		2.3 Warm Mixed Asphalt (WMA)	10
		2.3.1 Background of Warm-Mixed Asphalt	10
		2.3.2 Warm-Mixed Asphalt Technologies	10
		2.3.2.1 Foaming Process	11
		2.3.2.1.1 Water-containing Technologies	12
		2.3.2.1.2 Water-based Technologies	13
		2.3.2.2 Organic Additives	13
		2.3.2.2.1 Fischer-tropsch Wax	14
		2.3.2.2.2 Fatty Acid Amid	14
		2.3.2.2.3 Montan Wax	15
		2.3.2.3 Chemical Additives	15
		2.3.3 Benefits and Drawbacks of Warm Mix Asphalt	16

CHAPTE	CR CR	PAGE
	2.3.3.1 Benefits of Warm Mix Asphalt	16
	2.3.3.1.1 Environmental Benefits	16
	2.3.3.1.2 Economic Benefits	18
	2.3.3.1.3 Paving Benefits	18
	2.3.3.2 Drawbacks of Warm Mix Asphalt	20
	2.3.3.2.1 Rutting	20
	2.3.3.2.2 Cost Effectiveness	20
	2.3.3.2.3 Moisture Susceptibility	21
	2.3.3.2.4 Long Term Performance	21
	2.3.3.2.5 Environmental Pollution Effects	
	of WMA Additives	22
	2.3.3.2.6 Quantitative Life-cycle Analysis	-
	(QLCA)	22
	2.4 Reclaimed Asphalt Pavement (RAP)	22
	2.4.1 Reuse and Recycling of Asphalt Techniques	23
-	2.4.1.1 Central Plants Recycling	25
	2.4.1.2 In-Situ Recycling	28
	2.4.2 Studies on RAP	30
	2.5 Life Cycle Assessment (LCA)	32
	2.5.1 History of LCA	32
	2.5.1.1 Decades of Conception (1970-1990)	33
	2.5.1.2 Decade of Standardization (1990-2000)	34
	2.5.2 Definition of LCA	34
	2.5.3 LCA Methodology	35
	2.5.3.1 Goal and Scope Definition	35
	2.5.3.2 Inventory Analysis	36
	2.5.3.3 Impact Assessment	37
	2.5.3.4 Interpretation	39
	2.5.4 Application of LCA	39

CH	APTE	R	PAGE
		2.5.5 LCA Studies of Asphalt	41
		2.5.5.1 LCA Study from Phase One	41
		2.5.5.2 Other LCA Studies on Asphalt	42
		2.5.6 LCA Studies of Reclaim Asphalt Pavement	50
		0.24	-
	Ш	METHODOLOGY	56
		3.1 Materials and Equipment	56
		3.1.1 Equipment	56
		3.1.2 Software	56
		3.2 Experimental Procedures	56
		3.2.1 Goal and Scope Definition	56
		3.2.1.1 Objectives	56
		3.2.1.2 Formulate and Specify Goal of The	
		LCA Study	56
		3.2.1.3 System Boundaries and Scopes	57
		3.2.1.4 Functional Unit	58
		3.2.2 Inventory Analysis (LCI)	58
		3.2.3 Impact Assessment (LCIA)	61
		3.2.4 Interpretation and Reporting	62
		3.3 Assumptions and Limitations	63
		3.3.1 Assumptions and Limitations of Raw-material and	63
		Production	
		3.3.2 Assumptions and Limitations of Pavement	63
		3.3.3 Assumptions and Limitations of Transportation	64
		3.3.4 Assumptions and Limitations of End-of-life	64
	IV	RESULTS AND DISCUSSION-	65
		4.1 End-of-life Management of Asphalt	65
		1.1. Diamontla	65

CHAPTER		PAGE
4.1.1.1 Basis Calculat	tions	65
4.1.1.2 Inventory Ana	alysis	66
4.1.2 Transportation		66
4.1.2.1 Basis Calculat	tions	66
4.1.2.2 Inventory Ana	alysis -	67
4.1.3 Hot in-plant Recycling	,	68
4.1.3.1 Basis Calculat	tions	68
_ 4.1.3.2 Inventory Ana	llysis	68
4.1.4 Hot in-place Recycling	5	69
4.1.4.1 Basis Calculat	ions	69
4.1.4.2 Inventory Ana	llysis	69
4.1.5 Cold in-place Recyclin	ng (Reuse)	71
4.1.5.1 Basis Calculat	ions	71
4.1.5.2 Inventory Ana	llysis	72
4.1.6 Landfill		73
4.1.6.1 Basis Calculat	ions -	73
4.1.6.2 Inventory Ana	llysis	73
4.1.7 Life Cycle Impact Asse	essment of End-of-life	74
4.1.7.1 HMA		74
4.1.7.2 WMA		77
4.2 Whole life Cycle Assessment	t	81
4.2.1 Whole Life Cycle Asse	essment of HMA	81
4.2.2 Whole Life Cycle Asse	essment of WMA	83
4.3 Scenario Analysis		86
4.3.1 Scenario Analysis of H	IMA	87
4.3.2 Scenario Analysis of W	VMA	92
4.4 Comparison between HMA a	and WMA	9-7

CHAPTER		PAGE
V	CONCLUSIONS AND RECOMMENDATIONS	104
	5.1 Conclusions	104
	5.2 Recommendations	105
	5.2.1 Suggestions for Improvement of Inventory Data	105
	5.2.2 Suggestions for Improvement of Environmental	
121	Performance	106
	REFERENCES -	107
	APPENDICES	110
	Appendix A: Life Cycle Impact Assessment (LCIA)	110
	Appendix B: Calculation of Hot in-place Recycling	
	Process	138
	CURRICHI HMVITAF	140

LIST OF TABLES

TABL	LE	PAGE
2.1	Products used in warm-mixed technologies (Rubio et al., 2012)	12
2.2	WMA data pertaining to reduction in gas emissions (Rubio et	
	al., 2012)	17
2.3	Reused asphalt in Europe 2011 (EAPA, 2010)	24
2.4	Baseline examples of impact category (Iuga, 6 April 2009)	40
3.1	Template of data collection for production of mixed asphalt	57
3.2	The expected scenarios for assessing end-of-life sessions	58
3.3	Source of data	61
3.4	Sources of data for calculation	62
4.1	Results of the inventory analysis of dismantle process	66
4.2	Emissions from transportation for RAP	67
4.3	Results of the inventory analysis of hot in-plant recycling	69
4.4	Results of the inventory analysis for hot in-place recycling of	
	hot-mixed asphalt	70
4.5	Results of the inventory analysis for hot in-place recycling of	
	warm-mixed asphalt	71
4.6	Results of the inventory analysis of cold in-place recycling	72
4.7	Results of the inventory analysis of landfill	73
4.8	The scenarios for assessing end-of-life phase of asphalt	
	production	86

LIST OF FIGURES

FIGUI	RE	PAGE
2.1	Structure and color of asphalt (Amin et al., 2011)	4
2.2	The cross section of the road (Johannessen, 2008)	7
2.3	Prime coat method	8
2.4	Tack coat method	8
2.5	Laying and Steel wheeled Tandem roller compaction	9
2.6	Details hot-mixed asphalt plant (Aditya, 2011)	9
2.7	Asphalt-mixed classifications according to manufacturing	
	temperature (Rubio et al., 2013)	11
2.8	Batch Mixing (cold) of RAP plant (Pedersen et al., 2005)	26
2.9	Batch Mixing (hot) of RAP plant (Pedersen et al., 2005)	26
2.10	Drum Mixing of RAP plant (Pedersen et al., 2005)	27
2.11	Hot-mixed in-situ tools (Pedersen et al., 2005)	28
2.12	Cold-mixed in-situ tools (without paving screed) (Pedersen et	
	al., 2005)	29
2.13	Cold-mixed in-situ tools (with paving screed) (Pedersen et al.,	
	2005)	30
2.14	Schematic representation of a generic life cycle of a product	
	(Rebitzer et al., 2004)	33
2.15	General methodological framework of LCA	35
2.16	System boundary of the LCA warm-mixed asphalt from	
	previous study	42
2.17	Comparison of GWP between HMA from Bangbuatong plant,	
	WMA from calculation and other studies by CML 2 baseline	
	2000	43
2.18	Comparison of energy resource between HMA from	
	bangbuatong plant, WMA from calculation and other studies	
	by using Eco-Indicator 95 method	44

FIGUI	GURE	
2.19	Life cycle process in asphalt pavement construction (Huang et	45
2.20	al., 2009)	45
2.20	A schematic representation of the system boundary in the	
	present study. (a) System boundary for a material production	
	and (b) system boundary for the transportation (Chowdhury et	4.6
2.21	al., 2010)	46
2.21	Cost of embankment construction using different materials	4.5
	(Chowdhury et al., 2010)	46
2.22	Hot-mixed asphalt system boundary (Hassan, 2010)	47
2.23	Environmental impacts of hot-mixed asphalt and warm-mixed	
	asphalt (Hassan, 2010)	48
2.24	Total emissions by life cycle phase (kg) (Tatari et al., 2012)	49
2.25	Life cycle emission differences (Kucukvar et al., 2012)	50
2.26	Life cycle of pavement maintenance investigated in this paper	
	(Chiu et al., 2008)	51
2,27	Environmental loads of milling/overlaying one lane-kilometer	
	of asphalt pavement using different materials (Chiu et al.,	
	2008)	51
2.28	System boundaries of this paper (Vidal et al., 2013)	53
2.29	Damages to human health, ecosystem diversity, and resource	
	availability of asphalt pavements (Vidal et al., 2013)	53
2.30	Impacts on climate change and fossil depletion of asphalt	
	production and end-of-life (Vidal et al., 2013)	54
3.1	System boundary of research	59
3.2	System boundary of research focus on each end-of-life	
	processes	60
4.1	Simple process diagram of hot-mixed and warm-mixed asphalt	
	production	74

FIGU	RE	PAGE
4.2	Energy resources usage only end-of-life sessions for each end-	
	of-life process of hot-mixed asphalt by using Eco-Indicator 95	
	method .	75
4.3	Net energy resources usage only end-of-life sessions for each	
	end-of-life-process of hot-mixed asphalt by using Eco-Indicator	-
	95 method	76
- 4.4	GWP only end-of-life sessions for each end-of-life process of	
	hot-mixed asphalt by using CML 2 baseline 2000	76
4.5	Net GWP only end-of-life sections for each end-of-life process	
	of hot-mixed asphalt by using CML 2 baseline 2000	77
4.6	Energy resources usage only end-of-life sessions for each end-	
	of-life process of warm-mixed asphalt by using Eco-Indicator	
	95 method	78
4.7	Net energy resources usage only end-of-life sessions for each	
	end-of-life process of warm-mixed asphalt by using Eco-	
	Indicator 95 method -	79
4.8	GWP only end-of-life sessions for each end-of-life process of	
	warm-mixed asphalt by using CML 2 baseline 2000	79
4.9	Net GWP only end-of-life sessions for each end-of-life process	
	of warm-mixed asphalt by using CML 2 baseline 2000	80
4.10	Whole life cycle energy resources usage for each end-of-life	
	process of hot-mixed asphalt by using Eco-Indicator 95 method	81
4.11	Net whole life cycle energy resources usage for each end-of-	
	life process of hot-mixed asphalt by using Eco-Indicator 95	
	method	82
4.12	Whole life cycle GWP for each end-of-life process of hot-	
	mixed asphalt by using CML 2 baseline 2000	82
4.13	Net whole life cycle GWP for each end-of-life process of hot-	
	mixed asphalt by using CML 2 baseline 2000	83

FIGURE		PAGE
4.14	Whole life cycle energy resources usage for each end-of-life	
	process of warm-mixed asphalt by using Eco-Indicator 95	
	method .	84
4.15	Net whole life cycle energy resources usage for each end-of-	
	life process of warm-mixed asphalt by using Eco-Indicator 95	
	method	85
4.16	Whole life cycle GWP for each end-of-life process of warm-	
	mixed asphalt by using CML 2 baseline 2000	85
4.17	Net whole life cycle GWP for each end-of-life process of	
	warm-mixed asphalt by using CML 2 baseline 2000	86
4.18	Energy resources usage in every stage of life cycle for each	
	scenario of 1 ton of hot-mixed asphalt pavement by using Eco-	
	Indicator 95 method	87
4.19	Net energy resources usage in every stage for each scenario of	
	1 ton of hot-mixed asphalt pavement by using Eco-Indicator 95	
	method -	88
4.20	Net energy resources usage compare between case 1 (BAU)	
	and the best case of studied scenarios (case 4) of 1 ton of hot-	
	mixed asphalt pavement by using Eco-Indicator 95 method	89
4.21	GWP in every stage of life cycle for each scenario of 1 ton of	
	hot-mixed asphalt pavement by using CML 2 baseline 2000	90
4.22	Net GWP for each scenario of 1 ton of hot-mixed asphalt	
	pavement by using CML 2 baseline 2000	90
4.23	Net GWP compare between case 1 (BAU) and the best case of	
	studied scenarios (case 4) of 1 ton of hot-mixed asphalt	
	pavement by using CML 2 baseline 2000 method	91
4.24	Energy resources usage in every stage of life cycle for each	121
	scenario of 1 ton of warm-mixed asphalt pavement by using	
	Eco-Indicator 95 method	92

FIGUI	RE	PAGE
4.25	Net energy resources usage for each scenario of 1 ton of warm-	
	mixed asphalt pavement by using Eco-Indicator 95 method	93
4.26	Net energy resources usage compare between case 1 (BAU)	
	and the best case of studied scenarios (case 4) of 1 ton of	
	warm-mixed asphalt pavement by using Eco-Indicator 95	- 1
	method	94
4.27	GWP in every stage of life cycle for each scenario of 1 ton of	
	warm-mixed asphalt pavement by using CML 2 baseline 2000	95
4.28	Net GWP for each scenario of 1 ton of warm-mixed asphalt	
	pavement by using CML 2 baseline 2000	95
4.29	Net GWP compare between case 1 (BAU) and the best case of	
	studied scenarios (case 4) of 1 ton of warm-mixed asphalt	
	pavement by using CML 2 baseline 2000 method	96
4.30	Comparison of net energy resource_usage only end-of-life	
	sessions for each end-of-life process between hot-mixed	
	asphalt and warm-mixed asphalt by using Eco-Indicator 95	
	method	97
4.31	Comparison of net GWP only end-of-life sessions for each end-	
	of-life process between hot-mixed asphalt and warm-mixed	
	asphalt by using CML 2 baseline 2000	98
4.32	Comparison of whole life cycle energy resources usage for	
	each end-of-life process between hot-mixed asphalt and warm-	
	mixed asphalt by using Eco-Indicator 95 method Comparison	99
4.33	of whole life cycle GWP for each end-of-life process between	
	hot-mixed asphalt and warm-mixed asphalt by using CML 2	
	baseline 2000	99
4.34	Comparison of net energy resources usage for each scenario of	
	1 ton of asphalt pavement between hot-mixed asphalt and	
	warm-mixed asphalt by using Eco-Indicator 95 method	100

FIGURE		PAGE
4.35	Comparison of net GWP for each scenario of 1 ton of asphalt	
	pavement between hot-mixed asphalt and warm-mixed asphalt	
	by using CML 2 baseline 2000	101
4.36	Comparison of net energy resources usage between case 1	
	(BAU) of hot-mixed asphalt and the best case of studied	
	scenarios (case 4) of warm-mixed asphalt by using Eco-	
	Indicator 95 method	102
4.37	Comparison of net GWP between case 1 (BAU) of hot-mixed	2
	asphalt and the best case of possible scenarios in Thailand	
	future (case 4) of 1 ton of warm-mixed asphalt by using CML 2	
	baseline 2000 method	103