ETHYLENE EPOXIDATION IN LOW-TEMPARATURE ALTERNATING CURRENT PLASMA

Thitiporn Suttikul

A Dissertation Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University

2012

I 28373820

Thesis Title:	Ethylene Epoxidation in Low-Temperature Alternating
	Current Plasma
By:	Thitiporn Suttikul
Program:	Petrochemical Technology
Thesis Advisors:	Prof. Sumaeth Chavadej
	Prof. Ilidetoshi Sekiguchi

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Doctor of Philosophy.

..... Dean (Asst. Prof. Pomthong Malakul)

Thesis Committee:

(Asst. Prof. Pomthong Malakul)

beguch.

(Prof. Hidetoshi Sekiguchi)

hrvadej Sumauth

(Prof. Sumaeth Chavadej)

.....

(Asst. Prof. Siriporn Jongpatiwut)

(Prof. Ratana Jiraratananon)

ABSTRACT

5081007063: Petrochemical Technology Thitiporn Suttikul: Ethylene Epoxidation in Low-Temperature Alternating Current Plasma Thesis Advisors: Prof. Sumaeth Chavadej and Prof. Hidetoshi Sekiguchi 175 pp.
Keywords: Epoxidation/ Ethylene oxide/ Dielectric barrier discharge/ Plasmacatalytic reaction / Alumina/ Silica/ Silver/ Feed position/ Corona Discharge/ Atmospheric plasma jet

In this research, ethylene epoxidation reaction was investigated in lowtemperature plasma systems: parallel plate dielectric barrier discharge (DBD), cylindrical DBD, corona discharge, and DBD jet. The combined catalytic and plasma process was initially investigated in the parallel plate DBD system, cooperating with silver catalysts loaded on two different supports (silica and alumina particles) for ethylene oxide production. From the results, the presence of silver catalysts improved the ethylene oxide production performance. The silica support interestingly provided a higher ethylene oxide selectivity than the alumina support. The optimum Ag loading on the silica support was found to be 20 wt.%, exhibiting the highest ethylene oxide selectivity of 30.6%. Next, the separate C₂H₄/O₂ feed was investigated in the cylindrical DBD system in order to improve the epoxidation performance. The C_2H_4 feed position of 0.25 was considered to be an optimum position and other operating conditions, including O_2/C_2H_4 feed molar ratio, applied voltage, input frequency, and total feed flow rate, were subsequently investigated to find out the best conditions. In comparisons with the mixed feed, the separate feed of C₂H₄ and O₂ could provide a superior ethylene epoxidation performance, resulting in higher EO selectivity and yield, and lower power consumption. These results can be explained by the fact that the C₂H₄ separate feed can reduce all undesired reactions of C_2H_4 cracking, dehydrogenation, and oxidation reactions; therefore, the separate C₂H₄/O₂ feed was used to further study in corona discharge and DBD jet. The effects

of C_2H_4 feed position, O_2/C_2H_4 feed molar ratio, applied voltage, input frequency, total feed flow rate, and electrode gap distance on ethylene epoxidation were investigated in the corona discharge reactor. The optimum operating conditions; a distance between plate electrode and C_2H_4 feed position of 0.2 cm, an O_2/C_2H_4 feed molar ratio of 1:2, an applied voltage of 18 kV, an input frequency of 500 Hz, a total feed flow rate of 100 cm³/min, and an electrode gap distance of 10 mm; provided the highest EO yield of 1.8%. The DBD jet, modified from the corona discharge and cylindrical DBD was employed for the ethylene epoxidation. The highest EO selectivity of 55.2% and yield of 27.6%, as well as the lowest power consumption were obtained at a total feed flow rate of 1,625 cm³/min, an O_2/C_2H_4 feed molar ratio of 0.25:1, an applied voltage of 9 kV, an input frequency of 300 Hz, and an inner electrode position of 0.3 mm.

บทคัดย่อ

ฐิติพร สุทธิกุล : ปฏิกิริยาอีพอกซิเคชั่นโดยใช้พลาสมาอุณหภูมิต่ำแบบกระแสสลับ (Ethylene Epoxidation in Low-Temperature Alternating Current Plasma) อ.ที่ปรึกษา : ศ. คร. สุเมธ ชวเคช และ ศ. คร. ฮิเคโตชิ เซคิกุจิ 175 หน้า

ในงานวิจัยนี้ ปฏิกิริยาอีพอกซิเคชั่นได้ถูกสำรวจการภายใต้ระบบพลาสมาอุณหภูมิต่ำ แบบกระแสสลับหลายระบบ ได้แก่ ระบบพลาสมาชนิดไดอิเล็คทริกแบริเออร์ดิสชาร์จ(ดีบีดี)แบบ ทรงสี่เหลี่ยมด้านขนานและแบบทรงกระบอก ระบบพลาสมาชนิดโคโรนา และระบบพลาสมา ชนิดใดอิเล็คทริคแบริเออร์ดิสชาร์จแบบใอพ่น กระบวนการร่วมพลาสมาและการเร่งปฏิกิริยาถูก ศึกษาเริ่มแรกโดยใช้พลาสมาชนิคคีบีคีแบบแผ่นคู่งนานบนตัวเร่งปฏิกิริยาเงินบนฐานรองรับซิลิกา ้กับอลูมินาสำหรับปฏิกิริยาอีพอกซิเคชั่น จากผลการทดลองพบว่า ตัวเร่งปฏิกิริยาเงินเพิ่ม สมรรถนะของการผลิตเอธีลีนออกไซค์ ฐานรองรับซิลิกาให้ค่าการเลือกเกิคผลิตภัณฑ์เอธีลีนออก ใชค์สูงกว่าฐานรองรับอลูมินา ปริมาณโลหะเงินที่เหมาะสมบนฐานรองรับซิลิกาพบว่าเป็น 20 เปอร์เซนต์โดยน้ำหนัก ซึ่งให้ค่าการเลือกเกิดเอธีลีนออกไซด์สูงสุดเป็น 30.6% จากนั้นการป้อน แยกของก๊าซเอธิลีนกับออกซิเจนถูกใช้ในการทดลองภายใต้ระบบพลาสมาชนิคไดอิเล็กทริคแบริ เออร์คิสชาร์จแบบทรงกระบอกเพื่อเพิ่มประสิทธิภาพของปฏิกิริยาอีพอกซิเคชั่น ตำแหน่งในการ ้ป้อนเอธิลีน 0.25 ถูกพิจารณาว่าเป็นตำแหน่งที่เหมาะสม และได้ทำการศึกษาตัวแปรต่างๆเช่น ้อัตราส่วนโดยโมลของออกซิเจนต่อเอธีลีน ความต่างศักย์ไฟฟ้า ความถี่ไฟฟ้า และอัตราการไหล ้งองสารตั้งด้นเพื่อค้นหาสภาวะที่ดีที่สุด ในการเปรียบเทียบกับระบบการป้อนรวม ระบบการป้อน แยกของเอธีลืนกับออกซิเงนสามารถให้สมรรถนะปฏิกิริยาอีพอกซิเคชั่นที่สูงกว่า ซึ่งส่งผลให้ค่า การเลือกเกิดเอธีลีนออกไซด์และผลได้ของเอธีลีนออกไซด์สูงขึ้นในขณะที่พลังงานที่ใช้ในการ ผลิตเอธีลีนออกไซค์ต่ำลง ผลการทคลองนี้สามารถอธิบายได้ว่า การป้อนแยกของเอธีลีนสามารถ ลคปฏิกิริยาที่ไม่ต้องการทั้งหมดของปฏิกิริยาการแตกตัวของเอธิลีน ปฏิกิริยาการดึงไฮโครเจนออก จากโมเลกุล และปฏิกิริยาออกซิเคชั่น ดังนั้นการป้อนแยกระหว่างเอธิลินกับออกซิเจนจึงถูก ้นำไปใช้ศึกษาต่อในระบบพลาสมาชนิดโคโรนา และไคอิเล็คทริคแบริเออร์คิสชาร์จแบบไอพ่น ผลของระยะห่างระหว่างขั้วไฟฟ้าแบบแผ่นและตำแหน่งป้อนก๊าซเอธิลึน อัตราส่วนโดยโมลของ ออกซิเจนต่อเอธิลีน ความต่างศักย์ไฟฟ้า ความถี่ไฟฟ้า อัตราการไหลของสารตั้งส้น และระยะห่าง ระหว่างขั้วไฟฟ้า ต่อปฏิกิริยาเอธีลืนอีพอกซิเคชั่นถูกทคลองในพลาสมาชนิคโคโรนา จากการ ทดลองพบว่าสภาวะที่เหมาะสมดังต่อไปนี้ ระยะห่างระหว่างขั้วไฟฟ้าแบบแผ่นและตำแหน่งป้อน

ก๊าซเอธิลีน 0.2 เซนติเมตร อัตราส่วนโดยโมลของออกซิเจนต่อเอธิลีน 0.25:1 ความต่างศักย์ไฟฟ้า 18 กิโลโวลต์ ความถี่ไฟฟ้า 500 เฮิรต์ซ อัตราการไหลของสารตั้งด้น 100 ลูกบาศก์เซนติเมตรต่อ นาที และระยะห่างระหว่างขั้วไฟฟ้า 1 เซนติเมตร ให้ผลได้ของเอธิลีนสูงสุด พลาสมาชนิดได อิเล็คทริกแบริเออร์ดิสแบบไอพ่นซึ่งถูกปรับเปลี่ยนมาจากพลาสมาชนิดโคโรนาและไดอิเล็คทริก แบริเออร์ดิสชาร์จ ถูกใช้สำหรับปฏิริยาอีพอกซิเดชั่นพบว่า ก่าการเลือกสรรในการเกิดเอธิลีนออก ไซด์และผลได้ของเอธิลีนออกไซด์สูงสุด ตลอดจนพลังงานที่ใช้ในการผลิตเอธิลีนออกไซด์ต่ำสุด ได้รับจากสภาวะดังต่อไปนี้ อัตราการไหลของสารตั้งต้น 1,625 ลูกบาศก์เซนติเมตรต่อนาที อัตราส่วนโดยโมลของออกซิเจนต่อเอธิลีน 0.25:1 ความต่างศักย์ไฟฟ้า 9 กิโลโวลต์ ความถี่ไฟฟ้า 300 เฮิรต์ซ ตำแหน่งอิเล็กโทรดตัวใน 0.3 มิลลิเมตร

ACKNOWLEDGEMENTS

This work could not be completed successfully without the contribution of the following individuals and organizations.

First of all, I would like to express my sincere gratitude to my thesis advisors, Prof. Sumaeth Chavadej and Prof. Hidetoshi Sekiguchi, for all of their direction, valuable guidance and assistance throughout my research. Prof. Hidetoshi Sekiguchi taught me about the technical knowledge of plasma devices with valuable suggestions while I was conducting my work at Tokyo Institute of Technology (TIT). I was indebted unforgettably to him for giving me a great opportunity to visit his plasma laboratory at TIT.

I would also like to specially thank Dr. Thammanoon Sreethawong, for all helpfulness, fruitful suggestions, and discussions. I would like to express my gratitude to Mrs. Barbara Best for her valuable comments and corrections in writing papers and thesis.

It is a pleasure to acknowledge the Petroleum and Petrochemical College, Chulalongkorn University; the Center of Excellence on Petrochemical and Materials Technology, Thailand; the Department of Chemical Engineering, Tokyo Institute of Technology, Japan, for providing research facilities; and the Dudsadeepipat Scholarship, Chulalongkorn University, Thailand, for providing me a Ph.D. scholarship.

I also especially extend many thanks to Mr. Matsumura Yasutaka (my tutor), Mr. Takashi Nakashima, and everyone in Prof. Sekiguchi's plasma group as well as Thai friends for their kindness who help during my stay in Tokyo. At PPC, I would like to sincerely thank Mr. Sanit Prinakorn, Mr. Chaturong Tiamsiri, and Mr. Poon Arj-proo for helping me to make all electrical and mechanical pieceworks.

Last but not least, the great thankfulness is forwarded to my God and my family for their encouragement, strong belief, and understanding in me.

TABLE OF CONTENTS

Р	A	G	E
	1 1	U	

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	v
Acknowledgements	vii
Table of Contents	viii
List of Tables	xiv
List of Figures	xx

CHAPTER

I	INTRODUCTION	1
	1.1 General Introduction	1
	1.2 Objectives	4
	1.3 Scope of Work	4
П	BACKGROUND AND LITERATURE SURVEY	6
	2.1 Basic Principles of Plasma	6
	2.1.1 Fundamental Properties of Plasma	7
	2.1.2 Generation of Plasma	7
	2.1.3 Types of Non-thermal Plasmas	10
	2.1.3.1 Glow Discharge	10
	2.1.3.2 Silent Discharge	10
	2.1.3.3 Radio Frequency Discharge	11
	2.1.3.4 Microwave Discharge	12
	2.1.3.5 Corona Discharge	13

	2.1.3.6 Dielectric Barrier Discharge	15
2.2	Non-Thermal Plasma for Chemical Reactions	17
2.3	Catalytic Plasma Processing	18

2.4 Catalysts Used in Epoxidation of Ethylene 20

III	EXPERIMENTAL	24
	3.1 Materials	24
	3.1.1 Chemicals for Catalyst Preparation	24
	3.1.2 Reagent Gases for Reaction Experiment	24
	3.2 Catalyst Preparation Procedures	24
	3.3 Catalyst Characterization Techniques	25
	3.3.1 BET Surface Area Measurement	25
	3.3.2 X-ray Diffraction (XRD)	26
	3.3.3 Field Emission Scanning Electron	27
	Microscope (FES-EM)	
	3.3.4 Temperature-Programmed Oxidation (TPO)	28
	3.4 Experiment Setup and Reaction Activity	28
	Experiments	
	3.5 Calculations for Process Evaluation	30
IV	ETHYLENE EPOXIDAITON OVER ALUMINA-	32
	AND SILICA-SUPPORTED SILVER CATALYSTS	
	IN LOW-TEMPERATURE AC DIELECTRIC	
	BARRIER DISCHARGE	
	4.1 Abstract	32
	4.2 Introduction	32
	4.3 Experimental	34
	4.3.1 Materials and Gases	34
	4.3.2 Catalyst Preparation Procedures	35
	4.3.3 Catalyst Characterization Techniques	35
	4.3.4 Catalytic Activity Experiments	36
	4.4 Results and Discussion	39
	4.4.1 Catalyst Characterization Results	39
	1.1.2 Ethylene Enovidation Desults	46

	4.5 Conclusions	57
	4.6 Acknowledgements	57
	4.7 References	57
V	ETHYLENE EPOXIDATION IN CYLINDRICAL	56
	DIELECTRIC BARRIER DISCHARGE: EFFECTS	
	OF SEPARATE ETHYLENE/OXYGEN FEED	
	5.1 Abstract	59
	5.2 Introduction	59
	5.3 Experimental	62
	5.3.1 Reactant Gases	62
	5.3.2 Experimental Setup and Reaction Activity	62
	Experiments	
	5.4 Results and Discussion	66
	5.4.1 Possible Chemical Reactions in the Studied	66
	DBD System	
	5.4.2 Effect of Ethylene Feed Position	68
	5.4.3 Effect of O_2/C_2H_4 Feed Molar Ratio	71
	5.4.4 Effect of Applied Voltage	73
	5.4.5 Effect of Input Frequency	76
	5.4.6 Effect of Total Feed Rate	80
	5.4.7 Performance Comparisons between Separate	83
	and Mixed Feeds of C_2H_4 and O_2	
	5.5 Conclusions	85
	5.6 Acknowledgements	86
	5.7 References	86
VI	ETHYLENE EPOXIDATION IN A LOW-	89

TEMPERATURE CORONA DISCHARGE

	ETHYLENE/OXYGEN FEED	
	6.1 Abstract	89
	6.2 Introduction	90
	6.3 Experimental	91
	6.3.1 Reactant Gases	91
	6.3.2 Corona Discharge System	92
	6.3.3 Reaction Activity Experiments	92
	6.4 Results and Discussion	95
	6.4.1 Effect of Distance between Plate Electrode	95
	and C ₂ H ₄ Feed Position	
	6.4.2 Effect of O ₂ /C ₂ H ₄ Feed Molar Ratio	98
	6.4.3 Effect of Electrode Gap Distance	100
	6.4.4 Effect of Input Frequency	102
	6.4.5 Effect of Total Feed Flow Rate	104
	6.4.6 Effect of Gap Distance between Pin and	106
	Plate Electrodes	
	6.4.7 Performance Comparisons between Separate	108
	and Mixed Feeds of C_2H_4 and O_2	
	6.5 Conclusions	111
	6.6 Acknowledgements	112
	6.7 References	112
VII	ETHYLENE EPOXIDATION IN AN AC	114
	DIELECTRIC BARRIER DISCHARGE JET	
	SYSTEM	
	7.1 Abstract	114
	7.2 Introduction	114
	7.3 Experimental	116

SYSTEM: EFEECT OF SEPARATE

xi

	7.3.1 Di	electric Barrier Discharge (DBD) Jet	116
	Sy	stem	
	7.3.2 Re	eaction Activity Experiments	117
	7.4 Results a	nd Discussion	119
	7.4.1 Ef	fect of Total Feed Flow Rate	119
	7.4.2 Ef	fect of O ₂ /C ₂ H ₄ Feed Molar Ratio	123
	7.4.3 Ef	fect of Electrode Gap Distance	126
	7.4.4 Ef	fect of Input Frequency	128
	7.4.5 Ef	fect of the Spacing of Inner Pin Electrode	130
	an	nd C ₂ H ₄ Feed Point	
	7.5 Conclusi	ons	133
	7.6 Acknowl	ledgements	133
	7.7 Referenc	es	134
VIII	CONCLUSIONS AND RECOMMENDATIONS		137
	8.1 Conclusi	ons	137
	8.2 Recomm	endations	142
	REFERENC	CES	143
	APPENDIC	ES	150
	Appendix A	Ethylene Epoxidation over Alumina- and	150
		Silica-Supported Silver Catalysts in Low-	
		Temperature AC Dielectric Barrier	
		Discharge	
	Appendix B	Ethylene Epoxidation in Cylindrical	154
		Dielectric Barrier Discharge: Effects of	
		Separate Ethylene/Oxygen Feed	
	Appendix C	Ethylene Epoxidation in a Low-	161

	Temperature Corona Discharge System:	
	Effect of Separate Ethylene/Oxygen Feed	
Appendix D	Ethylene Epoxidation in an AC Dielectric	167
	Barrier Discharge Jet System	
Appendix D	Comparisons the Ethylene Epoxidation	169
	Performance of Plasma Systems	

CURRICULUM VITAE

LIST OF TABLES

TABLE

	CHAPTER II	
2.1	Collision mechanisms in the plasma environment	8
	CHAPTERIV	10
4.1	Specific surface areas and mean Ag crystallite sizes of all	40
	investigated silver catalysts supported on both Al ₂ O ₃ and	
	SiO ₂ particles	
	CHAPTER V	
5.1	Flow rates of three feed gases for each total feed flow rate	65
	used in this study	
	CHAPTER VII	
71	Flow rates of three feed gases for each total feed flow rate	120
/.1	used in this study	120
	CHAPTER VII	
8.1	Comparisons the ethylene epoxidation performance of the	140
	sole plasma systems and combined catalytic-plasma systems	
8.2	Comparisons the selectivities for other products and the	141
	current of the sole plasma systems and combined catalytic-	
	plasma systems	
	APPENDICES	
Al	Effect of plasma volume-to-catalyst weight ratio on C ₂ H ₄	150
	and O_2 conversions, and power consumption	
A2	Effect of plasma volume-to-catalyst weight ratio on EO yield	150

PAGE

TABLE

	and selectivities for EO and other products	
A3	Effect of Ag loading on the Al_2O_3 support on C_2H_4 and O_2	151
	conversions, and power consumption	
A4	Effect of Ag loading on the Al_2O_3 support on EO yield and	151
	selectivities for EO and other products	
A5	Effect of Ag loading on the SiO_2 support on C_2H_4 and O_2	152
	conversions, and power consumption	
A 6	Effect of Ag loading on the SiO_2 support on EO yield and	152
	selectivities for EO and other products	
A7	Comparisons of the ethylene epoxidation performances in	153
	terms of C_2H_4 and O_2 conversions, and power consumption	
	under the sole DBD system, the DBD system with the	
	unloaded supports and the DBD system with both supported	
	Ag catalysts	
A8	Comparisons of the ethylene epoxidation performances in	153
	terms of EO yield and selectivities for EO and other products	
	under the sole DBD system, the DBD system with the	
	unloaded supports and the DBD system with both supported	
	Ag catalysts	
B1	Effect of C_2H_4 feed position on C_2H_4 and O_2 conversions,	154
	and power consumption	
B2	Effect of C_2H_4 feed position on EO yield, current, and	154
	selectivities for EO and other products	
B3	Effect of C_2H_4 feed position on concentration of outlet gas	155
B4	Effect of O_2/C_2H_4 Feed Molar Ratio on C_2H_4 and O_2	155
	conversions, and power consumption	
B5	Effect of O_2/C_2H_4 Feed Molar Ratio on EO yield and	156
	selectivities for EO and other products	
B6	Effect of O ₂ /C ₂ H ₄ Feed Molar Ratio on concentration of	156

outlet gas

B 7	Effect of applied voltage on C_2H_4 and O_2 conversions, and	157
	power consumption	
B8	Effect of applied voltage on EO yield, current, and	157
	selectivities for EO and other products	

TABLE

PAGE

	outlet gas	
B 7	Effect of applied voltage on C_2H_4 and O_2 conversions, and	157
	power consumption	
B8	Effect of applied voltage on EO yield, current, and	157
	selectivities for EO and other products	
B9	Effect of applied voltage on concentration of outlet gas	158
B10	Effect of input frequency on C_2H_4 and O_2 conversions, and	158
	power consumption	
B11	Effect of input frequency on EO yield, current, and	158
	selectivities for EO and other products	
B12	Effect of input frequency on concentration of outlet gas	159
B13	Effect of total feed flow rate on C_2H_4 and O_2 conversions,	159
	and power consumption	
B14	Effect of total feed flow rate on EO yield, current, and	159
	selectivities for EO and other products	
B15	Effect of total feed flow rate on concentration of outlet gas	160
B16	Comparisons of the cylindrical DBD system performance	160
	using the separate C_2H_4/O_2 feed and the mixed C_2H_4/O_2 feed	
	in terms of C_2H_4 and O_2 conversions, and power	
	consumption	
B17	Comparisons of the cylindrical DBD system performance	160
	using the separate C_2H_4/O_2 feed and the mixed C_2H_4/O_2 feed	
	in terms of EO yield and selectivities for EO and other	

	products	
C1	Effect of C_2H_4 feed position on C_2H_4 and O_2 conversions,	161
	EO yield, and power consumption	
C2	Effect of C_2H_4 feed position on selectivities for EO and other	161
	products	
С3	Effect of O_2/C_2H_4 feed molar ratio on C_2H_4 and O_2	162
	conversions, EO yield, and power consumption	
C4	Effect of O_2/C_2H_4 feed molar ratio on selectivities for EO	162
	and other products	
C5	Effect of applied voltage on C_2H_4 and O_2 conversions, EO	163
	yield, and power consumption	
C6	Effect of applied voltage on current and selectivities for EO	163
	and other products	
C7	Effect of input frequency on C_2H_4 and O_2 conversions, EO	164
	yield, and power consumption	
C8	Effect of input frequency on current and selectivities for EO	164
	and other products	
C9	Effect of total feed flow rate on C_2H_4 and O_2 conversions	164
	and power consumption	
C10	Effect of total feed flow rate on EO yield and selectivities	165
	for EO and other products	
CH	Effect of electrode gap distance on C_2H_4 and O_2 conversions	165
	and power consumption	
C12	Effect of electrode gap distance on EO yield, current, and	165
	selectivities for EO and other products	
C13	Comparisons of the corona discharge performance using the	166
	separate and the mixed C_2H_4/O_2 feed in terms of C_2H_4 and	
	O ₂ conversions, and power consumption	
C14	Comparisons of the corona discharge performance using the	166

TABLE

PAGE

	separate and the mixed C_2H_4/O_2 feed in terms of EO yield	
	and selectivities for EO and other products	
Dl	Effect of total feed flow rate on $\mathrm{C_2H_4}$ and $\mathrm{O_2}$ conversions	167
	and power consumption	
D2	Effect of total feed flow rate on EO yield and selectivities	167
	for EO and other products	
D3	Effect of total feed flow rate on current and coke and water	168
	formations	
D4	Effect of O_2/C_2H_4 feed molar ratio on C_2H_4 and O_2	168
	conversions, EO yield, and power consumption	
D5	Effect of O_2/C_2H_4 feed molar ratio on selectivities for EO	168
	and other products	
D6	Effect of O_2/C_2H_4 feed molar ratio on current and coke and	169
	water formations	
D7	Effect of applied voltage on C_2H_4 and O_2 conversions, EO	169
	yield, and power consumption	
D8	Effect of applied voltage on selectivities for EO and other	170
	products	
D9	Effect of applied voltage on power, current, and coke and	170
	water formations	
D10	Effect of input frequency on C_2H_4 and O_2 conversions, EO	171
	yield, and power consumption	
D11	Effect of input frequency on selectivities for EO and other	171
	products	
D12	Effect of input frequency on power, current, and coke and	172
	water formations	
D13	Effect of Spacing of inner pin electrode and C ₂ H ₄ feed point	172
	on C_2H_4 and O_2 conversions, EO yield, and power	
	consumption	

TABLE

D14	Effect of Spacing of inner pin electrode and C ₂ H ₄ feed point	172
	on selectivities for EO and other products	
D15	Effect of Spacing of inner pin electrode and C_2H_4 feed point	173
	on power, current, and coke and water formations	

LIST OF FIGURES

FIGURE

CHAPTER II

2.1	Phase of matter consists of solid, liquid, gas and the fourth state named "plasma"	6
2.2	The glow discharge-homogeneous electrode can be operated	10
	at low pressure	
2.3	Schematic of various types of radio frequency discharge: (a)	12
	and (b) contain capacitive coupling, normally used at low	
	pressure, (c) use inductive coupling instead of capacitive	
	coupling, which can be operated at pressure up to 1 bar	
2.4	Schematic of pin and plate corona charge	13
2.5	Schematic of various forms of corona discharge depending	14
	upon applied voltage at constant electrode geometrical	
	configuration.	
2.6	Schematic for dielectric barrier discharge reactor	17
	CHAPTER III	
3.1	Block diagram of the power supply unit used in this study	29
	CHAPTER IV	
4.1	(a) Schematic of experimental setup of DBD plasma system	37
	for ethylene epoxidation reaction and (b) the configuration	
	of the DBD reactor	
4.2	XRD patterns of Al ₂ O ₃ -supported Ag catalysts: (a) unloaded	41
	Al_2O_3 support, (b) 5 wt.% Ag/Al_2O_3 , (c) 10 wt.% Ag/Al_2O_3 ,	
	(d) 15 wt.% Ag/Al ₂ O ₃ , and (e) 20 wt.% Ag/Al ₂ O ₃	
4.3	XRD patterns of SiO ₂ -supported Ag catalysts: (a) unloaded	42
	SiO_2 support, (b) 5 wt.% Ag/SiO ₂ , (c) 10 wt.% Ag/SiO ₂ . (d)	

15 wt.% Ag/SiO₂, and (e) 20 wt.% Ag/SiO₂

- 4.4 SEM images of Al₂O₃-supported Ag catalysts: (a) unloaded 43
 Al₂O₃ support, (b) 5 wt.% Ag/Al₂O₃, (c) 10 wt.% Ag/Al₂O₃,
 (d) 15 wt.% Ag/Al₂O₃, and (e) 20 wt.% Ag/Al₂O₃
- 4.5 SEM images of SiO₂-supported Ag catalysts (a) unloaded 45 silica support, (b) 5 wt.% Ag/SiO₂, (c) 10 wt.% Ag/SiO₂, (d) 15 wt.% Ag/SiO₂, (e) 20 wt.% Ag/SiO₂, (f) 25 wt.% Ag/SiO₂, and (g) 30 wt.% Ag/SiO₂
- 4.6 (a) C₂H₄ and O₂ conversions, (b) EO selectivity and yield,
 (c) other product selectivities, and (d) power consumptions as a function of plasma volume-to-catalyst weight ratio of 5 wt.% Ag/Al₂O₃ (an O₂/C₂H₄ feed molar ratio of 1/4, a total feed flow rate of 50 cm³/min, an electrode gap distance of 0.7 cm, an input frequency of 500 Hz, and an applied voltage of 19 kV)
- 4.7 (a) C₂H₄ and O₂ conversions, (b) EO selectivity and yield,
 (c) other product selectivities, and (d) power consumptions as a function of Ag loading on Al₂O₃ support in the DBD plasma reactor (a plasma volume-to-catalyst weight ratio of 2 cm³/g (10 g of catalyst), an O₂/C₂H₄ feed molar ratio of 1/4, a total feed flow rate of 50 cm³/min, an electrode gap distance of 0.7 cm, an input frequency of 500 Hz, and an applied voltage of 19 kV)
- 4.8 (a) C₂H₄ and O₂ conversions, (b) EO selectivity and yield,
 (c) other product selectivities, and (d) power consumptions as a function of Ag loading on SiO₂ support in the DBD plasma reactor (a plasma volume-to-catalyst weight ratio of 2 cm³/g (10 g of catalyst), an O₂/C₂H₄ feed molar ratio of 1/4, a total feed flow rate of 50 cm³/min, an electrode gap

PAGE

47

distance of 0.7 cm, an input frequency of 500 Hz, and an applied voltage of 19 kV)

- 4.9 (a) C₂H₄ and O₂ conversions, (b) EO selectivity and yield,
 (c) other product selectivities, and (d) power consumptions of the DBD plasma reactor with Ag catalysts loaded on two supports (Al₂O₃ and SiO₂) as compared to the sole DBD plasma reactor (a plasma volume-to-catalyst weight ratio of 2 cm³/g (10 g of catalyst), an O₂/C₂H₄ feed molar ratio of 1/4, a total feed flow rate of 50 cm³/min, an electrode gap distance of 0.7 cm, an input frequency of 500 Hz, and an applied voltage of 19 kV)
- 5.1 (a) Schematic of experimental setup of DBD plasma systemfor the ethylene epoxidation reaction and (b) theconfiguration of the cylindrical DBD reactor
- 5.2 (a) C₂H₄ and O₂ conversions, (b) product selectivities, (c) outlet gas concentrations, (d) EO yield, and (e) power consumption as a function of C₂H₄ feed position (a O₂/C₂H₄ feed molar ratio of 1/4, an applied voltage of 15 kV, an input frequency of 500 Hz, and a total feed flow rate of 75 cm³/min) as compared with the mixed feed
- 5.3 (a) C₂H₄ and O₂ conversions, (b) product selectivities, (c) outlet gas concentrations, (d) EO yield, and (e) power consumption as a function of O₂/C₂H₄ feed molar ratio (a C₂H₄ feed position of 0.25, an applied voltage of 15 kV, an input frequency of 500 Hz, and a total feed flow rate of 75 cm³/min)
- 5.4 (a) C₂H₄ and O₂ conversions, (b) current, (c) product selectivities, (d) outlet gas concentrations, (e) EO yield, and (f) power consumption as a function of applied voltage (a

54

63

69

xxiii

FIGURE

 C_2H_4 feed position of 0.25, an O_2/C_2H_4 feed molar ratio of 1/4, an input frequency of 500 Hz, and a total feed flow rate of 75 cm³/min)

- 5.5 (a) C₂H₄ and O₂ conversions, (b) product selectivities, (c) current, (d) outlet gas concentrations, (e) EO yield, and (f) power consumption as a function of input frequency (a C₂H₄ feed position of 0.25, an O₂/C₂H₄ feed molar ratio of 1/4, a, an applied voltage of 13 kV, and total feed flow rate of 75 cm³/min)
- 5.6 Effect of input frequency and applied voltage on input power 79
- 5.7 (a) C₂H₄ and O₂ conversions, (b) product selectivities, (c) outlet gas concentrations, (d) EO yield, and (e) power consumption as a function of total feed flow rate (a C₂H₄ feed position of 0.25, an O₂/C₂H₄ feed molar ratio of 1/4, an applied voltage of 13 kV, and an input frequency of 550 Hz)
- 5.8 Comparisons of the cylindrical DBD system performance using the separate C_2H_4/O_2 feed and the mixed C_2H_4/O_2 feed in terms of: (a) C_2H_4 and O_2 conversions and power consumption and (b) main product selectivities and EO yield under their own optimum conditions [a C_2H_4 feed position of 0.25 (for the separate feed), an O_2/C_2H_4 feed molar ratio of 1/4 (for both feed systems), an applied voltage of 13 kV (for the separate feed) and 15 kV (for the mixed feed), an input frequency of 550 Hz (for the separate feed) and 500 Hz (for the mixed feed), and a total feed flow rate of 75 cm³/min (for both feed systems)]
 - 6.1 (a) Schematic of experimental setup for ethylene epoxidation reaction using a corona discharge reactor and (b) detailed schematic of corona discharge reactor

77

84

81

FIGURE

- 6.2 (a) C₂H₄ and O₂ conversions and EO yield, (b) product selectivities, (c) power consumption as a function of C₂H₄ feed position (an O₂/C₂H₄ feed molar ratio of 0.5:1, an applied voltage of 15 kV, an input frequency of 500 Hz, a total feed flow rate of 100 cm³/min, and an electrode gap distance of 1 cm)
- 6.3 (a) C₂H₄ and O₂ conversions and EO yield, (b) product selectivities, (c) power consumption as a function of O₂/C₂H₄ feed molar ratio (a C₂H₄ feed position of 2 mm, an applied voltage of 15 kV, an input frequency of 500 Hz, a total feed flow rate of 100 cm³/min, and an electrode gap distance of 1 cm)
- 6.4 (a) C₂H₄ and O₂ conversions and EO yield, (b) generated 101 current, (c) product selectivities, (d) power consumption as a function of applied voltage (a C₂H₄ feed position of 2 mm, an O₂/C₂H₄ feed molar ratio of 0.5:1, an input frequency of 500 Hz, a total feed flow rate of 100 cm³/min, and an electrode gap distance of 1 cm)
- 6.5 (a) C₂H₄ and O₂ conversions and EO yield, (b) generated 103 current, (c) product selectivities, (d) power consumption as a function of input frequency (a C₂H₄ feed position of 2 mm, an O₂/C₂H₄ feed molar ratio of 0.5:1, an applied voltage of 18 kV, a total feed flow rate of 100 cm³/min, and an electrode gap distance of 1 cm)
- 6.6 (a) C₂H₄ and O₂ conversions and EO yield, (b) product 105 selectivities, (c) power consumption as a function of total feed flow rate (a C₂H₄ feed position of 2 mm, an O₂/C₂H₄ feed molar ratio of 0.5:1, an applied voltage of 18 kV, an input frequency of 500 Hz, and an electrode gap distance of 1 cm)

PAGE

96

FIGURE

- 6.7 (a) C₂H₄ and O₂ conversions and EO yield, (b) generated 107 current, (c) product selectivities, (d) power consumption as a function of electrode gap distance (a C₂H₄ feed position of 0.2 cm, O₂/C₂H₄ feed molar ratio of 0.5:1, applied voltage of 18 kV, input frequency of 500 Hz, and total feed flow rate of 100 cm³/min)
- 6.8 Comparisons of the corona discharge performance using the 110 separate and the mixed C_2H_4/O_2 feed in terms of: (a) C_2H_4 and O_2 conversions, EO selectivity and yield (b) selectivities for other products (c) power consumption under their own optimum conditions [a C_2H_4 feed position of 0.2 (for the separate feed), an O_2/C_2H_4 feed molar ratio of 1:2 (for the separate feed) and 1:1 (for the mixed feed), an applied voltage of 18 kV (for the separate feed) and 15 kV (for the mixed feed), an input frequency of 500 Hz (for both feed systems), a total feed flow rate of 100 (for the separate feed) and 50 (for the mixed feed) cm³/min, and an electrode gap distance of 1 cm (for both feed systems)]
 - 7.1 (a) Configuration of the DBD jet reactor and (b) Schematic 117of experimental setup of DBD jet system for ethyleneepoxidation reaction
 - (a) C₂H₄ and O₂ conversions, (b) EO selectivity and yield, 122
 (c) other product selectivities, (d) power consumption, and
 (e) coke and water formation as a function of total flow rate
 (an O₂/C₂H₄ feed molar ratio of 1/4, an applied voltage of 7
 kV, and an input frequency of 500 Hz)
 - (a) C₂H₄ and O₂ conversions, (b) EO selectivity and yield, 125
 (c) other product selectivities, (d) input power and discharge current, (e) power consumption, and (f) coke and water

PAGE

FIGURE

formation as a function of O_2/C_2H_4 feed molar ratio (a total flow rate of 1,625 cm³/min, an applied voltage of 7 kV, and an input frequency of 500 Hz)

- 7.4 (a) C₂H₄ and O₂ conversions, (b) EO selectivity and yield, 127
 (c) other product selectivities, (d) input power and discharge current, (e) power consumption, and (f) coke and water formation as a function of applied voltage (a total flow rate of 1,625 cm³/min, an O₂/C₂H₄ feed molar ratio of 0.25, and an input frequency of 500 Hz)
- 7.5 (a) C₂H₄ and O₂ conversions, (b) EO selectivity and yield, 129
 (c) other product selectivities, (d) input power and discharge current, (e) power consumption, and (f) coke and water formation as a function of applied voltage (a total flow rate of 1,625 cm³/min, an O₂/C₂H₄ feed molar ratio of 0.25, and an applied voltage of 9 kV)
- 7.6 Images of generated plasma at different spacing of an inner 131 pin electrode and C₂H₄ feed point: (a) 0 mm, (b) 3 mm, and (c) 6 mm (a total flow rate of 1,625 cm³/min, an O₂/C₂H₄ feed molar ratio of 0.25, an applied voltage of 9 kV, and an input frequency of 300 Hz)
- 7.7 (a) C₂H₄ and O₂ conversions, (b) EO selectivity and yield, 132
 (c) other product selectivities, (d) input power and discharge current, (e) power consumption, and (f) coke and water formation as a function of inner electrode position (a total flow rate of 1,625 cm³/min, an O₂/C₂H₄ feed molar ratio of 0.25, an applied voltage of 9 kV, and an input frequency of 500 Hz)