REFERENCES

Ref.: http://www.nasa.gov/mission_pages/themis/auroras/sun_earth_connect.html

- Agency for Toxic Substances and Disease Registry (ATSDR). (1990) <u>Toxicological</u> <u>Profile for Ethylene Oxide.</u> U.S. Public Health Service, U.S. Department of Health and Human Services, Atlanta, GA.
- Amin, N.A.S. (2006) Co-generation of synthesis gas and C₂+ hydrocarbons from methane and carbon dioxide in a hybrid catalytic-plasma reactor: A review. <u>Fuel</u>, 85, 577-592.
- Bhasin, M.M. (1988). Catalyst composition for oxidation of ethylene to ethylene oxide. <u>US Patent 4,908,343</u>.
- Bröer, S. and Hammer, T. (2000). Selective catalytic reduction of nitrogen oxides by combining a non-thermal plasma and a V₂O₅-WO₃/TiO₂ catalyst. Applied Catalysis B: Environmental, 28(2), 101-111.
- Campbell, C.T. (1986) Chlorine promoters in selective ethylene epoxidation over Ag(111): A comparison with Ag(110). Journal of Catalysis, 99(1), 28-38.
- Campbell, C.T., and Paffett, M.T. (1984) The role of chlorine promoters in catalytic ethylene epoxidation over the Ag(110) surface. <u>Applied Surface Science</u>, 19(1), 28-42.
- Campbell, C.T., and Koel, B.E. (1985). Chlorine promotion of selective ethylene oxidation over Ag(110): Kinetics and mechanism. <u>Journal of Catalysis</u>, 92(2), 272-283.
- Chang, J.S., Lawless, P.A., and Yamamoto, T. (1991). Corona discharge processes. IEEE Transactions on Plasma Science, 19(6), 1152-1166.
- Chavadej S., Tansuwan A., and Sreethawong T., (2008). Ethylene Epoxidation over Alumina-Supported Silver Catalysts in Low-Temperature AC Corona Discharge. <u>Plasma Chemistry and Plasma Processing</u>, 28(5), 643-662.
- Dellamorte, J.C., Lauterbach, J., and Barteau, M.A., (2007) Promoter-Induced Morphological Changes of Ag Catalysts for Ethylene Epoxidation. <u>Industrial and Engineering Chemistry Research</u>, 48(13), 5943-5953.

- Durme, J.V., Dewulf, J., Leys, C., and Langenhove, H.V. (2008) Combining nonthermal plasma with heterogeneous catalysis in waste gas treatment: A review. <u>Applied Catalysis B: Environmental</u>, 78(3-4), 324-333.
- Eliasson, B., Hirth, M., and Kogeischatz, U. (1987). Ozone synthesis from oxygen in dielectric barrier discharge. Journal of Applied Physics, 20, 1421-1437.
- Eliasson, B., and Kogelschatz, U. (1991). Nonequilibrium volume plasma chemical processing. <u>IEEE Transactions on Plasma Science</u>, 19(6), 1063-1077.
- Epling, W.S., Hoflund, G.B., and Minahan, D.M. (1970). Study of Cs-promoted, αalumina-supported silver, ethylene-epoxidation catalysts. <u>Journal of</u> Catalysis, 171(2), 490-497.
- Fridman, A., Nester, S., Kennedy, L.A., Saveliev, A., and Mutaf-Yardimici, O. (1999). Gliding arc gas discharge. <u>Progress in Energy and Combustion</u> <u>Science</u>, 25, 211-231.
- Goncharova, S.N., Paukshtis, E.A., and Bal'zhinimaev, B.S. (1995). Size effects in ethylene oxidation on silver catalysts: influence of support and Cs promoter. <u>Applied Catalysis A: General</u>, 126, 67-84.
- Heintze, M., and Pietruszka, B. (2004) Plasma catalytic conversion of methane into syngas: the combined effect of discharge activation and catalysis. <u>Catalysis</u> <u>Today</u>, 89, 21-25.
- Holgado, M.J., Inigo, A.C., and Rives, V. (1998). Effect of preparation conditions on the properties of highly reduced Rh/TiO2 (anatase and rutile) catalysts.
 <u>Applied Catalysis A: General</u>, 175(1-2), 33-41.
- Horvath, M. (1980), The Netherlands, Ozone, Elsevier Science.
- Iwakura, G. (1985). A novel silver catalyst prepared by using superheated-steam as a heating medium for ethylene oxide production. Japan Patent 63-126552.
- Jankowiak, J.T., Barteau, M.A. (2005). Ethylene epoxidation over silver and coppersilver bimetallic catalysts: I. Kinetics and selectivity. <u>Journal of Catalysis</u>, 236(1), 366-378.
- Jankowiak, J.T., and Barteau, M.A. (2005) Ethylene epoxidation over silver and copper-silver bimetallic catalysts: II. Cs and Cl promotion. Journal of <u>Catalysis</u>, 236(1), 379-386.

- Jeong, J.Y., Park, J., Henins, I., Babayan, S.E., V.J., Tu, Selwyn, G.S., Ding, G., and Hicks, R.F. (2000). Reaction chemistry in the afterglow of oxygen-helium, atmospheric-pressure plasma. <u>Journal of Physical Chemistry A</u>, 104(34), 8072-8032.
- Jun, Y., Jingfa, D., Xiaohong, Y., and Shi, Z. (1992) Rhenium as a promoter for ethylene epoxidation. <u>Applied Catalysis A: General</u>, 92(2), 73-80.
- Kapran, A.Y., and Orlik, S.N. (2005) Effect of alkali metal additives on the activity and selectivity of structured silver catalysts in epoxidation of ethylene by nitrogen(I) oxide. <u>Theoretical and Experimental Chemistry</u>, 41(6), 377-381.
- Kilty, P.A., Rol, N.C., and Sachtler, W.M.H. (1973). The activity and selectivity of oxygen atoms adsorbed on a Ag/α-Al₂O₃ catalyst in ethene epoxidation. <u>Catalysis Letters</u>, 99(1-2), 45-53.
- Kim, D.B., Rhee, J.K., Moon, S.Y., Choe, W. (2007) Feasibility study of material surface modification by millimeter size plasmas produced in a pin to plane electrode configuration. Thin Solid Films, 515(12), 4913-4917.
- Kondaries, D.I., and Verykios, X.E. (1996). Interaction of oxygen with supported Ag-Au alloy catalysts. Journal of Catalysis, 158, 363-377.
- Kraus, M., Ph.D. Thesis, Swiss Federal Institute of Technology, Zurich, 2001.
- Kruapong, A. (2000). <u>Partial Oxidation of Methane to Synthesis Gas in Low</u> <u>Temperature Plasmas</u>. M.S. Thesis, Chulalongkorn University, Bangkok.
- Law, G.H., and Chitwood, H.C. (1942). <u>Catalyst Composition for Oxidation of</u> <u>Ethylene to Ethylene Oxide</u>. US Patent 2,279,470.
- Li, X., Bai, M., Tao, X., Shan, S., Yin, Y., and Dai, X. (2010) Carbon dioxide reforming of methane to synthesis gas by an atmospheric pressure plasma jet. <u>Journal of Fuel Chemistry and Technology</u>, 38(2), 195-200.
- Liu, Ch., Marafee, A., Mallinson, R.G., and Lobban, L. (1997). Methane conversion to higher hydrocarbons in a corona discharge over metal oxide catalysts with OH groups. <u>Applied Catalysis</u>, 164(1-2), 21-33.
- Macleod, N., Keel, J.M., and Lambert, R.M. (2003) The effects of catalyst aging under industrial conditions: ethylene oxide conversion over Ag-Cs/α-Al₂O₃ catalysts. <u>Catalysis Letters</u>, 86(1-3), 51-56.

- Malik, M.A. and Malik, S.A. (1999). Catalyst enhanced oxidation of VOCs and methane in cold-plasma reactors. <u>Platinum Metal Review</u>, 43(3), 109-113.
- Mao, C.F., and Vannice, M.A. (1995). High surface area a-aluminas: III. Oxidation of ethylene, ethylene oxide, and acetaldehyde over silver dispersed on high surface area α-alumina. <u>Applied Catalysis A: General</u>, 122, 61-76.
- Matar, S., Mirbach, M. J., and Tayim, H. A. (1989). <u>Catalysis in</u> <u>Petrochemical Processes</u>, Kluwer Academic Publishers, Dordrecht: The Netherlands, P. 85.
- Marta, C.N., Carvalho, A.de, Passos, F.B., and Schmal, M., (2007) Study of the active phase of silver catalysts for ethylene epoxidation. <u>Journal of</u> <u>Catalysis</u>, 248(1), 124-129.
- Nasser, E. (1971). <u>Fundamentals of Gaseous Ionization and Plasma Electronics</u>, USA: John Wiley & Sons, Inc.
- Patiño, P., Hernández, F.E., Rondón, S. (1995). Reactions of O(³P) with secondary C-H bonds of saturated hydrocarbons in nonequilibrium plasmas. <u>Plasmas</u> <u>Chemistry and Plasma Processing</u>, 15(2), 159-171.
- Patiño, P., Sánchez, N., Suhr, H., Hernández, N. (1999). Reactions of nonequilibrium oxygen plasmas with liquid olefins. <u>Plasma Chemistry and</u> <u>Plasma Processing</u>, 19(2), 241-254.
- Quoc Ana, H.T., Pham Huua, T., Le Vana, T., Cormierb, J.M., Khacefb, A. (2011)
 Application of atmospheric non thermal plasma-catalysis hybrid system for air pollution control: Toluene removal. <u>Catalysis Today</u>, 176(1), 474-477.
- Rafael, H., Arvind, V., and Enrico, M. (1990) Ethylene Oxidation Over α-Alumina Supported Silver-Gold Catalysts. <u>Studies in Surface Science and Catalysis</u>, 55, 717-724.
- Rojluechai, S., chavadej, S., Schwank, J.W., and Meeyoo, V. (2006). Catalytic activity of ethylene oxidation over Au, Ag and Au-Ag catalysts: support effect. <u>Catalysis Communication</u>, 8, 57-64.
- Rosacha, L.A., Anderson, G.K., Bechtold, L.A., Coogan, J.J., Heck, H.G., Kang, M., McCulla, W.H., Tennant, R.A., and Wantuck, P.J. (1993). Treatment of hazardous organic wastes using silent discharge Plasmas. <u>Non-Thermal</u>

Plasma Technique for Pollution Control, NATO ASI series, 34, part B, 128-139.

- Saktrakool, K. (2003). <u>Oxidative Removal of Ethylene in a Multistage Plasma</u> <u>Reactor in the Presence of TiO₂</u>. M.Sc., Thesis, Chulalongkorn University, Bangkok.
- Satterfield, C. N. (1991). Heterogeneous Catalysis in Industrial Practice. New York: McGraw-Hill.
- Seyedmonir, S.R., Plischke, J.K., Vannice, M.A., and Young, H.W. (1990) Ethylene oxidation over small silver crystallites. Journal of Catalysis, 123(2), 534-549.
- Sreethawong, T., Suwannabart, T., and Chavadej, S. (2008) Ethylene epoxidation in low-temperature AC dielectric barrier discharge: Effects of oxygen-toethylene feed molar ratio and operating parameters. <u>Plasma Chemistry and</u> <u>Plasma Processing</u>, 28(5), 629-642.
- Sreethawong, T., Suwannabart, T., and Chavadej, S. (2009) Ethylene Epoxidation in Low-Temperature AC Corona Discharge over Ag Catalyst: Effect of Promoter. <u>Chemical Engineering Journal</u>, 115(1-2), 396-403.
- Sreethawong, T., Permsin, N., Suttikul, T., Chavadej, S. (2010) Ethylene Epoxidation in Low-Temperature AC Dielectric Barrier Discharge: Effect of Electrode Geometry. <u>Plasma Chemistry and Plasma Processing</u>, 30(4), 503-524.
- Suga, Y., Sekiguchi, H. (2005). Epoxidation of carbon double bond using atmospheric non-equilibrium oxygen plasma. <u>Thin Solid Films</u>, 506-507, 427-431.
- Suhr, H. (1983). Application of nonequilibrium plasmas in organic chemistry. <u>Plasma Chemistry and Plasma Processing</u>, 3(1), 1-61.
- Suhr, H., Schmid, H., Pfeundschuh, H., and Iacocca, D. (1984) Plasma Oxidation of Liquids. <u>Plasma Chemistry and Plasma Processing</u>, 4(4), 285-295.
- Suhr, H. and Pfreundschuh, H. (1988). Reactions of nonequilibrium oxygen plasmas with liquid olefins. <u>Plasma Chemistry and Plasma Processing</u>, 8(1), 67-74.

- Sutthiruangwong, S. (1999). <u>Plasma_Catalytic Production of Methanol.</u> M.Sc., Thesis, Chulalongkorn University, Bangkok.
- Tan, S.A., Grant R.B., and Lambert, R.M. (1987) Pressure dependence of ethylene oxidation kinetics and the effects of added CO₂ and Cs: A study on Ag(111) and Ag/α-Al₂O₃catalysts. <u>Applied Catalysis</u>, 31(1), 159-177.
- Tan, S.A., Grant, R.B., and Lambert, R.M. (1987) Secondary chemistry in the selective oxidation of ethylene: Effect of Cl and Cs promoters on the adsorption, isomerisation, and combustion of ethylene oxide on Ag(111). <u>Journal of Catalysis</u>, 106(1), 54-64.
- Tezuka, M., and Yajima, T. (1996). Oxidation of aromatic hydrocarbons with oxygen in a radiofrequency plasma. <u>Plasma Chemistry and Plasma</u> <u>Processing</u>, 16(3), 329-340.
- Thevenet, F., Couble, J., Brandhorst, M., Dubois, J.L., Puzenat, E., Guillard, C., Bianchi, D. (2010) Synthesis of Hydrogen Peroxide Using Dielectric Barrier Discharge Associated with Fibrous Materials. <u>Plasma Chemistry</u> and Plasma Processing, 30(4), 489-502.
- Tories, N., and Verikios, X.E. (1987). The oxidation of ethylene over silver-based alloy catalysts: 3. Silver-gold alloys. Journal of Catalysis, 108, 161-174.
- Torres, D., Illas, F., and Lambert, R.M. (2008) Towards an understanding of promoter action in heterogeneously catalyzed ethene epoxidation: Why chlorine is the best halogen. Journal of Catalysis, 260(2), 380-383.
- Viriyasiripongkul, S. (2000). <u>Oxidative Coupling of Methane to Higher</u> <u>Hydrocarbons over Zeolite in AC Electric Discharges</u>. M.Sc., Thesis, Chulalongkorn University, Bangkok.
- Yan, K., Hui, H.; Cui, M., Miao, J., Wu, X., Bao, C., and Li, R. (1998). Corona induced non-thermal plasmas: fundamental study and industrial applications. <u>Journal of Electrostatics</u>, 44(1), 17-39.
- Yeung, K.L., Gavriilidis, A., Varma, A., and Bhasin, M.M. (1998). Effects of 1, 2 dichloroethane addition on the optimal silver catalyst distribution in pellets for epoxidation of ethylene. <u>Journal of Catalysis</u>, 174(1), 1-12.

- Yong, S.Y., Kennedy, E.M., and Cant, N.W. (1991). Oxide catalysed reactions of ethylene oxide under conditions relevant to ethylene epoxidation over supported silver. <u>Applied Catalysis</u>, 76(1), 31-48.
- Yu, S.J. and Chang, M.B. (2001) Oxidative conversion of PFC via plasma processing with dielectric barrier discharges. <u>Plasma Chemistry and Plasma</u> <u>Processing</u>, 21(3), 311-327.
- Zhang, Y., Li, D., Wang, H. (2010) Removal of Volatile Organic Compounds (VOCs) Mixture by Multi-Pin-Mesh Corona Discharge Combined with Pulsed High-Voltage. <u>Plasma Science and Technology</u>, 12(6), 702-707.

APPENDICES

Appendix A Ethylene Epoxidation over Alumina- and Silica-Supported Silver Catalysts in Low-Temperature AC Dielectric Barrier Discharge

Table A1 Effect of plasma volume-to-catalyst weight ratio on C_2H_4 and O_2 conversions, and power consumption

Plasma volume-to- Conversio		ion (%)	Power consumption	tion (Ws x 10 ¹⁶)	
catalyst weight ratio (cm ³ /g)	C ₂ H ₄	O ₂	per molecule of C ₂ H ₄ converted	per molecule of EO produced	
Sole plasma	21.79	91.51	1.42	14.06	
0.81	15.16	33.72	1.92	17.10	
1.04	18.00	94.92	1.63	14.48	
1.55	12.71	59.74	2.57	12.41	
2.51	18.18	97.63	1.63	15.88	
3.78	22.90	82.06	1.40	18.67	

Table A2Effect of plasma volume-to-catalyst weight ratio on EO yield andselectivities for EO and other products

Plasma volume-to-	EQ	Selectivity (%)					
catalyst weight ratio (cm ³ /g)	(%)	EO	Ha	СО	C ₂ H ₂		
Sole plasma	2.20	10.08	79.28	60.98	52.46		
0.81	1.70	11.24	29.71	17.84	35.23		
1.04	2.02	11.25	58.30	29.93	47.36		
1.55	2.63	20.73	82.23	61.70	77.01		
2.51	1.86	10.29	57.00	32.91	45.46		
3.78	1.72	7.50	47.78	36.76	32.79		

	Conversion (%)		Power consumption (Ws x 10 ¹⁶)		
Ag loading (wt.%)	C ₂ H ₄	O ₂	per molecule of C ₂ H ₄ converted	per molecule of EO produced	
Sole plasma	21.79	91.51	1.42	14.06	
0	25.49	97.68	1.03	17.33	
5	12.71	59.74	2.57	12.41	
10	9.28	57.69	3.50	14.07	
15	10.07	46.69	2.96	15.62	
20	9.96	58.03	3.25	15.54	

Table A3 Effect of Ag loading on the Al_2O_3 support on C_2H_4 and O_2 conversions, and power consumption

Table A4 Effect of Ag loading on the Al_2O_3 support on EO yield and selectivities for EO and other products

Ag loading (wt.%)	EO yield	Selectivity (%)					
	(%)	EO	H ₂	СО	C_2H_2		
Sole plasma	2.20	10.08	79.28	60.98	52.46		
0	1.52	5.97	91.34	29.89	21.45		
5	2.63	20.73	82.23	61.70	77.01		
10	2.31	24.9	82.30	72.30	70.66		
15	1.91	18.96	83.68	54.69	75.52		
20	2.08	20.90	72.64	40.83	67.83		

	Convers	ion (%)	Power consumption (Ws x 10 ¹⁶)		
Ag loading (wt.%)	C ₂ H ₄	H ₄ O ₂ per molecule conver		per molecule of EO produced	
Sole plasma	21.79	91.51	1.42	14.06	
0	15.62	94.27	2.30	20.64	
5	23.13	98.49	1.31	18.64	
10	18.35	95.19	1.58	14.11	
15	17.00	62.94	1.91	23.57	
20	7.00	64.36	4.66	15.26	
25	10.25	42.79	2.16	18.59	
30	12.08	37.89	1.79	11.96	

Table A5 Effect of Ag loading on the SiO_2 support on C_2H_4 and O_2 conversions, and power consumption

Table A6 Effect of Ag loading on the SiO_2 support on EO yield and selectivities forEO and other products

Ag loading (wt.%)	EO yield	Selectivity [*] (%)				
	(%)	EO	H ₂	СО	C ₂ H ₂	
Sole plasma	2.20	10.08	79.28	60.98	52.46	
0	1.74	11.12	73.52	69.66	62.28	
5	1.62	7.00	48.01	19.96	38.39	
10	2.06	11.23	32.93	24.67	4.30	
15	1.33	8.04	4035	19.65	28.64	
20	2.10	30.56	61.54	29.62	49.49	
25	1.75	17.11	16.64	17.72	48.80	
30	1.81	15.00	15.52	12.00	77.53	

Table A7 Comparisons of the ethylene epoxidation performances in terms of C_2H_4 and O_2 conversions, and power consumption under the sole DBD system, the DBD system with the unloaded supports and the DBD system with both supported Ag catalysts

	Conversion (%)		Power consumption (Ws x 10 ¹⁶)		
DDD system	C ₂ H ₄	O ₂	per molecule of C_2H_4 converted	per molecule of EO produced	
Sole DBD	21.79	91.51	1.42	14.06	
With Al ₂ O ₃ support	25.42	97.68	1.03	17.33	
With SiO ₂ support	15.62	94.22	2.30	20.64	
With 10 wt.% Ag/Al ₂ O ₃ support	9.28	57.69	3.50	14.07	
With 20 wt.% Ag/SiO2 support	7.00	64.36	4.66	15.26	

Table A8 Comparisons of the ethylene epoxidation performances in terms of EOyield and selectivities for EO and other products under the sole DBD system, theDBD system with the unloaded supports and the DBD system with both supportedAg catalysts

DBD system	EO yield	Selectivity [*] (%)				
	(%)	EO	H ₂	СО	C ₂ H ₂	
Sole DBD	2.20	10.08	79.28	60.98	52.46	
With Al ₂ O ₃ support	1.52	5.97	91.34	29.89	21.45	
With SiO ₂ support	1.74	11.12	73.52	69.60	62.28	
With 10 wt.% Ag/Al ₂ O ₃ support	2.31	24.93	82.30	72.30	70.66	
With 20 wt.% Ag/SiO2 support	2.14	30.56	61.56	29.69	49.49	

Appendix B Ethylene Epoxidation in Cylindrical Dielectric Barrier Discharge: Effects of Separate Ethylene/Oxygen Feed

Table B1 Effect of C_2H_4 feed position on C_2H_4 and O_2 conversions, and power consumption

C II food position	Conversion (%)		Power consumption (Ws x 10^{16})		
C_2H_4 leed position	C ₂ H ₄	O ₂	per molecule of C ₂ H ₄ converted	per molecule of EO produced	
Mixed feed	10.62	62.62	1.53	6.26	
0	10.17	62.93	1.50	6.82	
0.25	2.89	60.15	6.32	8.04	
0.50	6.82	36.63	2.37	12.40	
0.75	4.77	28.83	3.34	-	
1	2.11	26.05	7.50	-	

Table B2 Effect of C_2H_4 feed position on EO yield, current, and selectivities for EO and other products

C ₂ H ₄ feed position	EO yield Curren		Selectivity ** (%)				
	(%)	(mA)	EO	H ₂	СО	C ₂ H ₂	
Mixed feed	2.60	0.72	8.94	23.96	24.83	37.96	
0	2.32	0.75	12.65	22.84	26.97	34.16	
0.25	2.08	0.76	15.06	20.64	31.45	27.94	
0.50	1.30	0.77	17.02	20.19	39.05	23.74	
0.75	0	0.76	0	0	70.54	25.27	
1	0	0.74	0	0	83.68	7.33	

C ₂ H ₄ feed	Concentration of outlet gas (mol%)							
position	C ₂ H ₄	O ₂	EO	H ₂	CO	C ₂ H ₂		
Mixed feed	14.75	1.61	0.47	1.25	1.30	1.98		
0	16.18	1.68	0.42	0.75	0.89	1.13		
0.25	17.39	1.73	0.37	0.51	0.78	0.72		
0.50	16.68	2.62	0.23	0.28	0.53	0.32		
0.75	17.45	3.15	0	0	0.41	0.15		
]	17.65	3.25	0	0	0.34	0.04		

Table B3 Effect of C_2H_4 feed position on concentration of outlet gas

Table B4 Effect of O_2/C_2H_4 Feed Molar Ratio on C_2H_4 and O_2 conversions, and power consumption

O ₂ /C ₂ H ₄ Feed Molar	eed Molar Conversion (%)		Power consumption (Ws x 10 ¹⁶)		
Ratio	C ₂ H ₄	O ₂	per molecule of C_2H_4 converted	per molecule of EO produced	
1/5	3.29	58.86	4.78	9.20	
1/4	2.89	60.15	6.32	8.04	
1/3.33	3.23	78.50	4.77	7.60	
1/2.25	2.58	42.82	5.68	9.34	
1/2	3.16	60.45	5.49	10.96	
1/0.67	8.92	28.91	1.67	9.86	

O_2/C_2H_4 Feed Molar	EO yield		Selectivi	ity ** (%)	
Ratio	(%)	EO	H ₂	СО	C ₂ H ₂
1/5	1.71	16.11	17.95	29.70	33.68
1/4	2.08	15.06	20.64	31.45	27.94
1/3.33	1.92	11.92	18.32	29.42	36.65
1/2.25	1.57	12.39	18.72	33.37	31.33
1/2	1.55	11.81	17.31	32.68	35.01
1/0.67	1.51	11.86	22.48	38.42	24.16

Table B5 Effect of O_2/C_2H_4 Feed Molar Ratio on EO yield and selectivities for EO and other products

Table B6 Effect of O₂/C₂H₄ Feed Molar Ratio on concentration of outlet gas

O_2/C_2H_4 Feed	Concentration of outlet gas (mol%)							
Molar Ratio	C ₂ H ₄	O ₂	EO	H ₂	СО	C_2H_2		
1/5	14.75	0.04	0.47	1.25	1.30	1.98		
1/4	16.18	1.68	0.42	0.75	0.89	1.13		
1/3.33	17.39	1.73	0.37	0.51	0.78	0.72		
1/2.25	16.68	2.62	0.23	0.25	0.53	0.32		
1/2	17.45	3.15	0	0	0.41	0.15		
1/0.67	17.65	3.25	0	0	0.34	0.04		

Applied voltage (I(X))	Conversion (%)		Power consumption (Ws x 10 ¹⁶)		
Applied voltage (k v)	C_2H_4	O ₂	per molecule of C_2H_4 converted	per molecule of EO produced	
12	5.12	99.28	2.36	5.60	
13	4.60	99.83	3.12	5.03	
14	3.34	99.47	3.64	5.36	
15	2.89	60.14	6.32	8.04	
17	4.81	55.96	3.15	6.68	

Table B7 Effect of applied voltage on C_2H_4 and O_2 conversions, and power consumption

Table B8 Effect of applied voltage on EO yield, current, and selectivities for EOand other products

Applied voltage (kV)	EO yield	Current		selectivity ^{**} (%)			
	(%)	(mA)	EO	H ₂	СО	C ₂ H ₂	
12	4.06	0.720	22.52	28.37	13.45	32.87	
13	7.98	0.743	30.57	17.11	12.48	36.09	
14	4.56	0.751	22.04	27.88	14.39	32.59	
15	2.08	0.764	15.06	20.64	31.45	27.94	
17	2.30	0.770	15.96	16.13	29.23	35.35	

Applied voltage	Concentration of outlet gas (mol%)						
(kV)	C ₂ H ₄	O ₂	EO	H ₂	СО	C_2H_2	
12	21.89	0.03	.94	1.18	0.56	1.37	
13	18.93	0.01	1.58	0.89	0.65	1.87	
14	22.52	0.03	1.06	1.35	0.69	1.57	
15	17.39	1.73	0.37	0.51	0.78	0.72	
17	19.22	1.99	0.46	0.47	0.85	1.03	

Table B9 Effect of applied voltage on concentration of outlet gas

Table B10 Effect of input frequency on C_2H_4 and O_2 conversions, and power consumption

	Convers	ion (%)	Power consumption (Ws x 10 ¹⁶)		
Input Irequency (Hz)	C₂H₄	O ₂	per molecule of C_2H_4 converted	per molecule of EO produced	
450	2.28	45.25	5.63	7.73	
500	4.60	99.83	3.12	5.03	
550	3.68	74.57	3.49	5.21	
600	2.91	29.34	1.95	13.24	

Table B11 Effect of input frequency on EO yield, current, and selectivities for EO and other products

Input frequency (Hz)	EO yield	Current	Selectivity ^{**} (%)			
	(%)	(mA)	EO	H ₂	СО	C_2H_2
450	1.66	0.758	19.38	24.51	47.82	5.09
500	7.98	0.743	30.57	17.11	12.48	36.09
550	7.47	0.728	33.85	13.35	5.42	42.53
600	0.79	0.687	13.54	16.53	42.63	23.64

Input frequency	Concentration of outlet gas (mol%)							
(Hz)	C_2H_4	O ₂	EO	H ₂	CO	C ₂ H ₂		
450	22.28	2.69	0.38	0.48	0.93	0.10		
500	18.93	0.01	1.58	0.89	0.65	1.87		
550	21.80	1.18	1.69	0.67	0.27	2.12		
600	23.52	3.16	0.19	0.23	0.60	0.33		

Table B12 Effect of input frequency on concentration of outlet gas

Table B13 Effect of total feed flow rate on C_2H_4 and O_2 conversions, and power consumption

Total feed flow rate	Conversion (%)C2H4O2		Power consumption (Ws x 10 ¹⁶)		
(cm ³ /min)			per molecule of C_2H_4 converted	per molecule of EO produced	
60	5.59	41.48	2.21	8.69	
75	3.68	74.57	3.49	5.21	
100	8.05	45.62	1.03	7.13	
125	3.12	17.35	2.17	12.29	

Table B14 Effect of total feed flow rate on EO yield, current, and selectivities forEO and other products

Total feed flow rate	EO yield	EO yield Current		Selectivity ^{**} (%)				
(cm ³ /min)	(%)	(mA)	EO	H ₂	СО	C_2H_2		
60	1.42	0.702	17.67	25.92	34.13	20.23		
75	7.47	0.756	33.85	13.35	5.42	42.53		
100	1.16	0.718	21.82	0.00	42.15	35.32		
125	0.55	0.705	13.68	0.00	25.58	57.65		

Total feed flow	Concentration of outlet gas (mol%)							
rate (cm ³ /min)	C ₂ H ₄	O ₂	EO	H ₂	СО	C_2H_2		
60	24.84	1.30	0.37	0.55	0.72	0.43		
75	21.80	1.18	1.69	0.67	0.27	2.12		
100	22.16	1.74	0.28	0.00	0.54	0.45		
125	23.01	2.91	0.13	0.00	0.24	0.55		

Table B15 Effect of total feed flow rate on concentration of outlet gas

Table B16 Comparisons of the cylindrical DBD system performance using the separate C_2H_4/O_2 feed and the mixed C_2H_4/O_2 feed in terms of C_2H_4 and O_2 conversions, and power consumption

	Convers	sion (%)	Power consumption (Ws x 10^{16})		
DBD system	C_2H_4 O_2		per molecule of C ₂ H ₄ converted	per molecule of EO produced	
Separate feed	3.68	74.57	3.49	5.21	
Mixed feed	10.62	62.93	1.50	6.30	

Table B17 Comparisons of the cylindrical DBD system performance using the separate C_2H_4/O_2 feed and the mixed C_2H_4/O_2 feed in terms of EO yield and selectivities for EO and other products

DBD system	EO yield (%)	Selectivity ^{**} (%)				
		EO	H ₂	СО	C_2H_2	
Separate feed	7.47	33.85	13.35	5.42	42.52	
Mixed feed	2.60	8.90	24.00	24.80	38.00	

Appendix C Ethylene Epoxidation in a Low-Temperature Corona Discharge System: Effect of Separate Ethylene/Oxygen Feed

Table C1 Effect of C_2H_4 feed position on C_2H_4 and O_2 conversions, EO yield, and power consumption

C_2H_4 feed Conversion (%)		ion (%)	EO vield	Power consumption (Ws x 10 ¹⁶)			
position	C₂H₄	O ₂	(%)	per molecule of C ₂ H ₄ converted	per molecule of EO produced		
Mixed feed	14.19	39.57	0.63	1.82	40.94		
0.1	4.21	29.62	0.46	2.78	25.20		
0.2	2.35	25.98	0.68	4.88	16.84		
0.3	4.50	26.05	0.64	2.61	18.22		
0.4	6.21	31.85	0.46	1.87	25.47		
0.5	6.59	27.95	0.48	1.76	23.94		
0.7	3.90	26.54	0.40	3.05	29.45		

Table C2 Effect of C₂H₄ feed position on selectivities for EO and other products

C ₂ H ₄ feed position			Selectivity	* (%)		
-2 F	EO	H ₂	СО	C_2H_2	C_3H_8	CH ₄
Mixed feed	2.95	0	48.15	10.51	2.16	35.84
0.1	2.04	30.26	44.46	15.10	1.79	6.35
0.2	3.83	28.85	42.85	15.47	2.29	6.71
0.3	3.02	28.58	43.57	16.80	2.09	5.94
0.4	2.11	27.51	46.36	15.75	1.97	6.30
0.5	2.38	28.62	43.48	16.79	2.05	6.68
0.7	1.79	29.35	44.96	15.99	1.87	6.04

O ₂ /C ₂ H ₄	Convers	sion (%)	EQuiald	Power consumption (Ws x 10 ¹⁶)				
feed molar ratio	C ₂ H ₄	O ₂	(%)	per molecule of C₂H₄ converted	per molecule of EO produced			
0.25:1	3.38	39.04	0.40	3.10	26.31			
0.33:1	1.25	20.01	0.51	7.90	19.24			
0.5:1	2.35	25.98	0.68	4.88	16.84			
0.75:1	4.18	33.91	0.57	2.35	17.39			
1:1	3.60	30.69	0.06	3.02	187.15			

Table C3 Effect of O_2/C_2H_4 feed molar ratio on C_2H_4 and O_2 conversions, EO yield, and power consumption

Table C4 Effect of O_2/C_2H_4 feed molar ratio on selectivities for EO and other products

O_2/C_2H_4 feed molar	Selectivity ^{**} (%)										
ratio	EO	H ₂	СО	C ₂ H ₂	C ₃ H ₈	CH₄					
0.25:1	2.60	27.00	48.85	13.43	1.95	6.16					
0.33:1	4.32	28.75	38.89	18.68	2.96	6.40					
0.5:1	3.83	28.85	42.85	15.47	2.29	6.71					
0.75:1	2.25	18.09	47.85	20.73	2.53	8.55					
1:1	0.26	23.71	65.72	4.15	0.47	5.69					

Applied voltage	Conv (º	ersion ‰)	EO yield	Power consumption (Ws x 10 ¹⁶)			
(KV)	C ₂ H ₄	O ₂	(%)	per molecule of C ₂ H ₄ converted	per molecule of EO produced		
15	2.35	25.98	0.68	4.88	16.84		
16	2.43	36.92	1.12	4.34	9.42		
17	2.24	39.82	1.34	4.34	7.26		
18	2.25	44.33	1.76	4.74	6.07		
19	2.00	47.82	0.90	5.10	11.27		

Table C5 Effect of applied voltage on C_2H_4 and O_2 conversions, EO yield, and power consumption

Applied voltage	Current	Selectivity ^{**} (%)								
(kV)	(mA)	EO	H ₂	СО	C ₂ H ₂	C ₃ H ₈	CH₄			
15	0.718	3.83	28.85	42.85	15.47	2.29	6.71			
16	0.718	6.08	26.17	48.79	11.04	1.28	6.63			
17	0.720	6.82	24.31	51.50	10.71	1.28	5.37			
18	0.724	8.42	26.63	45.85	10.99	1.33	6.77			
19	0.729	4.61	33.28	35.47	16.78	2.62	7.24			

Input frequency Conve	rsion (%)	EO	Power consumption (Ws x 10 ¹⁶)			
(Hz)	C ₂ H ₄	O ₂	yield (%)	per molecule of C_2H_4 converted	per molecule of EO produced	
400	3.95	60.26	0.83	2.62	12.49	
500	2.25	44.33	1.76	4.74	6.07	
600	2.03	32.55	1.19	4.69	7.98	
700	1.77	22.56	1.06	5.00	8.37	

Table C7 Effect of input frequency on C_2H_4 and O_2 conversions, EO yield, and power consumption

 Table C8 Effect of input frequency on current and selectivities for EO and other

 products

Input frequency	Current	Selectivity ^{**} (%)								
(Hz)	(mA)	EO	H ₂	CO	C_2H_2	C ₃ H ₈	CH₄			
400	0.768	3.03	27.11	43.11	14.70	2.26	9.80			
500	0.724	8.42	26.63	45.85	10.99	1.33	6.77			
600	0.711	7.29	23.25	53.35	9.36	1.04	5.70			
700	0.679	6.65	27.31	39.94	18.19	1.80	6.11			

Table C9	Effect	of total	feed	flow	rate	on	C_2H_4	and	O_2	conversions	and	power
consumptio	n											

Total feed flow	Residence	Convers	sion (%)	Power consumption (Ws x 10 ¹⁶)			
rate (cm ³ /min)	time (s)	C ₂ H ₄	O ₂	per molecule of C_2H_4 converted	per molecule of EO produced		
100	0.077	2.25	44.33	4.74	6.07		
125	0.062	1.41	34.04	7.03	18.53		
150	0.051	1.70	31.78	5.56	30.74		

Total feed flow	EO yield	Selectivity ^{**} (%)							
rate (cm ³ /min)	(%)	EO	H ₂	СО	C ₂ H ₂	C ₃ H ₈	CH4		
100	1.76	8.42	26.63	45.85	10.99	1.33	6.77		
125	0.54	3.20	31.18	47.02	10.30	1.13	7.17		
150	0.31	2.00	28.91	47.89	11.78	2.25	7.17		

 Table C10 Effect of total feed flow rate on EO yield and selectivities for EO and other products

Table C11 Effect of electrode gap distance on C_2H_4 and O_2 conversions and power consumption

Electrode gap	Residence	Conversion (%)		Power consumption (Ws x 10 ¹⁶)		
distance (cm)	time (s)	C_2H_4	O ₂	per molecule of C_2H_4 converted	per molecule of EO produced	
0.8	0.062	1.83	42.30	4.92	6.88	
0.9	0.069	1.85	48.20	4.85	6.44	
1.0	0.077	2.25	44.33	4.74	6.07	
1.1	0.085	1.91	41.19	5.18	10.03	
1.2	0.092	4.34	54.34	2.14	13.12	

Table C12 Effect of electrode gap distance on EO yield, current, and selectivitiesfor EO and other products

Electrode gap	EO yield	Current	Selectivity ^{**} (%)					
distance (cm)	(%)	(mA)	EO	H ₂	СО	C ₂ H ₂	C ₃ H ₈	CH₄
0.8	1.31	0.728	9.19	30.16	37.23	13.26	3.03	7.13
0.9	1.39	0.726	8.41	27.57	47.88	7.38	1.26	7.50
1.0	1.76	0.724	8.42	26.63	45.85	10.99	1.33	6.77
1.1	0.99	0.723	4.90	28.09	56.63	1.40	1.08	7.90
1.2	0.71	0.721	3.36	26.97	54.34	8.18	0.90	6.26

Table C13 Comparisons of the corona discharge performance using the separate and the mixed C_2H_4/O_2 feed in terms of C_2H_4 and O_2 conversions, and power consumption

DPD system	Conver	sion (%)	Power consumption (Ws x 10 ¹⁶)		
DBD system	C ₂ H ₄ O ₂		per molecule of C ₂ H ₄ converted	per molecule of EO produced	
Mixed feed	14.19	39.54	1.82	40.94	
Separate feed	2.25	44.33	4.74	6.07	

Table C14 Comparisons of the corona discharge performance using the separate and the mixed C_2H_4/O_2 feed in terms of EO yield and selectivities for EO and other products

DBD system	EQ vield (%)	Selectivity ^{**} (%)					
	EO yleid (76)	EO	СО	C ₂ H ₂	CH4	C_3H_8	
Mixed feed	0.63	2.95	48.15	10.51	35.84	2.16	
Separate feed	1.76	8.42	45.85	10.99	6.77	1.33	

Appendix D Ethylene Epoxidation in an AC Dielectric Barrier Discharge Jet System

Table D1	Effect of to	otal feed	flow rat	e on	C_2H_4	and	O ₂	conversions	and	power
(consumption	1								

Total feed flow Residence		Convers	sion (%)	Power consumption (Ws x 10^{21})		
rate (cm ³ /min)	time (s x 100)	C ₂ H ₄	O ₂	per molecule of C_2H_4 converted	per molecule of EO produced	
1,625	2.29	41.04	75.14	3.77	11.36	
1,896	1.96	33.30	70.15	4.52	16.08	
2,167	1.72	35.00	56.69	4.75	15.07	
2,438	1.53	37.56	55.33	4.55	16.73	
2,708	1.37	38.09	48.83	5.43	20.97	
3,250	1.14	38.91	48.14	5.94	25.73	

 Table D2
 Effect of total feed flow rate on EO yield and selectivities for EO and other products

Total feed flow	EO yield	Selectivity (%)					
rate (cm ³ /min)	(%)	EO	H ₂	CO	CH₄	C ₂ H ₆	
1,625	13.63	33.22	34.81	3.87	0.52	0.02	
1,896	11.10	33.32	29.29	3.74	2.47	0.08	
2,167	11.03	31.50	27.33	4.52	2.79	0.14	
2,438	10.21	27.19	22.99	3.64	0.20	0.09	
2,708	9.86	25.90	18.21	5.13	2.06	0.10	
3,250	8.98	23.08	13.93	10.66	0.26	0.11	

Total feed flow	Current	Formation (%)		
rate (cm ³ /min)	(mA)	Coke	Water	
1,625	0.523	25.57	12.66	
1,896	0.532	20.10	10.75	
2,167	0.521	21.37	12.38	
2,438	0.521	25.87	18.51	
2,708	0.520	25.45	19.66	
3,250	0.511	25.63	24.24	

 Table D3 Effect of total feed flow rate on current and coke and water formations

Table D4 Effect of O_2/C_2H_4 feed molar ratio on C_2H_4 and O_2 conversions, EO yield,and power consumption

O_2/C_2H_4	Conversion (%)		EQuiald	Power consumption (Ws x 10^{21})		
teed molar ratio	C ₂ H ₄	O ₂	(%)	per molecule of C_2H_4 converted	per molecule of EO produced	
0.20:1	29.39	67.32	7.62	8.80	33.96	
0.25:1	41.04	75.14	13.63	6.07	18.29	
0.30:1	47.30	73.54	7.85	6.51	39.24	
0.40:1	42.18	81.42	5.39	5.35	41.85	
0.50:1	44.23	87.66	6.77	4.36	28.45	

Table D5 Effect of O_2/C_2H_4 feed molar ratio on selectivities for EO and other products

O_2/C_2H_4 feed molar	Selectivity [*] (%)							
ratio	EO	H ₂	СО	CH₄	C ₂ H ₆			
0.20:1	25.91	44.22	2.08	0.96	0.05			
0.25:1	33.22	34.81	3.87	0.52	0.02			
0.30:1	16.60	27.09	5.32	0.28	0.02			
0.40:1	12.79	29.59	9.53	0.09	0.03			
0.50:1	15.32	51.90	34.13	0.00	0.02			

O_2/C_2H_4 feed molar	Current	Format	tion (%)
ratio	(mA)	Coke	Water
0.20:1	0.520	20.86	8.18
0.25:1	0.523	25.57	12.66
0.30:1	0.530	36.79	26.35
0.40:1	0.511	32.71	24.20
0.50:1	0.518	22.35	14.49

Table D6 Effect of O_2/C_2H_4 feed molar ratio on current and coke and water formations

Table D7 Effect of applied voltage on C2H4 and O2 conversions, EO yield, andpower consumption

Applied	Convers	sion (%)	EO vield	Power consumption (Ws x 10^{21})		
voltage (kV)	C ₂ H ₄	O ₂	(%)	per molecule of C ₂ H ₄ converted	per molecule of EO produced	
7	41.04	75.14	13.63	6.18	18.61	
8	45.99	73.93	17.71	5.13	13.31	
9	44.83	75.41	18.41	5.15	12.55	
10	43.98	76.04	14.87	6.37	18.85	
11	47.76	80.48	11.91	5.93	23.76	
13	46.56	82.52	11.52	6.50	26.26	
15	44.53	85.13	7.94	7.22	40.51	

Applied voltage	selectivity (%)					
(kV)	EO	H ₂	СО	CH₄	C ₂ H ₆	
7	33.22	34.81	3.87	0.52	0.02	
8	38.51	34.85	4.67	0.51	0.01	
9	41.06	39.09	5.48	0.47	0.02	
10	33.81	44.72	6.67	0.52	0.02	
11	24.95	44.10	7.03	0.50	0.01	
13	24.74	48.14	7.95	0.51	0.03	
15	17.83	59.08	9.04	0.42	0.02	

Table D8 Effect of applied voltage on selectivities for EO and other products

* Selectivity based on C₂H₄ conversion

 Table D9
 Effect of applied voltage on power, current, and coke and water

 formations

Applied voltage	Power	Current	Formati	on (%)
(kV)	(W)	(mA)	Coke	Water
7	0.074	0.523	25.57	12.66
8	0.082	0.643	25.88	11.76
9	0.081	0.676	23.73	8.45
10	0.091	0.750	25.94	8.97
11	0.101	0.825	32.23	14.29
13	0.111	0.978	31.09	12.13
15	0.117	1.100	32.36	9.89

Input	Convers	sion (%)	EQuiald	Power consumption (Ws x 10^{21})		
frequency (Hz)	C₂H₄	O ₂	(%)	per molecule of C_2H_4 converted	per molecule of EO produced	
300	42.01	93.12	19.20	0.817	1.788	
400	42.01	78.92	17.23	2.544	6.204	
500	44.83	75.41	18.41	5.153	12.550	
600	41.58	62.86	12.44	17.093	57.138	
700	43.85	66.90	11.29	26.892	104.446	
800	42.36	64.30	9.54	30.695	136.320	
900	46.06	56.76	7.64	36.978	222.783	

Table D10 Effect of input frequency on C_2H_4 and O_2 conversions, EO yield, and power consumption

Table D11 Effect of input frequency on selectivities for EO and other products

Input frequency	Selectivity (%)				
(Hz)	EO	H ₂	СО	CH4	C ₂ H ₆
300	45.71	8.75	1.66	0.14	0.04
400	41.00	16.89	2.55	0.19	0.02
500	41.06	39.09	5.48	0.47	0.02
600	29.92	47.04	6.40	0.51	0.03
700	25.75	51.19	10.29	0.49	0.02
800	22.52	52.08	10.31	0.47	0.01
900	16.60	57.36	8.16	0.52	0.01

Input frequency	Power	Current	Formati	on (%)
(Hz)	(W)	(mA)	Coke	Water
300	0.012	0.447	22.03	18.99
400	0.034	0.566	23.63	17.52
500	0.081	0.676	23.73	8.45
600	0.263	0.798	26.25	9.14
700	0.304	0.938	27.82	9.66
800	0.383	1.070	28.25	10.36
900	0.593	1.170	34.41	11.51

 Table D12
 Effect of input frequency on power, current, and coke and water

 formations

Table D13 Effect of Spacing of inner pin electrode and C_2H_4 feed point on C_2H_4 and O_2 conversions, EO yield, and power consumption

Spacing	Convers	sion (%)	EO vield	EO vield Power consumption (Ws	
(mm)	C ₂ H ₄	O ₂	(%)	per molecule of C_2H_4 converted	per molecule of EO produced
0	42.01	93.12	19.20	2.96	6.47
3	49.95	91.23	27.57	3.33	6.03
6	21.99	93.49	7.30	10.47	31.53

Table D14 Effect of Spacing of inner pin electrode and C_2H_4 feed point onselectivities for EO and other products

Spacing		Se	lectivity [*] (%)	
(mm)	EO	H ₂	СО	CH4	C ₂ H ₆
0	45.71	8.75	1.66	0.14	0.04
3	55.19	4.04	0.66	0.07	0.01
6	33.20	2.77	0.43	0.07	0.06

Spacing	Power	Current	Formati	on (%)
(mm)	(W)	(mA)	Coke	Water
0	0.0424	0.447	22.03	18.99
3	0.0438	0.441	22.01	20.28
6	0.0471	0.441	14.56	14.03

Table D15 Effect of Spacing of inner pin electrode and C_2H_4 feed point on power, current, and coke and water formations

CURRICULUM VITAE

Name:	Ms. Thitiporn Suttikul
Date of Birth:	March 3, 1985
Nationality:	Thai

University Education:

2003-2007 Bachelor Degree of Chemical Engineering, Faculty of Engineering, Mahidol University, Bangkok, Thailand

Publications:

- Sreethawong T., Permsin N., Suttikul T. and Chavadej S. (2010) Ethylene Epoxidation in Low-Temperature AC Dielectric Barrier Discharge: Effect of Electrode Geometry. <u>Plasma Chemistry and Plasma Processing</u>, 30(4), 503-524.
- Suttikul, T., Sreethawong, T., Sekiguchi, H. and Chavadej, S. (2011) Ethylene Epoxidation over Alumina- and Silica-Supported Silver Catalysts in Low-Temperature AC Dielectric Barrier Discharge. <u>Plasma Chemistry and Plasma</u> <u>Processing</u>, 31(2), 273-290.
- Suttikul, T., Sreethawong, T., Sekiguchi, H. and Chavadej, S. (2012) Ethylene Epoxidation in Cylindrical Dielectric Barrier Discharge: Effect of Separative Ethylene/Oxygen Feed. <u>Plasma Chemistry and Plasma Processing</u>.
- Suttikul, T., Yaowapong-aree, S., Sreethawong, T., Sekiguchi, H. and Chavadej, S. Ethylene Epoxidation in a Low-Temperature Corona Discharge System: Effect of Separate Ethylene/Oxygen Feed. Chemical Engineering and Processing: Process Intensification. (in preparation).
- Suttikul, T., Sekiguchi, H. and Chavadej, S. Ethylene Epoxidation in an AC Dielectric Barrier Discharge Jet System. Chemical Engineering Journal. (in preparation).

Proceedings and Presentations:

- Jittiang, W., Suttikul, T., Sreethawong, T. and Chavadej, S. (2008) Multistage AC Gliding Arc Discharge System for Reforming and Partial Oxidation of Natural Gas. <u>Proceedings of Thai-Japan Joint Symposium on Materials Science</u> and Environmental Technology, August 19–20, Bangkok, Thailand.
- Suttikul, T., Sreethawong, T., Ouraipryvan, P., Chumnunmanoonthum, J. and Chavadej, S. (2009) Ethylene Epoxidation over Supported Silver Catalysts in Low-Temperature AC Dielectric Barrier Discharge. <u>Proceedings of the 19th</u> <u>International Symposium on Plasma Chemistry</u>, July 26–31, Bochum, Germany.
- Chavadej, S., Suttikul, T. and Sreethawong, T. (2010) Epoxidation of ethylene over silver catalysts in low-temperature AC dielectric barrier discharge: effect of support. <u>Proceedings of the 19th International Congress of Chemical and</u> <u>Process Engineering CHISA 2010, and the 7th European Congress of Chemical Engineering ECCE-7</u>, August 28-September 1, Prague, Czech Republic.
- Suttikul, T., Sreethawong, T., Sekiguchi, H. and Chavadej, S. (2011) Effects of Operational Parameters on Ethylene Epoxidation Using a Cylindrical Dielectric Barrier Discharge System. <u>Proceedings of the 4th International Conference on</u> <u>Plasma-Nanotechnology & Science</u>, March 10-12, Takayama, Japan.
- Suttikul, T., Chavadej, S., Sekiguchi, H. and Sreethawong, T. (2011) Ethylene Epoxidation in a Cylindrical Dielectric Barrier Discharge System: Influence of Feed Position. <u>Proceeding of the 20th International Symposium on Plasma</u> <u>Chemistry</u>, July 24 - 29, Philadelphia, USA.