BIOBUTANOL PRODUCTION BY IMMOBILIZED *CLOSTRIDIUM BEIJERINCKII* TISTR1461 ONTO CARBON MATERIALS

Piyawat Chinwatpaiboon

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University, and Institut Français du Pétrole 2015

Thesis Title:	Biobutanol Production by Immobilized Clostridium
	beijerinckii TISTR1461 onto Carbon materials
By:	Piyawat Chinwatpaiboon
Program:	Petrochemical Technology
Thesis Advisors:	Assoc. Prof. Apanee Luengnaruemitchai
	Asst. Prof. Thanyalak Chaisuwan

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

..... College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

apam (

(Assoc. Prof. Apanee Luengnaruemitchai)

Thougalale Chaisewa

(Asst. Prof. Thanyalak Chaisuwan)

Pramoel B

(Assoc. Prof. Pramoch Rangsunvigit)

W. Jonglatjunga

(Asst. Prof. Woranart Jonglertjunya)

ABSTRACT

5671026063 Petrochemical Technology Program
Piyawat Chinwatpaiboon: Biobutanol Production by Immobilized *Clostridium beijerinckii* TISTR1461 onto Carbon Materials
Thesis Advisors: Assoc. Prof. Apanee Luengnaruemitchai, and Asst.
Prof. Thanyalak Chaisuwan 61 pp.
Keywords: ABE fermentation/ Activated carbon/ *Clostridium beijerinckii*/

Immobilization/ Treatment

Biobutanol is considered as one of the most attractive biofuels because it has an energy density closer to gasoline. It can be produced via Acetone-Butanol-Ethanol (ABE) fermentation using Clostridium species. There are numerous attempts to improve butanol production via cell immobilization to increase cell density and productivity. Furthermore, cell immobilization can protect microbial cells from environmental stresses and operate for a long period with stable operation. Activated carbon, a highly porous material with a large adsorption capacity, was used as an immobilized material for the fermentation process. *Clostridium beijerinckii* TISTR1461 was adsorbed on the activated carbon, which was treated with various chemicals. The DARCO® activated carbon was treated by different chemicals; nitric acid, sodium hydroxide, and 3-aminopropyltriethoxysilane. The results were analyzed and compared to a free cell system. The aminosilane treatment provided the highest butanol concentration of 10.66 g/l.

บทคัดย่อ

ปียวัฒน์ ชินวัฒน์ไพบูลย์: ชื่อหัวข้อวิทยานิพนธ์ การผลิตไบโอบิวทานอลโดย Clostridium beijerinckii TISTR 1461 ตรึงเซลล์บนวัสดุการ์บอน (Biobutanol Production by Immobilized Clostridium beijerinckii TISTR1461 onto Carbon Materials) อาจารย์ ที่ปรึกษา: รศ. คร.อาภาณี เหลืองนฤมิตชัย และ ผศ. คร. ธัญญลักษณ์ ฉายสวรรณ์ 61 หน้า

ในปัจจุบันการใช้เชื้อเพลิงชีวภาพเป็นพลังงานทดแทนมีบทบาทสำคัญมากขึ้น บิว ทานอลเป็นอิกทางเลือกหนึ่งที่น่าสนใจนอกเหนือจากการใช้เอทานอลเนื่องจากบิวทานอลให้ พลังงานที่ใกล้เคียงกับเชื้อเพลิงฟอสซิล ซึ่งการผลิตบิวทานอลนั้นสามารถผลิตได้จากกระบวนการ หมักด้วยเชื้อแบคทีเรีย Clostridium beijerinckii TISTR 1461 ทั้งนี้การหมักแบบตรึงเซลล์ เป็นเทคนิกที่ถูกศึกษาเพื่อเพิ่มผลผลิตบิวทานอลโดยเทคนิกการตรึงเซลล์นี้ช่วยป้องกันเซลล์จาก สภาวะแวคล้อมต่างที่ไม่เอื้ออำนวยต่อการดำรงอยู่ เช่น อุณหภูมิ แรงเฉือน รวมถึงความเป็นพิษที่ เกิดขึ้นในระบบ นอกจากจะเพิ่มประสิทธิภาพในการหมักแล้วยังสามารถหมักได้ระยะเวลานาน มากขึ้น ซึ่งมีการศึกษาวัสดุที่ใช้ในกระบวนการหมักเทคนิกการตรึงเซลล์นี้มากมาย เช่น อิฐมอญ, ฟองน้ำ, ผ้าขนหนู, ซีโอไลท์, ถ่านกัมมันต์ ฯลฯ ทั้งนี้โครงงานนี้ทำการศึกษาเทคนิกการตรึงเซลล์ ด้วยถ่านกัมมันต์ เนื่องจากถ่านกัมมันต์เป็นวัสดุที่มีความเป็นรูพรุนสูง หาใด้ง่าย และราคาถูก ศึกษาการปรับสภาพถ่านกัมมันต์ด้วยสารเคมีต่างๆเช่นกรดในตริก, โซเดียมไฮดรอกไซด์ และ 3aminopropyltriethoxysilane จากนั้นเปรียบเทียบการหมักระหว่างการหมักแบบเซลล์อิสระกับ การหมักแบบตรึงเซลล์ด้วยถ่านกัมมันต์เกล่านี้ จากผลการทดลองพบว่าการหมักแบบเซลล์อิสระกับ ล้วยถ่านกัมมันต์ที่ผ่านการปรับสภาพด้วย 3-aminopropyltriethoxysilane ให้ผลผลิตบิวทานอล สูงที่สุด มีก่า 10.66 กรัมต่อลิตร

υ

ACKNOWLEDGEMENTS

This research work was partially supported by the Ratchadapisek Sompote Endowment Fund (2013), Chulalongkorn University (CU-56-900-FC) and Thailand Research Fund (IRG5780012). Moreover, this work was financially supported by Nation Research University Project, Office of Higher Education Commission (WCU-037-EN-57), The Petroleum and Petrochemical College and The National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, Thailand.

I would like to thank Assoc. Prof. Apanee Luengnaruemitchai for her internal review of this paper and helpful suggestions. Her suggestion helped me in all the time of research and writing of this thesis. Furthermore, my sincere thanks also goes to Asst. Prof. Thanyalak Chaisuwan, and Assoc. Prof. Pramoch Rangsunvigit for their kindness being my co-advisor and committee. Moreover, I have to thank Asst. Prof. Woranart Jonglertjunya for her kindness sharing C18 column HPLC and being my committee.

Finally, I would like to special thank for Dr. Akarin Boonsombuti who is a technical assistance. A special thanks to my parents and my friends for all their support and encouragement throughout the period of this research. Especially, I would like to thanks Mr. Phitsanu Teeraphapkul and Mr. Chayut Yaempho for support me to do my experiment.

σ

TABLE OF CONTENTS

р	A	C	F
	м	U	Ľ

Title Page	i
Abstract (in English)	···iii
Abstract (in Thai)	iv
Acknowledgements	ν
Table of Contents	vi
List of Tables	viii
List of Figures	ix

CHAPTER

o

I INTRODUCTION	1
II LITERATURE REVIEW	3
2.1 Biobutanol	3
2.2 Treatment	8
2.3 Fermentation	14
III EXPERIMENTAL 🖉	25
3.1 Materials and Chemicals	25
3.2 Equipments	25
3.3 Experimental Procedures	26
3.3.1 Preparation of Immobilized Material	26
3.3.2 Medium Preparation	26
3.3.3 Inoculum Development	27
3.3.4 Fermentation	27
3.4 Analytical Methodology	27
3.4.1 High Performance Liquid Chromatography (HPLC)	27
3.4.2 UV-VIS Technique (UV)	28

3.4.3 Scanning Electron Microscope (SEM) 28

HAPTER		PAGE
	3.4.4 Surface Area Analysis (BET)	28
	3.4.5 Fourier Transform Infrared Spectroscopy (FTIR)	29
IV	RESULTS AND DISCUSSION	30
	4.1 Material Characterization	30
	4.2 ABE Fermentation by <i>Clostridium beijerinckii</i> TISTR1461	36
	4.2.1 ABE Fermentation with Acid-Base Treatment	36
	4.2.2 ABE Fermentation with Amine-Base Treatment	40
V	CONCLUSIONS AND RECOMMENDATIONS	45
	5.1 Material Characterization	45
	5.2 Fermentation	46
	REFERENCES	48
	APPENDICES	51
	Appendix A The Analysis Calculation	51
0	Appendix B The Physical Properties of Various	52
	Activated Carbon	
	Appendix C The Fermentation Results	56
	CURRICULUM VITAE	61

Cl

. .

LIST OF TABLES

TABLE		PAGE
2.1°	Fermentation of Clostridium sp.	6
2.2	Average pore diameter, mesoporosity and production yield	
	of mesoporous activated carbon	9
2.3	List of carbon in the study	11
2.4	Surface properties of studied carbon	11
2.5	The relative peak area percentage of carbon (C 1s) peaks	14
2.6	ABE production from different sugar sources (60 g/l) with	
	free and immobilized Clostridium acetobutylicum cells at	
	37 °C	15
2.7	Various solid immobilized by Clostridium acetobutylicum	
	ATCC824 in batch culture on two different medium	17
4.1	Physical properties of untreated and treated activated	
	carbons	32
4.2	EDX Atomic percentage of various activated carbons	36
5.1	pH broth of every ABE fermentation systems at stationary	
	phase	46
B1	The effect of butanol adsorption on immobilized materials	55
Cl	Butanol concentrations as function of time all ABE	
	fermentations	59
C2	Butanol concentrations from previous work	60

viii

LIST OF FIGURES

÷	FIGURE		PAGE
	2.1	Metabolic pathways of <i>Clostrium acetobutylicum</i> ATCC	
		824 which enzymes are abbreviated as follows: PTA,	
		phosphotransacetylase; AK, acetate kinase; CoAT, CoA	
		transferase; PTB, phosphotransbutyrylase; BK, butyrate	
		kinase; BADH, butyraldehyde dehydrogenase; BDH,	
		butanol dehydrogenase	4
	2.2	Production removal techniques	7
	2.3	Adsorption and Entrapment of Cell immobilization.	8
	2.4	Scanning electron micrograph images (a) The	
		precarbonized sample (MAC); (b) Activated carbon	
		sample (MAC ₉₀₀); (c) Bacillus sp. immobilized in the	
		mesoporous activated carbon.	10
	2.5	SEM images: (a) DI-AC; (b) SH-AC; (c) HA37-AC; and	
		(d) NA69-AC.	12
	2.6	Change in glucose concentration, pH and solvent	
		production with time during continuous culture with	
		Clostridium acetobutylicum ATCC824 attached to coke	
		as a support and using a semidefined medium at a dilution	
		rate of 0.1 h ⁻¹ . $\Delta - \Delta$, total solvents; $O - \cdot - O$, pH;	
		• — •, influent glucose; $\Box =\Box$, effluent glucose.	18
	2.7	Glucose and ABE solvent results of free cells and	
		immobilized cells (on bricks) with batch fermentation.	19
	2.8	Effects of brick size to ABE fermentation at 60 g/l of	
		glucose which used 5 g brick in 25 ml medium.	20
	2.9	Results of repeated batch with brick immobilization	
		(containing 60 g/l of initial glucose and 60 h of	
		cultivation of each batch).	21
		·	

FIGURE

PAGE

Х

2.10	Solvents and acids in the effluent of continuous	
	fermentation at the dilution rate of 0.054 h^{-1} and 0.108 h^{-1} .	
	The dash line indicated the shift of dilution rate from	
	0.054 h^{-1} to 0.108 h^{-1} .	22
2.11	Scanning Electron Micrographs of immobilized cells of	
	C. beijerinckii BA101 (a) Clay brick 3000x, (b)	
	Immobilized cells 3000x, (c) Immobilized cells 5669x.	23
4.1	SEM photographs of activated carbon samples (a) DI-AC;	
	(b) NA-AC; (c) NASH-AC; (d) SH-AC; (e) AS-AC(R);	
	and (f) SH-AC(R) at 700x and 1000x magnification.	31
4.2	3-aminopropyltriethoxysilane (APTES) (a) Schematic	
	structure; and (b) Mechanism of APTES at activated	
	carbon surface.	33
4.3	FTIR spectra of various activated carbons (a) Acid-base	
	treatment; and (b) Amine-base treatment.	33
4.4	FTIR intensity at wavenumber 1570 and 3400 cm^{-1}	
	obtained from various type of treated activated carbons.	34
4.5	Adsorption-desorption isotherms of untreated and treated	
	activated carbons (a) DI-AC; (b) NASH-AC; and (c) AS-	
	AC(R).	35
4.6	Glucose profiles of acid-base immobilized activated	
	carbon fermentation.	38
4.7	Cell growth profiles of acid-base immobilized activated	
	carbon fermentation.	38
4.8	pH profiles of acid-base immobilized activated carbon	
	fermentation.	39
4.9	Butanol profiles of acid-base immobilized activated	
	carbon fermentation.	39

0

- -

4.10	Glucose profiles of amine-base immobilized activated	40
	carbon fermentation.	
4.11	Cell growth profiles of amine-base immobilized activated	
	carbon fermentation.	41
4.12	pH profiles of amine-base immobilized activated carbon	
	fermentation.	43
4.13	Butanol profiles of amine-base immobilized activated	
	carbon fermentation.	43
4.14	SEM photographs of Clostridium beijerinckii TISTR1461	
	immobilized on treated activated carbons (a) NASH-AC;	
	(b) SH-AC; (c) AS-AC(R); and (d) SH-AC(R) at 7500x	
	magnification.	44
4.15	Butanol concentration adsorption of immobilized	
	materials adsorption	44
5.1	Comparison of coefficient butanol productivity factor.	47
B1	Adsorption-desorption isotherms of untreated and treated	
	activated carbons (a) SH-AC; and (b) SH-AC(R).	52
B2	Pore size distribution of various activated carbons (a) DI-	
	AC; (b) NASH-AC; (c) SH-AC; (d) AS-AC(R); and (e)	
	SH-AC(R).	53
C1	Acid profiles of acid-base immobilized activated carbon	
	fermentation (a) Total acid profile; (b) Acetic acid	
	profile; and (c) Butyric acid profile.	56
C2	Acid profiles of amine-base immobilized activated carbon	
	fermentation (a) Total acid profile; (b) Acetic acid	
	profile; and (c) Butyric acid profile.	58

σ

-