DILUTE PHOSPHORIC ACID PRETREATMENT OF CORNCOB FOR BIOFUELS PRODUCTION

Sirikarn Satimanont

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University, and Institut Français du Pétrole

Thesis Title:	Dilute Phosphoric Acid Pretreatment of Corncob for Biofuels	
	Production	
By:	Sirikarn Satimanont	
Program:	Petrochemical Technology	
Thesis Advisors:	Assoc. Prof. Apanee Luengnaruemitchai	
	Assoc. Prof. Sujitra Wongkasemjit	

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University in partial fulfillment of the requirements for the Degree of Master of Science.

..... College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

Прени (Assoc. Prof. Apanee Luengfaruemitchai)

Kenny

(Assoc. Prof. Sujitra Wongkasemjit)

Thanyaleh Chais-(Asst. Prof. Thanyalak Chaisuwan)

(Dr. Ruengsak Thitiratsakul)

ABSTRACT

5371022063: Petrochemical Technology Program
Sirikarn Satimanont: Dilute Phosphoric Acid Pretreatment of
Corncob for Biofuels Production
Thesis Advisors: Assoc. Prof. Apanee Luengnaruemitchai and
Assoc. Prof. Sujitra Wongkasemjit, 76 pp.
Keywords: Corncob/ Dilute Acid pretreatment/ Enzymatic hydrolysis/ Biofuels

Keywords: Corncob/ Dilute Acid pretreatment/ Enzymatic hydrolysis/ Biofuels production

A waste product from corn production, corncob, is one type of lignocellulosic material, which is a new targeted source of fermentable carbohydrates that can be converted into second generation biofuels. In order to convert corncob to biofuels, the first problem that must be solved is that the structure of corncob limits the extent to which enzymatic hydrolysis of polysaccharides into sugar can occur. Therefore, a pretreatment process is an essential step to remove hemicelluloses and break down cellulose crystallinity to amorphous form prior to the enzymatic hydrolysis process, and enhance cellulose accessibility in the hydrolysis step. Various conditions in the pretreatment process, such as temperature, time, acid concentration, and liquid-to-solid ratio were investigated to determine optimum conditions. After pretreatment, a high yield of 27.62 g/L total sugar was obtained under optimal conditions of 140 °C, 10 min pretreatment time, 2 % (w/w) H₃PO₄ at a 10:1 liquid-to-solid (LSR) ratio. The total sugar yield of 46.14 g/L was obtained with the two-stage process (pretreatment and enzymatic hydrolysis).

บทคัดย่อ

ศิริกาญจณ์ สติมานนท์ : การปรับสภาพซังข้าวโพคโดยกรคฟอสฟอริกเจือจางให้ได้ น้ำตาลที่พร้อมนำเข้าสู่กระบวนการหมักเพื่อผลิตเป็นเชื้อเพลิงชีวภาพ (Dilute Phosphoric Acid Pretreatment of Corncob for Biofuels Production) อ. ที่ปรึกษา : รศ.คร. อาภาณี เหลืองนฤมิตชัย และ รศ.คร. สุจิตรา วงศ์เกษมจิตต์ 76 หน้า

ซังข้าวโพคซึ่งเป็นวัสดุเหลือใช้ทางการเกษตรจากการผลิตข้าวโพคถือเป็นวัตถุดิบที่ ได้รับความสนใจในการนำมาแปรสภาพเป็นน้ำตาลโมเลกุลเคี่ยวเพื่อผลิตเป็นเชื้อเพลิงชีวภาพ แต่ ในการแปรสภาพวัสดุเหลือใช้ทางการเกษตรเพื่อผลิตเป็นเชื้อเพลิงชีวภาพนั้นมีข้อจำกัดคือ โครงสร้างและองค์ประกอบของวัสดุเหลือใช้ทางการเกษตรไม่เอื้ออำนวยต่อการแปรสภาพไปเป็น ู น้ำตาลโมเลกุลเคี่ยว คังนั้นกระบวนการแปรสภาพวัสคุเหลือใช้ในทางการเกษตรนั้นจึงมี ้ความสำคัญอย่างยิ่งในการกำจัดเฮมิเซลลูโลสซึ่งมีผลขัดขวางการผลิตน้ำตาลโมเลกุลเดี่ยวที่ได้จาก การย่อยสลายโคยเอมไซม์และทำลายโครงสร้างของเซลลูโลสที่ไม่เอื้ออำนวยในการผลิตน้ำตาล โมเลกุลเคี่ยว นอกจากนี้กระบวนการแปรสภาพนี้ยังช่วยเพิ่มประสิทธิภาพในการผลิตน้ำตาล ์ โมเลกุลเคี่ยวที่ได้จากการย่อยสลายเซลลูโลสโคยเอมไซม์อีกด้วย ในงานวิจัยนี้มุ่งเน้นศึกษาตัวแปร ในขั้นตอนกระบวนการแปรสภาพวัสคุเหลือใช้ทางการเกษตร อาทิ อุณหภูมิ เวลา ความเข้มข้น ของกรค และอัตราส่วนของเหลวต่อของแข็ง ที่มีผลต่อการผลิตน้ำตาลโมเลกุลเคี่ยวจาก กระบวนการแปรสภาพวัสดุเหลือใช้ทางการเกษตรและกระบวนการย่อยสลายโดยเอมไซม์ หลังจากการปรับสภาพของวัสดุเหลือใช้ทางการเกษตร โดยใช้กรดฟอสฟอริกเจือจางภายใต้ภาวะที่ เหมาะสม (140 องศาเซลเซียส, 10 นาที, ความเข้มข้นกรค 2% โดยน้ำหนัก และ อัตราส่วน ของเหลวต่อของแข็ง 10: 1) ให้ผลผลิตน้ำตาล 27.62 กรัมต่อลิตร และปริมาณน้ำตาลรวมจากสอง กระบวนการ (กระบวนการแปรสภาพวัสดุเหลือใช้ทางการเกษตรและกระบวนการย่อยสลายโดย เอมไซม์) มีปริมาณ 46.14 กรัมต่อลิตร

ACKNOWLEDGEMENTS

First, I would like to express my grateful appreciation to Assoc. Prof. Apanee Luengnaruemitchai for her good recommendation and suggestion throughout my thesis work. In addition, I would like to express the truthful appreciation to Assoc. Prof Sujitra Wongkasemjit, Asst. Prof. Thanyalak Chaisuwan, and Dr. Ruengsak Thitiratsakul for their kindness being my co-advisor and committee.

Second, I would like to thank Mr. Akarin Boonsombuti who always gave a new idea for doing thesis work and helping me to solve thesis's problem.

Third, I especially thank The Petroleum and Petrochemical College and the Center of Excellence on Petrochemical and Materials Technology, Thailand that provided all facilities and financial support to me.

Finally, I would like to thank the funding of the National Research University Project of CHE and the Ratchadaphiseksomphot Endowment Fund (EN269B) that provide me a financial support.

TABLE OF CONTENTS

					PAGE
	Title P	age			i
	Abstra	ct (ir	n Englis	sh)	iii
	Abstra	ct (ir	n Thai)		iv
	Ackno	wled	gemen	ts	v
	Table	of Co	ontents		vi
	List of	Tab	les		х
	List of	Figu	ires		xiii
СЦА	DTED				
СПА	I	INT	RODU	UCTION	1
	II	LIT	ERAT	URE REVIEW	3
	III	EX	PERIN	IENTAL	25
		3.1	Mater	ials and Chemicals	25
			3.1.1	Corncob waste	25
			3.1.2	Phosphoric Acid (H ₃ PO ₄)	25
			3.1.3	pH Meter	25
			3.1.4	Citrate Buffer	25
			3.1.5	Filter Paper	25
			3.1.6	Enzyme	25
			3.1.7	Standard Glucose, Xylose, Arabinose,	
				Cellobiose, Mannose, Rhamnose, Galactose,	
				and Furfural	25
		3.2	Equip	ment	25
			3.2.1	High Performance Liquid Chromatograph	
				(HPLC)	25
			3.2.2	Scanning Electron Microscope (SEM)	25
			3.2.3	Thermogravimetric Analyzer (TGA)	25

IV

	3.2.4	X-Ray Diffraction Analyzer (XRD)	25
	3.2.5	UV-VIS Spectrometer (UV)	25
	3.2.6	Gas Chromatograph (GC)	25
	3.2.7	Incubator Sharker	25
	3.2.8	Oven	25
	3.2.9	Stainless Steel Reactor	25
	3.2.10) Waterbath	25
	3.2.11	l Glassware	25
3.3	Metho	odology	26
	3.3.1	Dilute Phosphoric Acid Pretreatment	26
	3.3.2	Enzymatic Hydrolysis	26
	3.3.3	Ethanol Production	27
3.4	Analys	sis Method	27
	3.4.1	High Performance Liquid Chromatography	
		(HPLC)	27
	3.4.2	UV-VIS Spectrometer (UV)	27
	3.4.3	Scanning Electron Microscope (SEM)	27
	3.4.4	X-Ray Diffraction (XRD)	28
	3.4.5	BET	28
	3.4.6	Gas Chromatography (GC)	28
	3.4.7	Fibertect M6	28
RE	SULTS	S AND DISCUSSION	30
4.1	Bioma	ss Characterizations	30
	4.1.1	Chemical Composition of Corncob Waste	30
	4.1.2	Thermal Gravimetric Analysis	31
4.2	Optim	ization of Dilute Acid Pretreatment	32
	4.2.1	Effect of Time and Temperature	32
	4.2.2	Effect of Acid Concentration	36
	4.2.3	Effect of Liquid-to-Solid Ratio	38

 \mathbf{V}

4.3 Enzymat	ic Hydrolysis	39
4.3.1 E	ffect of Time and Temperature	39
4.3.2 E	ffect of Acid Concentration	43
4.3.3 E	ffect of Liquid-to-Solid Ratio	45
4.4 Total Sug	gar Yield	47
4.4.1 E	ffect of Time and Temperature	47
4.4.2 E	ffect of Acid Concentration	49
4.4.3 E	ffect of Liquid-to-Solid Ratio	51
4.5 A Compa	arison between Conventional Heating	
and Micr	owave Irradiation Method at an	
Optimal	Pretreatment Condition	53
4.6 Physical	Characterization of Pretreated	
Corncob	at an Optimal Condition	57
4.7 Ethanol I	Production	62
CONCLUSI	ONS AND RECOMMENDATIONS	63
5.1 Conclusi	ons	63
5.2 Recomm	endations	63
REFERENC	CES	64
APPENDICI	ES	71
Appendix A	Stainless Steel Reactor	71
Appendix B	Retention Time and Calibration Curve	
	of Monomeric Sugar and Furfural	
	by HPLC	72
Appendix C	Retention Time and Calibration Curve	
	of Ethanol by GC	74
Appendix D	Ethanol Yield	75

CURRICULUM VITAE

76

PAGE

LIST OF TABLES

TABLE		
2.1	Specifications of ethanol, butanol, and gasoline	4
2.2	Contents of cellulose, hemicelluloses, and lignin in common	
	agricultural residues and wastes	6
2.3	Effect of inhibitiong compounds on fermentation	14
4.1	Chemical composition of corncob waste	30
4.2	Monomeric sugar and furfural yield of corncob in prehydrolysate after dilute phosphoric acid pretreatment by	
	using 1.75% (w/w) H_3PO_{4} at a 15:1 LSR, and different	
	pretreatment times and temperatures	34
4.3	Monomeric sugar and furfural yield of corncob in	
	prehydrolysate after dilute phosphoric acid pretreatment at	
	140 °C, 10 min pretreatment time, at a 15:1 LSR, and	
	different acid concentrations	37
4.4	Monomeric sugar and furfural yield of corncob in	
	prehydrolysate after dilute phosphoric acid pretreatment at	
	140 °C, 10 min pretreatment time, 2% (w/w) H ₃ PO ₄ , and	
	different LSRs	38
4.5	Monomeric sugar yield of corncob in hydrolysate after	
	enzymatic hydrolysis under the pretreatment conditions by	
	using 1.75% (w/w) H_3PO_{4} , at a 15:1 LSR, and different	
	pretreatment temperatures and times	41
4.6	Monomeric sugar yield of corncob in hydrolysate after	
	enzymatic hydrolysis under the pretreatment conditions at	
	140°C, 10 min pretreatment time, at 15:1 LSR, and different	
	acid concentrations	44

TABLE

4.7 Monomeric sugar yield of corncob in hydrolysate after enzymatic hydrolysis under the pretreatment conditions at 140 °C, 10 min pretreatment time, 2% (w/w) H₃PO₄, and at different LSRs

- 4.8 Total sugar yield of corncob in prehydrolysate, hydrolysate, and combined two-stage under pretreatment conditions by using 1.75% (w/w) H₃PO₄, at a 15:1 LSR, and different pretreatment temperatures and times
- 4.9 Total sugar yield of corncob in prehydrolysate, hydrolysate, and combined two-stage under pretreatment conditions at 140 °C, 10 min pretreatment time, at a 15:1 LSR, and different acid concentrations
- 4.10 Total sugar yield of corncob in prehydrolysate, hydrolysate, and combined two-stage under pretreatment conditions at 140 °C, 10 min pretreatment time, 2% (w/w) H₃PO₄ and at different LSRs
- 4.11 Monomeric sugar yield of corncob in prehydrolysate and hydrolysate under an optimal condition at 140 °C, 10 min pretreatment time, 2% (w/w) H₃PO₄, and at a 15:1 LSR by using conventional heat and microwave radiation method
- 4.12 Total sugar yield of corncob in prehydrolysate, hydrolysate, and combined two-stage under an optimal condition at 140°C, 10 min pretreatment time, 2% (w/w) H₃PO₄, at a 15:1 LSR by using conventional heat and microwave radiation method.

48

46

52

54

4.13	Characterization of untreated corncob and pretreated	
	corncob at an optimal condition; 140 °C, 10 min	
	prretreatment time, 2% (w/w) $H_3PO_{4,}$ and at a 10:1 LSR by	
	BET	59
4.14	Crystallinity index (CrI) of untreated corncob and pretreated	
	corncob under various pretreatment conditions	60

LIST OF FIGURES

2.1	General flowchart for ethanol production from	
	lignocellulosic material	5
2.2	Lignocellulose consists of cellulose, hemicelluloses, and	
	lignin	6
2.3	Structure of cellulose chain	7
2.4	Structure of arabinoxylan	9
2.5	Structure of glucomannan	9
2.6	Structure of monolignols	10
2.7	Schematic of goals of pretreatment on lignocellulosic	
	material	11
2.8	Structure of (a) Acetic acid, (b) Formic acid, (c) Octanoic	
	acid, and (d) Levulinic acid	15
2.9	Molecular structure of furfural	16
2.10	Acid-catalyzed pathway for the hydrolysis of hemicelluloses	
	to xylose and the degradation of xylose to furfural	17
2.11	Molecular structures of Hydroxymethylfurfural	18
2.12	Molecular structures of Phenol	19
2.13	Molecular structures of Vanillin	20
4.1	Thermal Gravimetric Analysis curve of corncob waste	31
4.2	Monomeric sugar and furfural yield of corncob in	
	prehydrolysate after dilute phosphoric acid pretreatment by	
	using 1.75% (w/w) H_3PO_4 , at a 15:1 LSR, and different	
	pretreatment times and temperatures: (a) 100 °C, (b) 120 °C,	
	(c) 140 °C, and (d) 160 °C	35

FIGURE

- 4.3 Monomeric sugar and furfural yield of corncob in prehydrolysate after dilute phosphoric acid pretreatment at 140 °C, 10 min pretreatment time, at a 15:1 LSR, and different acid concentrations
- 4.4 Monomeric sugar and furfural yield of corncob in prehydrolysate after dilute phosphoric acid pretreatment at 140 °C, 10 min pretreatment time, 2% (w/w) H₃PO₄, and different LSRs
- 4.5 Monomeric sugar yield of corncob in hydrolysate after enzymatic hydrolysis under the pretreatment conditions by using 1.75% (w/w) H₃PO₄, at a 15:1 LSR, and different pretreatment temperatures and times: (a) 100 °C, (b) 120 °C, (c) 140 °C, and (d) 160 °C
- 4.6 SEM images of samples after pretreated with dilute phosphoric acid under the condition of 1.75% (w/w) H₃PO₄, at a 15:1 LSR: (a) fresh corncob, (b) 100 °C 10 min, (c)
 42 140 °C 10 min, and (d) 140 °C 60 min
- 4.7 Monomeric sugar yield of corncob in hydrolysate after enzymatic hydrolysis under the pretreatment conditions at 140 °C, 10 min pretreatment time, at a 15:1 LSR, and different acid concentrations
- 4.8 SEM images of samples after pretreated with dilute phosphoric acid under the condition at 140 °C, 10 min pretreatment time, at a 15:1 LSR: (a) 2% (w/w) H₃PO₄, and (b) 10% (w/w) H₃PO₄
- 4.9 Monomeric sugar yield of corncob in hydrolysate after enzymatic hydrolysis under the pretreatment conditions at 140 °C, 10 min pretreatment time, 2% (w/w) H₃PO₄, and at 46 LSRs

37

39

44

45

FIGURE

- 4.10 SEM images of samples after pretreated with dilute phosphoric acid under the condition at 140 °C, 10 min pretreatment time, 2% (w/w) H₃PO₄: (a) 10:1 LSR, and (b) 20:1 LSR.
- 4.11 Total sugar yield of corncob in prehydrolysate, hydrolysate, and combined two-stage under pretreatment conditions by using 1.75% (w/w) H₃PO₄, at a 15:1 LSR, and different pretreatment temperatures and times (a) 100 °C, (b) 120 °C, (c) 140 °C, and (d) 160 °C
- 4.12 Total sugar yield of corncob in prehydrolysate, hydrolysate, and combined two-stage under pretreatment conditions at 140 °C, 10 min pretreatment time, at a 15:1 LSR, and different acid concentrations
- 4.13 Total sugar yield of corncob in prehydrolysate, hydrolysate, and combined two-stage under pretreatment conditions at 140 °C, 10 min pretreatment time, 2% (w/w) H₃PO₄, and at different LSRs.
- 4.14 Monomeric sugar yield of corncob in prehydrolysate and hydrolysate under an optimal condition at 140 °C, 10 min pretreatment time, 2% (w/w) H₃PO₄, and at a 15:1 LSR by using different pretreatment reactor
- 4.15 Total sugar yield of corncob in prehydrolysate, hydrolysate, and combined two-stage under an optimal condition at 140 °C, 10 min pretreatment time, 2% (w/w) H₃PO₄, at a 15:1 LSR by using conventional heat and microwave radiation method

47

51

49

52

55

FIGURE

- 4.16 SEM images of samples after pretreated with dilute phosphoric acid under the condition at 140 °C, 10 min pretreatment time, 2% (w/w) H₃PO₄ at a 10:1 LSR by using different pretreated reactor ; (a) conventional heat, (b) microwave radiation.
- 4.17 X-ray diffraction patterns of the corncob. Symbols; (a) fresh corncob, (b) pretreated corncob at 100 °C, 10 min pretreatment time by using 1.75% (w/w) H₃PO₄ at a 15:1 LSR, (c) pretreated corncob at 140 °C, 10 min pretreatment time by using 1.75% (w/w) H₃PO₄ at a 15:1 LSR, (d) pretreated corncob at 140 °C, 60 min pretreatment time by using 1.75% (w/w) H₃PO₄ at a 15:1 LSR, (e) pretreated corncob at 140 °C, 10 min pretreated corncob at 140 °C, 10 min pretreatment time by using 10% (w/w) H₃PO₄ at a 15:1 LSR, (f) pretreated corncob at 140 °C, 10 min pretreatment time by using 2% (w/w) H₃PO₄ at a 20:1 LSR, and (g) pretreated corncob at 140 °C, 10 min of pretreatment time by using 2% (w/w) H₃PO₄ at a 10:1 LSR
- 4.18 Composition of untreated corncob and pretreated corncob after pretreatment and enzymatic hydrolysis under an optimal pretreatment condition; 140°C, 10 min pretreatment time, 2% (w/w) H₃PO₄, and at a 10:1 LSR.

56

61