MESOPOROUS MCM-41, MCM-48, SBA-15, AND PYROLYSIS CHAR AS CATALYSTS FOR CATALYTIC PYROLYSIS OF WASTE TIRE

Supattra Seng-eiad

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University, and Institut Français du Pétrole 2015

Mesoporous MCM-41, MCM-48, SBA-15, and Pyrolysis
Char as Catalysts for Catalytic Pyrolysis of Waste Tire
Ms. Supattra Seng-eiad
Petrochemical Technology
Assoc. Prof. Sirirat Jitkarnka

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

(Assoc. Prof. Sirirat Jitkarnka)

apan C

(Assoc. Prof. Apanee Luengnaruemichai)

Would Apate.

(Asst. Prof. Wanida Koo-amornpattra)

ABSTRACT

5671034063: Petrochemical Technology Program
Supattra Seng-eiad: Mesoporous MCM-41, MCM-48, SBA-15, and
Pyrolysis Char as Catalysts for Catalytic Pyrolysis of Waste Tire.
Thesis Advisor: Assoc. Prof. Sirirat Jitkarnka 204 pp.
Keywords: Molecular diameters/ Catalysts design/ Mesoporous materials/
Pyrolysis char/ Nitrogenous compound identification/

Petrochemicals/ Sulfur removal/ Waste tire pyrolysis

Due to the fact that aromatic compounds and hetero-atoms such as nitrogen are present, tire-derived oil (TDO) is not suitable for direct uses in a vehicle engine. Additionally, char remaining from pyrolysis is highly obtained, but it has only a few applications. Therefore, the objectives were to (1) design catalysts for removal of heavy compounds in TDO, (2) study the effect of pore size and pore structure of selected catalysts, (3) upgrade pyrolysis char for using as catalyst, and (4) identify Ncontaining compounds for better understanding in further treatment. The result indicated that aromatic compounds (size 8-16 Å by average) were mainly in gas oil and vacuum gas oil fractions. The selected catalysts, like mesoporous materials, were thus suggested to handle these compounds. Subsequently, mesoporous Al-MCM-41 (33.1 Å) and Al-SBA-15 (60.5 Å) were used to study the effect of pore size whereas mesoporous Si-MCM-41 (hexagonal structure) and Si-MCM-48 (cubic structure) were used to study the effect of pore structure. As a result, the pore size of 33.1 Å and cubic structure gave better removal of heavy compounds, petrochemical productivity, and sulfur removal. Furthermore, pyrolysis chars with and without treatment well performed on improving lighter fractions from conversion of heavy portions. Moreover, identification of nitrogenous compounds in TDO was successfully accomplished using an effective GCxGC/TOF-MS. The detected species were classified into 10 groups. Interestingly, diazabicycloheptenes is a new group, firstly detected in TDO, owing to the high performances of GCxGC/TOF-MS on separation and detection of highly-complex mixtures.

สุพัตรา เส้งเอียด : การใช้วัสดุที่มีรูพรุนขนาดกลางเอ็มซีเอ็ม-41, เอ็มซีเอ็ม-48, เอสบี เอ-15, และ ไพโร ไลซิสชาร์เป็นตัวเร่งปฏิกิริยาสำหรับกระบวนการ ไพโร ไลซิสยางหมดสภาพ (Mesoporous MCM-41, MCM-48, SBA-15, and Pyrolysis Char as Catalysts for Catalytic Pyrolysis of Waste Tire) อ. ที่ปรึกษา : รศ. ดร. ศรีรรัตน์ จิตการค้า 204 หน้า

ด้วยเหตุผลที่ว่าการมีสารประกอบแอโรแมติกส์และวิวิธพันธ์อะตอม เช่น ในโตรเจน เป็นองค์ประกอบในน้ำมัน ดังนั้นน้ำมันที่ได้จากกระบวนการไพโรไลซิสจึงยังไม่เหมาะต่อการ นำไปใช้โดยตรงกับยานยนต์ ยิ่งไปกว่านั้นกระบวนการไพโรไลซิสยังสามารถผลิตชาร์ได้ใน ปริมาณมากแต่มีการนำไปประยุกต์ใช้น้อย คังนั้นจุดประสงค์ของงานนี้คือเพื่อที่จะ (1) ออกแบบ ตัวเร่งปฏิกิริยาสำหรับการกำจัดสารไฮโครการ์บอนหนัก, (2) เพื่อที่จะศึกษาอิทธิพลของขนาดรู พรุนและโครงสร้างของตัวเร่งปฏิกิริยาที่ถูกเลือกมาใช้, (3) เพื่อที่จะเพิ่มคุณสมบัติของไพโรไลซิส ชาร์สำหรับใช้เป็นตัวเร่งปฏิกิริยา และ (4) เพื่อที่จะระบุรูปพรรณสารประกอบในโตรเจนเพื่อสร้าง ้ความเข้าใจที่มากขึ้นในการปรับปรุงคุณภาพต่อไป จากผลการทคลองแสคงให้เห็นว่าสารประกอบ แอโรแมติกส์ (ขนาด 8-16 อังสตรอม โดยเฉลี่ย) เป็นองก์ประกอบหลักในน้ำมันเตาและน้ำมันเตา สุญญากาศ ดังนั้นตัวเร่งปฏิกิริยา เช่น วัสดุที่มีรูพรุนขนาดกลางจึงถูกแนะนำเพื่อใช้จัดการกับ สารประกอบเหล่านี้ หลังจากนั้นวัสดุที่มีรูพรุนขนาคกลางอลูมินาเอ็มซีเอ็ม-41 (รูพรุน 33.1 ้อังสตรอม) และอลูมินาเอสบีเอ-15 (รูพรุน 60.5 อังสตรอม) จึงถูกนำมาศึกษาอิทธิพลของขนาครู พรุน ในขณะที่ซิลิกาเอ็มซีเอ็ม-41 (โครงสร้างแบบหกเหลี่ยม) และ ซิลิกาเอ็มซีเอ็ม-48 (โครงสร้าง แบบถูกบาศก์) ถูกนำมาศึกษาอิทธิพลของโครงสร้าง ผลลัพธ์ที่ได้พบว่า รูพรุนขนาด 33.1 ้อังสตรอม และ โครงสร้างแบบลูกบาศก์ สามารถใช้กำจัดสารไฮโครคาร์บอนหนัก เพิ่มผลผลิตปี ้โตรเคมีและกำจัดซัลเฟอร์ได้ดีกว่า นอกจากนี้ไพโรไลซิสชาร์ทั้งที่บำบัดและไม่บำบัดยังมี ประสิทธิภาพในการปรับปรุงสารประกอบเบาจากการเปลี่ยนแปลงของสารประกอบหลักได้เป็น ้อย่างดี นอกจากนี้ยังประสบความสำเร็จในการระบุรูปพรรณของสารประกอบในโตรเจนที่มีอยู่ใน ้น้ำมันโดยใช้ GCxGC/TOF-MS โดยสารประกอบที่ถูกตรวจจับได้ถูกแบ่งออกเป็น เ0 กลุ่ม สิ่งที่ น่าสนใจก็คือ ไดอะซาไบไซโคลเฮปทีนส์ เป็นในโตรเจนกลุ่มใหม่ที่สามารถตรวจวัดได้ครั้งแรก ในน้ำมันที่ได้จากกระบวนการไพโรไลซิส อันเนื่องมาจากความมีประสิทธิภาพสูงของ GCxGC/TOF-MS ในการแยกและตรวจวัดสารที่มีองค์ประกอบซับซ้อนมากๆ ได้

ACKNOWLEDGEMENTS

This thesis work would not have been accomplished without these following people whom I am gratefully indebted for individual and organization.

I would like to express my deepest appreciation to my supervisor, Assoc. Prof. Sirirat Jitkarnka who is beyond an advisor. I was supported by her in every single thing including excellent guideline, useful recommendations, creative comment, intensive attention, and encouragement throughout the year of research. She has not only taught me about the theoretical knowledge but also made me realize in myself. I feel proud to be her junior student.

I would like to give special thanks to the thesis committee, Assoc. Prof. Apanee Luengnaruemichai and Asst. Prof. Wanida Koo-amornpattra for giving valuable guidelines and suggestions.

This research work was partially supported by the Ratchadapisek Sompoch Endowment Fund (2013), Chulalongkorn University (CU-56-900-FC) and Thailand Research Fund (IRG5780012).

Moreover, the authors would like to thank The Petroleum and Petrochemical College, Chulalongkorn University, Thailand, Center of Excellence on Petrochemical and Materials Technology, and Thailand Research Fund (TRF: RSA5680021) for all supports.

Sincerely, I greatly appreciate all of PPC staff, friends, and SJ- senior students who gave me kind help and morale.

I cannot finish without saying how grateful I am with my family for their unconditional love, support, cheering me up, and all understandings. Without them, I would never have succeeded at this point.

TABLE OF CONTENTS

Title Page	i
Acceptance Page	ii
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	V
Table of Contents	vi
List of Tables	xi
List of Figures	xiv
CHAPTER	

Ι	INTRODUCTION	1

II	THEORETICAL BACKGROUND AND LITERATURE	
	REVIEW	4
	2.1 Drawbacks of Pyrolysis Products	4
	2.2 Catalyst Design	7
	2.3 Mesoporous Materials	8
	2.3.1 Meso-silica Materials	9
	2.3.2 Pyrolysis Char	17
	2.4 Catalytic Mechanism	20
	2.5 Identification of Nitrogenous Compounds in Tire-	
	derived Oil	22
	2.6 Research Motivation	24
	2.7 Objectives and Scopes of Research Work	26
III	EXPERIMENTAL	29

3.1 Materials and Equipments29

	3.1.1 Materials	29
	3.1.2 Equipments	29
3.2	Chemicals and Solvents	30
3.3	Experimental Procedures	30
	3.3.1 Catalyst Preparation	30
	3.3.2 Catalyst Characterization	33
	3.3.3 Pyrolysis Process	35
	3.3.4 Product Analysis	36

IVESTIMATION OF AVERAGE KINETIC AND
MAXIMUM DIAMETERS OF HYDROCARBON
GROUPS IN TIRE-DERIVED OIL FOR CATALYST
DESIGN PURPOSE
4.1 Abstract

4.2	Introduction	43
4.3	Experimental	45
	4.3.1 Pyrolysis Process of Waste Tire	45
	4.3.2 Analysis of Waste Tire Products	45
	4.3.3 Determination of Sampling Size	46
	4.3.4 Determination of Molecular Diameters	46
4.4	Results and Discussion	48
	4.4.1 Analysis of Tire-derived Oil	48
	4.4.2 Determination of Sampling Size	49
	4.4.3 Determination of Molecular Diameters	50
	4.4.4 Design of Catalyst	51
4.5	Conclusions	54
4.6	Acknowledgements	55
4.7	References	55

PAGE

43

43

REMOVAL OF AROMATIC MOLECULES AND			
SULFUR COMPOUNDS IN TIRE-DERIVED OIL			
USING MESOPOROUS AI-MCM-41 AND AI-SBA-15			
WITH DIFFERENT PORE SIZE	57		
5.1 Abstract	57		
5.2 Introduction	58		
5.3 Experimental	60		
5.3.1 Catalyst Preparation	60		
5.3.2 Catalyst Characterization	60		
5.3.3 Pyrolysis of Waste Tire	61		
5.3.4 Product Analysis	61		
5.3.5 Determination of Average Maximum Diameters of			
Molecules in TDOs	63		
5.4 Results and Discussion	63		
5.4.1 Catalyst Characterization	63		
5.4.2 Product from Waste Tire Pyrolysis	65		
5.4.3 Molecular Size Distribution of Aromatic Compounds			
in Tire-derived Oil	68		
5.4.4 Petrochemical Productivity using Mesoporous			
AI-MCM-41 and Al-SBA-15	73		
5.4.5 Hetero-atom Removal Using Mesoporous			
Al-MCM-41 and Al-SBA-15	74		
5.5 Conclusions	75		
5.6 Acknowledgements	75		
5.7 References	76		

VI	SYNTHESIS OF MESOPOROUS SI-MCM-41 AND	
	Si-MCM-48 AT ROOM TEMPERATURE AND THEIR	
	CATALYTIC ACTIVITY IN WASTE TIRE PYROLYSIS	:
	EFFECTS OF PORE STRUCTURE	75
	6.1 Abstract	75
	6.2 Introduction	79
	6.3 Experimental	80
	6.3.1 Synthesis of Si-MCM-41 and Si-MCM-48	80
	6.3.2 Catalyst Characterization	81
	6.3.3 Pyrolysis of Waste Tire	82
	6.3.4 Product Analysis	82
	6.3.5 Determination of Sampling Size	83
	6.4 Results and Discussion	84
	6.4.1 Catalyst Characterization	84
	6.4.2 Effect of Pore Structure on Waste Tire Pyrolysis	
	Products	87
	6.4.3 Proposed Schemes of Mono-aromatic Formation	93
	6.4.4 Petrochemical Productivity	97
	6.5 Conclusions	99
	6.6 Acknowledgements	100
	6.7 References	100
VII	POSSIBILITY OF USING UNTREATED AND	
	HNO3-TREATED PYROLYTIC CHAR AS CATALYSTS	
	FOR THERMOLYSIS OF SCRAP RUBBER: IN-DEPTH	
	ANALYSIS OF TIRE-DERIVED PRODUCTS AND	
	CHAR CHARACTERIZATION	103

7.1 Abstr	act	103

7.2	Introduction	104
7.3	Experimental	105
	7.3.1 Catalyst Preparation	105
	7.3.2 Catalyst Characterization	105
	7.3.3 Pyrolysis Process	106
	7.3.4 Product Analysis	107
7.4	Results and Discussion	107
	7.4.1 Characterization of Tire-derived Chars (TDCs)	107
	7.4.2 Catalytic Pyrolysis	112
	7.4.3 Hetero-atom Removal from Tire-derived Oil	117
7.5	Conclusions	119
7.6	Acknowledgements	119
7.7	References	119

VIII	IDENTIFICATION OF NITROGENOUS	
	COMPOUNDS IN TIRE-DERIVED OIL USING	
	POWERFUL GCxGC/TOF-MS FOR BETTER	
	ANALYSIS	122
	8.1 Abstract	122
	8.2 Introduction	122
	8.3 Experimental	125
	8.3.1 Pyrolysis of Waste Tire	125
	8.3.2 Analysis of Nitrogen Compounds in Tire-derived oil	120
	8.4 Results and Discussion	127
	8.4.1 Composition of Tire Sample and Pyrolytic Oil	127
	8.4.2 Identification of Nitrogenous Compounds in	
	Tire-derived Oil	128

HAPTER		PAGE
	8.4.3 Nitrogenous Compounds in each Petroleum	
	Fractions	148
	8.5 Conclusions	149
	8.6 Acknowledgements	150
	8.7 References	150
IX	CONCLUSIONS AND RECOMMENDATIONS	152
	REFERENCES	155
	APPENDICES	165
	Appendix A Estimation of Molecular Size	165
	Appendix B Overall Yields of Pyrolysis Products	181
	Appendix C Gas Products	182
	Appendix D Liquid Products	184
	Appendix E Solid Products	195
	Appendix F Catalyst Characterizations	203
	CURRICULUM VITAE	204

C

xi

LIST OF TABLES

TABLE

Elemental composition of pyrolysis carbon	18
Analysis conditions of GCxGC-TOF/MS	37
PIANO standard	38
Analysis conditions of SIMDIST GC	38
Average peak area of some petrochemical products (BTEXC)	
in PIANO standard detected from GCxGC/TOF-MS	39
Analysis conditions of SIMDIST GC	40
Hydrocarbon ranges divided into the simulating true boiling	
point by using SIMDIST GC	40
Analysis conditions of GC/FID	41
Response factors of gases	42
Sampling size and representatives from each group of	
compounds	49
Average kinetic and maximum diameters of compositions in	
each group	51
Molecular composition of each petroleum cuts (%) of thermal	
pyrolysis case	54
Porous properties of mesoporous Al-MCM-41 and Al-SBA-15	65
Ultimate analysis of tire-derived oils	68
Sampling size and representatives from each molecular group	
of compounds	69
Molecular size of dominant aromatic compounds in TDOs from	
using Al-MCM-41 and Al-SBA-15	70
Petrochemical productivity using Al-MCM-41 and Al-SBA-15	
in waste tire pyrolysis	74
	Elemental composition of pyrolysis carbon Analysis conditions of GCxGC-TOF/MS PIANO standard Analysis conditions of SIMDIST GC Average peak area of some petrochemical products (BTEXC) in PIANO standard detected from GCxGC/TOF-MS Analysis conditions of SIMDIST GC Hydrocarbon ranges divided into the simulating true boiling point by using SIMDIST GC Analysis conditions of GC/FID Response factors of gases Sampling size and representatives from each group of compounds Average kinetic and maximum diameters of compositions in each group Molecular composition of each petroleum cuts (%) of thermal pyrolysis case Porous properties of mesoporous Al-MCM-41 and Al-SBA-15 Ultimate analysis of tire-derived oils Sampling size and representatives from each molecular group of compounds Molecular size of dominant aromatic compounds in TDOs from using Al-MCM-41 and Al-SBA-15 Petrochemical productivity using Al-MCM-41 and Al-SBA-15 in waste tire pyrolysis

TABL	Ε	PAGE
5.6	Ultimate analysis of hetero-atom (S,N) contents in tire-derived	
	oils	74
6.2	Sampling size and representatives from each molecular group	
	of compounds	91
6.3	Molecular composition of each petroleum cuts (wt%) in	
	maltenes from Si-MCM-41 and Si-MCM-48 cases (1 = Non-	
	catalyst, $2 = Si-MCM-41$, and $3 = Si-MCM-48$)	92
6.4	Ultimate analysis (wt%) of oil products	93
6.5	Dominant aromatic compounds found in TDOs from using	
	synthesized Si-MCM-41 and Si-MCM-48	94
6.6	Petrochemical productivity from waste tire pyrolysis	98
6.7	Ultimate analysis of hetero-atom (S,N) contents in tire-derived	
	oils	99
7.1	Proximate and ultimate analysis of waste tire sample	108
7.2	Physical properties of untreated char and 5 M HNO_3 -treated	
	char	109
7.3	Major elements and mineral contents in TDC before and after	
	nitric acid treatment	112
7.4	Element contents in TDO (wt%)	112
8.1	Analysis conditions of GCxGC-TOF/MS	126
8.2	Elemental compositions (wt%) of tire samples and pyrolytic	
	oils	127
8.3	Petroleum fractions of tire-derived oil	128
8.4	Classification of N-containing species based on hydrocarbon	
	groups	129

xiii

TABLE

8.5	Average normalized nitrogenous composition (%) in tire-	
	derived oil by groups and carbon numbers (An = amines, Ad =	
	amides, Az = azo compounds, DBCH = diazabicycloheptenes,	
	ID = indoles, ITC = isothiocyanates, N = nitro compounds, NT	
	= nitriles, PD = pyridines, and QL = quinolines)	131
8.6	Dominant N-containing compounds in amine group	133
8.7	Dominant N-containing compounds in amide group	125
8.8	Dominant N-containing compounds in azo compound group	137
8.9	Dominant N-containing compounds in diazabicycloheptene	
	group	138
8.10	Dominant N-containing compounds in indole group	140
8.11	Dominant N-containing compounds in isothiocyanate group	141
8.12	Dominant N-containing compounds in nitro compound group	143
8.13	Dominant N-containing compounds in nitrile group	145
8.14	Dominant N-containing compounds in pyridine group	146
8.15	Dominant N-containing compounds in quinoline group	148
Al	Sampling size and representatives from each group of	
	compounds	166
A2	Ranges of molecular size in each hydrocarbon group	168
A3	Concentration of molecules in each hydrocarbon group	168
A4	Average kinetic and maximum diameters of compositions in	
	each group of non-catalyst case	170
B1	Yield of products	181
C1	Yield of gas components	183
Dl	Standard (ASTM D2887)	184
D2	Influence of mesoporous materials on boiling point (°C) of	
	maltenes	186

TABLE

D3	Concentration of petroleum fractions in maltenes	187
D4	Concentration of chemical components in maltenes	190
D5	Yield of petrochemicals in maltenes	191
D6	Yield of petrochemicals in mono-aromatics	192
D7	Average peak area of some petrochemical products (BTEXC)	
	in PIANO standard detected from GCxGC/TOF-MS	192
D8	Concentration of petrochemical products in maltenes	193
D9	Influence of mesoporous materials on petroleum fractions	
	(wt%) in maltenes using GCxGC/TOF-MS	194
El	Total acidity of pyrolysis char	195
E2	Standard of CHNS analysis	196
E3	Calibration of carbon using EDTA standard	196
E4	Calibration of hydrogen using EDTA standard	198
E5	Calibration of nitrogen using EDTA standard	199
E6	Calibration of sulfur using Coal standard	200
E7	Elemental contents (%) in tire-derived oils	201
E8	Sulfur contents in pyrolysis products using mesoporous	
	materials	201
E9	Nitrogen contents in pyrolysis products using mesoporous	
	materials	201
Fl	Catalyst properties	203

LIST OF FIGURES

FIGURE

2.1	Pyrolysis products.	4
2.2	Classification of hydrocarbons in tire-derived oil.	5
2.3	Classification of mono-aromatic group.	6
2.4	Classification of S-compounds in a tire-derived oil obtained	
	from the non-catalyst batch.	7
2.5	Kinetic and maximum diameters of hydrocarbons.	7
2.6	Different structural types of molecular sieves.	9
2.7	Self-assembly of MCM-41.	10
2.8	Structures of MCM-41, MCM-48, and SBA-15.	11
2.9	Small-angle XRD patterns of (a) MCM-41, (b) MCM-48, and	
	(c) SBA-15.	13
2.10	SEM images of of (a) MCM-41, (b) MCM-48, and (c) SBA-15,	
	and TEM images of of (a) MCM-41, (b) MCM-48, and (c)	
	SBA-15.	13
2.11	Adsorption of sulfur compound on the SBA-15 surface.	16
2.12	Structure of (a) pyrolysis carbon and (b) graphite.	17
2.13	Possible scission position for C-C bonds in the SBR chain	
	during pyrolysis and the resultant resonance aromatic structure	
	for Position (a).	20
2.14	Energy-minimized structure of the model SBR.	21
2.15	Hydrocarbons interaction with silanol group on MCM-41	
	surface.	22
2.16	Pore sizes of (a) zeoilite and (b) Mesoporous, and the maximum	
	diameter of (c) dibenzylmethane (PAHs) and (d) 1,1'-oxydiethyl	
	idene(bis)-benzene (PPAHs).	26
3.1	Synthetic Si-MCM-41 and Si-MCM-48.	31
3.2	Acidic modification of pyrolysis char.	32

FIGU	TIGURE	
3.3	Schematic of the pyrolysis process.	36
4.1	(a) Petroleum fractions analyzed by using SIMDIST GC, and	
	(b) maltene compositions of each component group detected by	
	using GCxGC-TOF/MS.	48
4.2	Molecular size distributions of components in: (a) saturated	
	hydrocarbons, (b) olefins, (c) naphthenes, (d) terpenes, (e)	
	mono-aromatics, (f) di-aromatics, (g) poly-aromatics, and (h)	
	polar-aromatics.	50
4.3	(a) Distribution of large-size molecules (T = Tetralines, Akl =	
	Akylbenzenes, Ia = Indanes, Ie = Indenes, Ake =	
	Akenylbenzene).	52
4.4	Distribution of molecular sizes of compounds in TDO in all	
	petroleum fractions.	53
5.1	Determination of suitable pore size of mesoporous catalysts for	
	removal of poly- and polar-aromatics in TDOs.	59
5.2	(a) SAXS patterns, (b) FE-SEM image, (c) isotherms, and (d)	
	pore size distributions of Al-MCM-41 and Al-SBA-15.	64
5.3	(a) Product distributions and (b) gas products from using Al-	
	MCM-41 and Al-SBA-15.	65
5.4	Total Ion Chromatograms of maltenes: contour plots (2D) in	
	cases of (a) non-catalyst, (b) Al-MCM-41, and (c) Al-SBA-15,	
	and surface plots (3D) in cases of (d) non-catalyst, (e) Al-	
	MCM-41, and (f) Al-SBA-15.	66
5.5	(a) Chemical compositions and (b) petroleum fractions from	
	using Al-MCM-41 and Al-SBA-15.	67

F

xviii

FIGURE		PAGE
5.6	Molecular size distribution: (a) all groups, (b) polar-aromatics	
	(PPAHs), (c) poly-aromatics (PAHs), (d) di-aromatics (DAHs),	
	and (e) mono-aromatics (MAHs) in maltene obtained from	
	using Al-MCM-41 and Al-SBA-15.	71
5.7	Percentage of petrochemicals in mono-aromatics (B = Benzene,	
	T = Toluene, E = Ethylbenzene, X = Mixed-xylenes, S =	
	Styrene, and $C = Cumene$).	73
6.1	(a) SAXS patterns, and FE-SEM images of synthetic (b) Si-	
	MCM-41 and (c) Si-MCM-48.	84
6.2	(a) Isotherms, (b) pore size distributions, and (c) TPD-NH $_3$	
	profiles of synthetic Si-MCM-41 and Si-MCM-48.	85
6.3	Silanol groups on the surfaces of mesoporous Si-MCM-41 and	
	Si-MCM-48.	86
6.4	(a) Product distribution, and (b) gas compositions from using	
	synthesized Si-MCM-41 and Si-MCM-48.	88
6.5	Petroleum fraction from using synthesized Si-MCM-41 and Si-	
	MCM-48.	88
6.6	Total Ion Chromatograms of maltenes: contour plots (2D) in	
	cases of (a) non-catalyst, (b) Si-MCM-41, and (c) Si-MCM-48,	
	and surface plots (3D) in cases of (d) non-catalyst, (e) Si-MCM-	
	41, and (f) Si-MCM-48.	89
6.7	Molecular compositions of maltenes from using synthesized Si-	
	MCM-41 and Si-MCM-48.	90
6.8	Proposed reaction schemes for conversion of di-, poly-, and	
	polar-aromatics into mono-aromatics using synthesized	
	mesoporous Si-MCM-41 and Si-MCM-48.	96

ũ.

6.9	Percentage of petrochemicals in mono-aromatic fraction (B =	
	Benzene, $T = Toluene$, $E = Ethylbenzene$, $X = Mixed-xylenes$,	
	S = Styrene, and $C = Cumene$).	98
7.1	FTIR spectra of untreated and 5 M HNO3-treated char.	109
7.2	(a) Isotherms and (b) pore diameter distributions of untreated	
	and 5 M HNO3-treated char.	110
7.3	XRD patterns of untreated and 5 M HNO ₃ -treated chars (W =	
	wurtzite (α -ZnS), S = sphalerite (β -ZnS))	111
7.4	FE-SEM images of (a) untreated and (b) 5 M HNO ₃ -treated	
	chars.	113
7.5	(a) Product distribution, (b) gas products and (c) petroleum	
	fractions from using pyrolysis char as catalyst.	113
7.6	Total Ion Chromatograms of maltenes: contour plots (2D) in	
	cases of (a) non-catalyst, (b) untreated char, and (c) 5 M $\rm HNO_3$ -	
	treated char and surface plots (3D) in cases of (d) non-catalyst,	
	(e) untreated char, and (f) 5 M HNO_3 -treated char.	115
7.7	Maltene compositions from using pyrolysis chars as catalysts.	116
7.8	Visualized surfaces of untreated and 5 M HNO3-treated chars.	116
7.9	Distribution of (a) nitrogen and (b) sulfur contents in overall	
	products and (b) nitrogen and (d) sulfur groups in maltenes	
	obtained from using untreated and 5 M HNO_3 -treated chars.	119
8.1	Schematic of the pyrolysis experiment.	125
8.2	Overview of total ion chromatograms of maltene solution: (a)	
	GCxGC-TOF/MS chromatogram, (b) surface plot (3D) of N-	
	containing hydrocarbon compounds, and (c) contour plot (2D)	
	showing the distribution of all groups of N-containing	
	compounds of all compounds in tire-derived oil.	129

8.3	Classification of nitrogenous compounds in TDO.	130
8.4	Total ion chromatogram of amines in PPAHs with selected ions	
	(U): 30, 91, 93, 105, 106, 117, 148, 150 and 165.	132
8.5	Structures of dominant N-containing compounds in amine	
	group	133
8.6	Total ion chromatogram of amides in PPAHs with selected ions	
	(U): 66, 93, 147, and 169.	134
8.7	Structures of dominant N-containing compounds in amide	
	group.	135
8.8	Total ion chromatogram of azo compounds in PPAHs with	
	selected ions (U): 96, 108, 119, 132, 133, 135, 148, 150, 163,	
	164, 210, and 211.	136
8.9	Structures of dominant N-containing compounds in azo	
	compound group	136
8.10	Total ion chromatogram of diazabicycloheptenes in PPAHs	
	with selected ions (U): 94, 142, 155, 157, 172, and 220.	138
8.11	Structures of dominant N-containing compounds in	
	diazabicycloheptene group	138
8.12	Total ion chromatogram of indoles in PPAHs with selected ions	
	(U): 118, 130, 132, and 144.	139
8.13	Structures of dominant N-containing compounds in indole	
	group	139
8.14	Total ion chromatogram of isothiocyanates in PPAHs with	
	selected ions (U): 77, 135, 148, and 149.	140
8.15	Structures of dominant N-containing compounds in	
	isothiocyanate group.	141

8.16	Total ion chromatogram of nitro compound in PPAHs with	
	selected ions (U): 91, 97, 105, and 119.	142
8.17	Structures of dominant N-containing compounds in nitro	
	compound group.	143
8.18	Total ion chromatogram of nitriles in PPAHs with selected ions	
	(U): 90, 91, 103, 116, 119, 130, 131, and 159.	144
8.19	Structures of dominant N-containing compounds in nitrile	
	group.	144
8.20	Total ion chromatogram of pyridines in PPAHs with selected	
	ions (U): 106, 117, and 167.	145
8.21	Structures of dominant N-containing compounds in pyridine	
	group.	146
8.22	Total ion chromatogram of pyridines in PPAHs with selected	
	ions (U): 129, 143, 157, 171, and 179.	147
8.23	Structures of dominant N-containing compounds in quinoline	
	group.	147
8.24	Average distribution of N-containing compounds in petroleum	
	fractions.	148
Al	Kinetic diameter of simple and complex compounds.	167
A2	Maximum diameter of simple and complex compounds.	167
A3	Molecular size distributions of components in mono-aromatics	169
	(MAHs).	
A4	Distribution of molecular size of saturated hydrocarbons	
	(SATs).	171
A5	Distribution of molecular size of olefins (OLEs).	172
A6	Distribution of molecular size of naphthenes (NAPs).	173
A7	Distribution of molecular size of terpenes (TERs).	174

A8	Distribution of molecular size of mono-aromatics (MAHs).	175
A9	Distribution of molecular size of di-aromatics (DAHs).	176
A10	Distribution of molecular size of poly-aromatics (PAHs).	177
A11	Distribution of molecular size of polar-aromatics (PPAHs).	178
A12	Distribution of large-size molecules (> 8Å).	179
A13	Distribution of molecular sizes of compounds in tire-derived oil	
	in all petroleum fractions obtain from non-catalyst case: (a)	
	kinetic diameter (Øk) and (b) maximum diameter (Øm).	181
Bl	Product distribution.	181
C1	Distribution of gas components.	183
DI	Calibration curve of SIMDIST GC.	185
D2	Boiling point curves obtained from non-catalyst and	
	mesoporous material case	185
D3	Concentration of petroleum fractions in maltenes.	187
D4	Chromatograms obtained from pyrolysis process.	188
D5	Chemical components in maltenes.	190
D6	Petrochemical products in mono-aromatics.	192
El	Calibration curve of carbon.	197
E2	Calibration curve of hydrogen.	198
E3	Calibration curve of nitrogen.	199
E4	Calibration curve of sulfur.	200
E5	Sulfur distribution in pyrolysis products obtained from waste	
	tire-pyrolysis.	202
E6	Nitrogen distribution in pyrolysis products obtained from waste	
	tire-pyrolysis.	202