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ABSTRACT
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Due to the fact that aromatic compounds and hetero-atoms such as nitrogen
are present, tire-derived oil (TDO) is not suitable for direct uses in a vehicle engine.
Additionally, char remaining from pyrolysis is highly obtained, but it has only a few
applications. Therefore, the objectives were to (1) design catalysts for removal of
heavy compounds in TDO, (2) study the effect of pore size and pore structure of
selected catalysts, (3) upgrade pyrolysis char for using as catalyst, and (4) identify N-
containing compounds for better understanding in further treatment. The result
indicated that aromatic compounds (ize 8-16 A by average) were mainly in gas ol
and vacuum gas oil fractions. The selected catalysts, like mesoporous materials, were
thus suggested to handle these compounds. Subsequently, mesoporous Al-MCM-41
(331 A) and AI-SBA-15 (60.5 A) were used to study the effect of pore size whereas
mesoporous Si-MCM-41 (hexagonal structure) and Si-MCM-48 (cubic structure)
were used to study the effect of pore structure. As a result, the pore size of 33.1 A
and cubic structure gave better removal of heavy compounds, petrochemical
productivity, and sulfur removal. Furthermore, pyrolysis chars With and without
treatment well performed on improving lighter fractions from conversion of heavy
portions. Moreover, identification of nitrogenous compounds in TDO was
successfully accomplished using an effective GCxGC/TOF-MS. The detected species
were classified into 10 groups. Interestingly, diazabicycloheptenes is a new group,
firstly detected in TDO, owing to the high performances of GCxGC/TOF-MS on
separation and detection of highly-complex mixtures.
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