SOLID ACID CATALYSTS FOR BIODIESEL PRODUCTION VIA ESTERIFICATION FROM OLEIC ACID

Suppasate Dechakhumwat

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University, and Institut Français du Pétrole

2015

Thesis Title:	Solid Acid Catalysts for Biodiesel Production via
	Esterification from Oleic Acid
By:	Suppasate Dechakhumwat
Program:	Petroleum Technology
Thesis Advisor:	Assoc. Prof. Apanee Luengnaruemitchai

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

...... College Dean

(Asst. Prof. Fomthong Malakul)

Thesis Committee:

apan L

(Assoc. Prof. Apanee Luengnaruemitchai)

Pramoch (1

(Assoc. Prof. Pramoch Rangsunvigit)

Supply Oa

(Assoc. Dr. Suphang Chulalaksananukul)

ABSTRACT

٥

0

5673017063: Petroleum Technology Program
Suppasate Dechakhumwat: Solid Acid Catalyst for Biodiesel
Production via Esterification from Oleic Acid.
Thesis Advisor: Assoc. Prof. Apanee Luengnaruemitchai 73 pp.
Keywords: Biodiesel/ Esterification/ Oleic acid/ Solid acid catalyst/ pToluenesulfonic acid/ Corncob

Esterification of oleic acid with methanol using treated solid residue as a catalyst was studied for biodiesel production. The solid acid catalyst was prepared by sulfonation of p-toluenesulfonic acid on corncob waste obtained from butanol production. Its activity was compared with the corncob activated by concentrated sulfuric acid (H_2SO_4). The result from gas chromatrography showed that the catalyst activated by TsOH can catalyze the reaction faster than that activated by H_2SO_4 , at reaction temperature of 60°C for 2 h. The characterization results from an acid-base titration method and surface area analysis indicated that TsOH treated catalyst have lower acid sites than H_2SO_4 ; however, it exhibited higher specific surface area and pore specific volume.

iii

บทคัดย่อ

ศุภเสฏฐ์ เคชาคุ้มวัฒน์: ตัวเร่งปฏิกิริยาของแข็งชนิคกรคสำหรับการผลิตไบโอคีเซลจาก ปฏิกิริยาเอสเทอริฟีเคชันของกรคโอเลอิก (Solid Acid Catalyst for Biodiesel Production via Esterification from Oleic Acid) อาจารย์ที่ปรึกษา: รศ. คร. อาภาณี เหลืองนฤมิตชัย 73 หน้า

ปฏิกิริยาเอสเทอริฟิเคชันของกรด โอเลอิกที่ทำปฏิกิริยากับเมทานอล โดยใช้ตัวเร่ง ปฏิกิริยาจากวัสดุเหลือทิ้งทางการเกษตรถูกนำมาศึกษาเพื่อใช้ในกระบวนการผลิตไบโอดีเซล ดัวเร่งปฏิกิริยาของแข็งชนิดกรดถูกเตรียมจากซังข้าวโพดเหลือทิ้งจากกระบวนการผลิตบิวทานอล ผ่านกระบวนการซัล โฟเนชันด้วยกรดพี-โทลูอีนซัล โฟนิก เพื่อเปรียบเทียบความสามารถในการเร่ง ปฏิกิริยากับตัวเร่งปฏิกิริยาที่ถูกเตรียมผ่านกระบวนการซัล โฟเนชันด้วยกรดซัลฟูริกเข้มข้น ผลจาก การตรวจสอบด้วยเทคนิคแก๊สโครมาโตรกราฟีบ่งบอกว่าตัวเร่งปฏิกิริยาที่ได้รับการกระดุ้นด้วย กรดพี-โทลูอีนซัล โฟนิก สามารถเร่งปฏิกิริยาได้เร็วกว่าตัวเร่งปฏิกิริยาที่ได้รับการกระดุ้นด้วย กรดซัลฟูริกเข้มข้น สำหรับปฏิกิริยาเอสเทอริฟิเคชันที่ 60 องศาเซลเซียส เป็นเวลา 2 ชั่วโมง และ จากผลการตรวจสอบคุณลักษณะของตัวเร่งปฏิกิริยาดังกล่าว ด้วยวิธีการไตเตรตและเครื่องมือ วิเคราะห์พื้นที่ผิว พบว่าตัวเร่งปฏิกิริยาจังกล่าว มีปริมาณตำแหน่งที่เป็นกรด ด้ำกว่าตัวเร่งปฏิกิริยา ที่กระตุ้นด้วยกรดซัลฟูริก แต่มีพื้นที่ผิวสัมผัสจำเพาะและปริมาตรรูพรุนจำเพาะที่สูงกว่า

0

ο

ACKNOWLEDGEMENTS

This thesis work would have never been completely finished without the assistance and supporting from the following individuals and organizations:

First of all, I would like to thank The Petroleum and Petrochemical College, and The Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Thailand, for an opportunity to study in this honourable institute and every supporting that given to me.

This research work was partially support by the Ratchadapisek Sompote Endowment Fund (2013), Chulalongkorn University (CU-56-900-FC) and Thailand Research Fund (IRG5780012).

I would like to express my sincere gratitude to Assoc. Prof. Apanee Luengnaruemitchai, my advisor, for her invaluable guidance, understanding, and constant encouragement throughout the course of this research.

I would like to express special thanks to Assoc. Prof. Pramoch Rangsunvigit and Assoc. Prof. Suphang Chulalaksananukul for kindly serving on my thesis committee. Their sincere suggestions and comments are definitely imperative for accomplishing my thesis.

I would like to take this opportunity to give an appreciation to thank all member and staffs of The Petroleum and Petrochemical College, Chulalongkorn University, for all their kind assistance and cooperation.

I would like to extend my thanks to all my graduate friends for their friendly cheerfulness and encouragement.

Finally, I really would like to express my sincere gratitude to my parents and my family for their support, love, understanding, and cheering.

TABLE OF CONTENTS

	PAGE
Title Page	i
Abstfact (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	ix
List of Figures	X

CHAPTER

Ι	INTRODUCTION	1
II	THEORETICAL BACKGROUND AND LITERATURE	
	REVIEW	3
	2.1 Biodiesel	3
	2.2 Diesel and Diesel Engine	7
	2.3 Lipid Feedstock for Biodiesel Production	8
	2.3.1 Vegetable Oil	8
	2.3.2 Waste Cooking Oil	9
	2.3.3 Free Fatty Acid	10
	2.3.4 Oleic Acid	12
	2.4 Short Chain Alcohol for Biodiesel Production	14
	2.5 Chemical Conversion of Biodiesel Production	15
	2.6 Catalyst for Biodiesel Production	17
	2.7 Solid Acid Catalyst from Lignocellulosic Biomass	22

CHAPTER

4	Ш	EXPERIMENT	26
		3.1 Materials	26
		3.1.1 Material	26
		3.1.2 Chemical	26
		3.1.3 Equipment	26
		3.2 Methodology	28
		3.2.1 Solid Acid Catalyst Preparation	28
		3.2.2 Biodiesel Production	29
		3.2.3 Biodiesel Analysis	30
		3.2.4 Catalyst Characterization	31
	IV	RESULTS AND DISCUSSION	34
		4.1 Biodiesel Analysis	34
		4.1.1 Catalytic Activity	34
		4.1.2 Condition Variables	.35
		4.1.3 Reusability	38
		4.2 Catalyst Characterization	39
		4.2.1 Scanning Electron Microscope (SEM)	39
		4.2.2 Carbon, Hydrogen, Nitrogen, and Sulfur	
		Analysis (CHNS)	43
		4.2.3 Acid-Base Titration Method	44
		4.2.4 Temperature-Programmed Desorption – Ammonia	
		(TPD-NH ₃)	46
		4.2.5 Surface Area Analysis (SAA)	50
		4.2.6 Thermo Gravimetric Analysis (TGA)	51
		4.2.7 X-Ray Diffraction (XRD)	52
		4.2.8 X-Ray Fluorescence (XRF)	53
		4.2.9 Fourier Transform Infrared Spectrophotometer (FT-IR)	54

V	CONCLUSIONS AND RECOMMENDATIONS	57
	5.1 Conclusions	57
	5.2 Recommendations	57

REFERENCES

58

APPENDICES	66
Appendix A Gas Chromatography (GC)	66
Appendix B Acid-Base Titration Method	67
Appendix C Scanning Electron Microscopy (SEM)	67
Appendix D Thermo Gravimetric Analysis (TGA)	68

- G

CURRICULUM VITAE

70

ø

LIST OF TABLES

TABLE		PAGE
2.1	Typical physical properties of biodiesel	4
2.2	Chemical compositions of common FAMEs	5
2.3	Values for ASTM standard of maximum allowed quantities in	
	diesel and biodiesel	6
2.4	Advantages and disadvantages of biodiesel compared to diesel	7
2.5	Quantity of waste cooking oil produced in selected countries	9
2.6	Fatty acid in TGs composition of some common vegetable oil,	
	animal fat, and grease	11
2.7	Physical and chemical properties of oleic acid	13
2.8	Physical and chemical properties of methyl oleate	14
2.9	Physical and chemical properties of methyl alcohol	15
3.1	Abbreviation of the prepared solid acid catalysts	29
4.1	Biodiesel yield of the solid acid catalysts	35
4.2	Element of the starting materials and solid acid catalysts	44
4.3	Acid quantity of the solid acid catalysts	45
4.4	Acid quantity of spent C-TsOH-10 catalyst	46
4.5	Acidity of the solid acid catalysts	49
4.6	Specific surface area, specific pore volume, and pore diameter	
	of the solid acid catalysts	51
4.7	Composition of the starting materials and solid acid catalysts	52
4.8	Compound concentration of the starting materials and solid acid	
	catalysts	54
4.9	Infrared interpretation for functional group	56

ο

÷

LIST OF FIGURES

FIGURE PAGE

2.1	Molecular structure of blodiesel (Methyl Paimilic).	3
2.2	Molecular structure of diesel.	7
2.3	Molecular structure of triglyceride.	9
2.4	Molecular structure of oleic acid.	12
2.5	Molecular structure of methyl oleate.	13
2.6	Molecular structure of methyl alcohol.	14
2.7	Transesterification reaction of triglyceride.	16
2.8	Production reaction of fatty acid from triglyceride and water	16
2.9	(a) Saponification reaction of free fatty acid and	
	(b) Hydrolysis reaction of methyl ester.	17
2.10	Esterification reaction of free fatty acid.	17
2.11	Mechanism of acid-catalyzed transesterification of monoglyceride.	18
2.12	Molecular structure of cellulose.	24
2.13	Molecular structure of hemicellulose.	24
2.14	Molecular structure of lignin.	25
4.1	Effect of catalyst loading on biodiesel yield in the presence	
	of C-TsOH-10 catalyst at 60°C.	36
4.2	Effect of reaction time on biodiesel yield in the presence	
	of C-TsOH-10 and C-H ₂ SO ₄ -184 catalysts at 60° C.	37
4.3	Effect of reaction temperature on biodiesel yield in the presence	
	of C-TsOH-10 catalyst.	38
4.4	Reusability of C-TsOH-10 catalyst for biodiesel production at 80°C.	39

Ø

1.00

PAGE

xi

	4.5	SEM images at different magnifications of (a) fresh corncobs,	
		(b) pretreated corncobs, and (c) C-H ₂ SO ₄ -184 catalyst.	40
	4.6	SEM images at different magnifications of (a) C-TsOH-5 catalyst,	
		(b) C-TsOH-10 catalyst, (C) C-TsOH-15 catalyst, and (D) C-TsOH-20	
		catalyst.	41
	4.7	SEM images at different magnifications of (a) C-M-3-10 catalyst, and	
		(b) C-M-15-10 catalyst.	42
	4.8	SEM images at different magnifications of (a) commercial lignin,	
		(b) L-H ₂ SO ₄ -184 catalyst, and (c) L-TsOH-10 catalyst.	43
	4.9	TPD-NH ₃ temperature profile of (a) C-H ₂ SO ₄ -184 catalyst,	
		(b) L-H ₂ SO ₄ -184 catalyst, (c) C-TsOH-5 catalyst, and	
		(d) C-TsOH-10 catalyst.	47
	4.10	TPD-NH ₃ temperature profile of (a) C-TsOH-15 catalyst,	
		(b) C-TsOH-20 catalyst, (c) L-TsOH-10 catalyst,	
		(d) C-M-3-10 catalyst, and (e) C-M-15-10 catalyst.	47
	4.11	XRD patterns of (a) fresh corncobs, (b) pretreated corncobs	
		(c) C-H ₂ SO ₄ -184 catalyst; and (d) C-TsOH-10 catalyst.	53
•	4.12	FT-IR spectrum of (a) fresh corncobs and (b) pretreated corncobs.	55
	4.13	FT-IR spectrum of (a) C-H ₂ SO ₄ -184 catalyst and (b) C-TsOH-10	
		catalyst.	55
	A.1	Chromatogram of fatty acid methyl ester (FAMEs) in biodiesel.	66
	C.1	Referable SEM image of commercial lignin.	68
	D.1	TGA thermogram of fresh corncob.	69
	D.2	TGA thermogram of pretreated corncob.	69
	D.3	TGA thermogram of C-H ₂ SO ₄ -184 catalyst.	70
	D.4	TGA thermogram of C-TsOH-10 catalyst.	70
	D.5	TGA thermogram of Commercial Lignin.	71
	D.6	TGA thermogram of L-H ₂ SO ₄ -184 catalyst.	71
	D.7	TGA thermogram of L-TsOH-10 catalyst.	72

÷