EFFICACY AND SAFETY OF MULBERRY LEAVES ON GLYCEMIC CONTROL IN PATIENTS WITH OBESITY AND PATIENTS WITH TYPE 2 DIABETES

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Pharmaceutical Care Department of Pharmacy Practice FACULTY OF PHARMACEUTICAL SCIENCES Chulalongkorn University Academic Year 2020 Copyright of Chulalongkorn University ประสิทธิศักย์และความปลอดภัยของใบหม่อนในการควบกุมระดับน้ำตาลในเลือด ในผู้ที่มีภาวะอ้วนและผู้ป่วยเบาหวานชนิดที่ 2

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาเภสัชศาสตรคุษฎีบัณฑิต สาขาวิชาการบริบาลทางเภสัชกรรม ภาควิชาเภสัชกรรมปฏิบัติ คณะเภสัชศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2563 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title	EFFICACY AND SAFETY OF MULBERRY LEAVES ON
	GLYCEMIC CONTROL IN PATIENTS WITH OBESITY
	AND PATIENTS WITH TYPE 2 DIABETES
By	Miss Thanchanit Thaipitakwong
Field of Study	Pharmaceutical Care
Thesis Advisor	Professor Pornanong Aramwit, Ph.D.
Thesis Co Advisor	Colonel Ouppatham Supasyndh, M.D.

Accepted by the FACULTY OF PHARMACEUTICAL SCIENCES, Chulalongkorn University in Partial Fulfillment of the Requirement for the Doctor of Philosophy

Dean of the FACULTY O	F
PHARMACEUTICAL SC	IENCES
(Assistant Professor Rungpetch Sakulbumrungsil, Ph.D.)	

DISSERTATION COMMITTEE

Chairman (Assistant Professor Thitima Wattanavijitkul, Ph.D.) Thesis Advisor (Professor Pornanong Aramwit, Ph.D.) Thesis Co-Advisor (Colonel Ouppatham Supasyndh, M.D.) Examiner (Associate Professor CHANKIT PUTTILERPONG, Ph.D.) Examiner (Assistant Professor NUTTHADA AREEPIUM, Ph.D.) External Examiner (Associate Professor Sumate Ampawong, Ph.D.)

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University ชัญชนิต ไทยพิทักษ์วงศ์ : ประสิทธิศักย์และความปลอดภัยของใบหม่อนในการควบคุมระดับน้ำตาลในเลือดในผู้ที่มีภาวะ อ้วนและผู้ป่วยเบาหวานชนิดที่ 2. (EFFICACY AND SAFETY OF MULBERRY LEAVES ON GLYCEMIC CONTROL IN PATIENTS WITH OBESITY AND PATIENTS WITH TYPE 2 DIABETES) อ.ที่ปรึกษาหลัก : ศ. ภญ. ดร.พรอนงค์ อร่ามวิทย์, อ.ที่ปรึกษาร่วม : พอ. นพ.อุปถัมภ์ ศุภสินฐ์

้งานวิจัขนี้แบ่งเป็น 3 การศึกษา ประกอบด้วยการศึกษาทางกลินิกแบบสุ่มและมีกลุ่มควบคุม 2 ระขะและการศึกษาการ แสดงออกของโปรตีนโดยเทคนิคโปรติโอมิกส์ การศึกษาทางคลินิกระยะที่หนึ่งมีวัตถุประสงค์เพื่อประเมินประสิทธิภาพและความปลอคภัย ของใบหม่อนในการลดน้ำตาลในเลือดหลังการรับประทานสารละลายซูโครส 50 กรัมในอาสาสมัครสุขภาพดี และเพื่อประเมินขนาด รับประทานที่เหมาะสมของใบหม่อนโดยกำหนดจากปริมาณของ 1-ดีออกซีโนจิริไมซิน (ดีเอ็นเจ) ซึ่งเป็นสารสำคัญหลักในใบหม่อน ผล การศึกษาพบว่าใบหม่อนสามารถลดภาวะน้ำตาลสูงหลังมื้ออาหารได้อย่างมีนัยสำคัญทางสถิติเมื่อเทียบกับกลุ่มควบคุมและสัมพันธ์กับขนาด ้ของดีเอ็นเจ อาการข้างเคียงที่พบ ได้แก่ ท้องอืด ถ่ายแหลว และคลื่นไส้ และดีเอ็นเจขนาด 12 มิลลิกรัมเป็นขนาดรับประทานที่เหมาะสมที่ ้สามารถลดระดับน้ำตาลในเลือดได้และทำให้เกิดอาการไม่พึงประสงค์น้อยที่สุด การศึกษาระขะที่สองมีวัตถุประสงค์เพื่อประเมิน ประสิทธิภาพในการถวบคุมระดับน้ำตาลในเลือดและถวามปลอดภัยในระยะขาวของใบหม่อนในผู้ที่มีภาวะอ้วนและผู้ป่วยเบาหวานชนิดที่ 2 ผลการศึกษาพบว่าการรับประทานใบหม่อนที่ประกอบด้วยดีเอ็นเจ 12 มิลลิกรัม วันละ 3 ครั้งทุกวันนาน 12 สัปดาห์ทำให้การ ้ควบคุมระดับน้ำตาลดีขึ้นเมื่อเทียบกับก่าเริ่มต้นก่อนรับประทาน และยังพบแนวโน้มที่ดีขึ้นของกวามไวต่ออินซูลินในกลุ่มทดลองอีกด้วย อข่างไรก็ดีไม่พบความแตกต่างอข่างมีนัขสำคัญทางสถิติเมื่อเทียบกับกลุ่มควบคม นอกจากนี้ใบหม่อนลดระดับไขมันในเลือดได้ โดยพบ ความแตกต่างอย่างมีนับสำคัญทางสถิติระหว่างกลุ่ม การศึกษานี้ไม่พบผลข้างเกี่ยวกับการทำงานของตับและไต อย่างไรก็ดีพบรายงาน อาการท้องอืด ถ่ายเหลว และท้องผูกจากการรับประทานใบหม่อน การศึกษาระยะที่สามเป็นการศึกษาผลของใบหม่อนต่อการแสดงออกของ โปรดีนในพลาสมาในกลุ่มที่ได้รับประทานใบหม่อนจากการศึกษาทางกลินิกระขะที่สองด้วยเทกนิกโปรดิโอมิกส์ โดยพบว่าการแสดงออก ของโปรตีนในกลุ่มเมทาบอลิก เมทริกซ์นอกเซลล์ ระบบภูมิคุ้มกัน และกระบวนการอักเสบเปลี่ขนแปลงในทางที่ดีขึ้นภายหลังการ รับประทานใบหม่อน

สาขาวิชา ปีการศึกษา การบริบาลทางเภสัชกรรม 2563

ลายมือชื่อนิสิต
ลาขมือชื่อ อ.ที่ปรึกษาหลัก
ลายมือชื่อ อ.ที่ปรึกษาร่วม

5776553333 : MAJOR PHARMACEUTICAL CARE

KEYWORD: Mulberry leaves, 1-Deoxynojirimycin, Clinical trial, Blood glucose, Adverse event

Thanchanit Thaipitakwong : EFFICACY AND SAFETY OF MULBERRY LEAVES ON GLYCEMIC CONTROL IN PATIENTS WITH OBESITY AND PATIENTS WITH TYPE 2 DIABETES. Advisor: Prof. Pornanong Aramwit, Ph.D. Co-advisor: Col. Ouppatham Supasyndh, M.D.

This work was divided into three study phases: the two-phase randomized controlled clinical trials and proteomics study. First, the phase I clinical trial aimed to determine efficacy and safety of mulberry leaves on postprandial glucose following the 50g sucrose ingestion in healthy nondiabetic adults and to explore the optimal administered dose of 1-deoxynojirimycin (DNJ), the major antihyperglycemic compound of mulberry leaves. The results showed the alleviation of postprandial hyperglycemia by mulberry leaves in a dose-dependent fashion. Adverse effects of mulberry leaves included bloating and flatulence, loose stool, and nausea. In addition, 12 mg of DNJ was considered the optimal dose defined by the clinically effective dose with the minimal side effects. Second, the phase II clinical trial was conducted to determine efficacy and safety of the long-term administration of mulberry leaves on glycemic control in patients with obesity and patients with type 2 diabetes. Daily administration of mulberry leaves containing 12 mg of DNJ thrice daily before meals resulted in the improvement in glycemic control as well as insulin sensitivity in the mulberry leaves-treated group; however, there was no difference between the treatment group and the control. Moreover, mulberry leaves were capable of reducing blood lipids when compared with the control group. Our study did not observe the changes in hepatic and renal function by mulberry leaves administration. Nonetheless, it caused bloating and flatulence, loose stool, and constipation. Last, effects of mulberry leaves on expressions of plasma proteins of persons who enrolled the phase II clinical study were further determined using proteomics analysis. In response to mulberry leaves treatment, the analysis found modulation in expressions of proteins involved in metabolic regulation, extracellular matrix constituents and organization, immunity, and inflammatory response.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

Field of Study: Academic Year: Pharmaceutical Care 2020

Student's Signature Advisor's Signature Co-advisor's Signature

ACKNOWLEDGEMENTS

First, I would like to express my gratitude to Professor Pornanong Aramwit, Pharm.D., Ph.D. and Colonel Ouppatham Supasyndh, M.D., the thesis advisor and coadvisor, for giving me one of the greatest opportunities in my life. I truly appreciate all of their valuable guidance and supports during this academic experience. Second, I am gratefully thankful to Associate Professor Sumate Ampawong, Ph.D., Miss Kitiya Rujimongkon, Ph.D., and staffs at Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, for the laboratory work supports as well as tons of helps and guidance in every single step of proteomic experiments. Furthermore, I sincerely acknowledge to all of thesis committee and professors at Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University for the valuable suggestions towards the improvement of this work. I am also grateful to clinical staffs at Phramongkutklao Hospital who provide me with assistance and cooperation. Third, I would like to acknowledge the financial support of the Thailand Research Fund through Research and Researcher for Industry Program (RRi) under Grant No. PHD57I0041 to Thanchanit Thaipitakwong and Pornanong Aramwit. Fourth, I am sincerely thankful to all of the study participants who participated in the phase I and phase II clinical studies. I appreciate their valuable time and kindness. Without them, the thesis work certainly cannot be accomplished. Last but not least, I deeply appreciate my beloved family and friends who never giving up to encourage me and to provide me the genuine supports throughout this journey.

Thanchanit Thaipitakwong

TABLE OF CONTENTS

ABSTRACT (THAI) iii
ABSTRACT (ENGLISH)iv
ACKNOWLEDGEMENTS
TABLE OF CONTENTS
LIST OF TABLES
LIST OF FIGURES
LIST OF ABBREVIATIONS
CHAPTER I INTRODUCTION1
CHAPTER I INTRODUCTION
1.2 Objectives
1.3 Benefits of this study 6
CHAPTER II LITERATURE REVIEW
2.1 Prediabetes and type 2 diabetes
2.1.1 Overview
2.1.2 Pathophysiology and pathogenesis
2.1.3 Diagnosis
2.1.4 Characteristics of impaired glucose metabolism18
2.1.5 Risk factors19
2.1.6 Management
2.2 Postprandial hyperglycemia
2.2.1 Roles of postprandial hyperglycemia in the development of type 2 diabetes and cardiovascular diseases
2.2.2 Factors influencing postprandial hyperglycemia
2.2.3 Conventional α-glucosidase inhibitors in management of postprandial hyperglycemia
2.3 Evaluation of glycemic control and insulin resistance

2.3.1 Blood glucose	34
2.3.2 Insulin resistance	36
2.4 Determination of protein expression using proteomic analysis	
2.4.1 Overview of proteomic analysis	
2.4.2 Rationales of proteomic analysis in diabetic research	40
2.4.3 Implementation of proteomics in clinical research of type 2 diabo	etes40
2.4.4 Limitations of proteomics	48
2.5 Evidence-based medicinal plants in the management of prediabetes and diabetes	
2.5.1 Efficacy of medicinal plants with antidiabetic effects in clinical s	studies 49
2.5.2 Safety of medicinal plants	54
2.6 Mulberry leaves	
2.6.1 Phytochemicals	56
2.6.2 Glucose-lowering effect	
2.6.3 Lipid-lowering effect	73
2.6.4 Antihypertensive effect	76
2.6.5 Antioxidative and anti-inflammatory effects	76
2.6.6 Anti-atherosclerosis	78
2.6.7 Cardioprotective effect	78
2.6.8 Safety of mulberry leaves	79
CHAPTER III MATERIALS AND METHODS	80
3.1 Study I (Phase I clinical trial)	80
3.1.1 Study design	80
3.1.2 Participants	80
3.1.3 Documents and interventions	82
3.1.4 Randomization	84
3.1.5 Study protocol	84
3.1.6 Outcome measurement	86
3.1.7 Statistical analysis	87

3.2 Study II (Phase II clinical trial)	87
3.2.1 Study design	87
3.2.2 Participants	87
3.2.3 Documents and interventions	
3.2.4 Randomization	91
3.2.5 Study protocol	91
3.2.6 Outcome measurement	94
3.2.7 Statistical analysis	95
3.3 Study III (Proteomic analysis)	96
3 3 1 Study design	96
3.3.2 Participants	96
3.3.3 Sample collection and preparation	97
3.3.4 Wet-lab experiments	97
3.3.5 Computational analysis	
CHAPTER IV RESULTS	103
4.1 Study I (Phase I clinical trial)	
4.1.1 Participants characteristics	104
4.1.2 Efficacy of mulberry leaves in lowering postprandial hyperglyce response to carbohydrate load	
4.1.3 Adverse events of a single administration of mulberry leaves con6, 12, and 18 mg of DNJ	-
4.1.4 The effective dose with minimal adverse effects of mulberry DN	J112
4.2 Study II (Phase II clinical trial)	113
4.2.1 Participants characteristics	114
4.2.2 Effects of mulberry leaves on glycemic control	118
4.2.3 Effects of mulberry leaves on anthropometric outcomes and vital	U
4.2.4 Effects of mulberry leaves on blood lipids	128
4.2.5 Effects of mulberry leaves on hepatic and renal function	131
4.2.6 Self-reported adverse events of mulberry leaves	131

4.2.7 Compliance	131
4.2.8 Total caloric and macronutrients intake	133
4.3 Study III (proteomic analysis)	135
4.3.1 Participant characteristics	135
4.3.2 Plasma protein profile	135
4.3.3 Identification of protein functions and the associated KEGG pathways	138
4.3.4 Expression of the candidate proteins in response to mulberry leaves treatment	144
CHAPTER V DISCUSSION AND CONCLUSION	
5.1 Mulberry leaves powder	
5.2 Study I (Phase I clinical trial)	148
5.2.1 Efficacy of mulberry leaves in lowering postprandial hyperglycemia in response to carbohydrate load	
5.2.2 Adverse events of a single administration of mulberry leaves containin6, 12, and 18 mg of DNJ	
5.2.3 The effective dose with minimal adverse effects of mulberry DNJ	
5.3 Study II (Phase II clinical trial)	152
5.3.1 Efficacy of daily administration of mulberry leaves on glycemic contro	
5.3.2 Effects of daily administration of mulberry leaves on insulin resistance	
5.3.3 Effects of daily administration of mulberry leaves on blood lipids	
5.3.4 Effects of daily administration of mulberry leaves on anthropometric profiles	158
5.3.5 Safety of daily administration of mulberry leaves	159
5.3.6 Diet control	160
5.4 Study III (proteomic analysis)	161
5.4.1 Proteins involved in metabolic regulation	161
5.4.2 Proteins involved in ECM constituents and organization	164
5.4.3 Proteins involved in immune response	166

5.4.4 Proteins involved in inflammatory response	167
5.5 Limitations	170
5.6 Conclusion	171
REFERENCES	173
APPENDICES	198
Appendix A Certificate of ethic approval (Study I)	199
Appendix B Clinical record forms (Study I)	200
Appendix C Chemical analysis of phytochemicals in mulberry leaves powder	206
Appendix D Clinical outcomes (Study I)	209
Appendix E Certificate of ethic approval (Study II)	213
Appendix F Clinical record forms (Study II)	221
Appendix G Clinical outcomes (Study II)	223
Appendix H Differentially expressed plasma proteins (Study III)	233
Appendix I Protein-protein interaction networks (Study III)	273
VITA	274

LIST OF TABLES

Table 1 Diagnosis of prediabetes and type 2 diabetes 18
Table 2 Risk factors for prediabetes and type 2 diabetes
Table 3 Efficacy of lifestyle modification and medications on the management of
prediabetes
Table 4 Characteristics of clinical studies of type 2 diabetes using proteomic analysis
Table 5 Adverse effects and toxicity of medicinal plants
Table 6 Animal studies investigating antihyperglycemic effects of mulberry leaves .61
Table 7 Clinical studies investigating effect of a single-dose administration of mulberry
leaves concurrently with carbohydrate tolerance test
Table 8 Clinical studies investigating effects of daily supplementation of mulberry
leaves on glycemic outcomes
Table 9 Scheduled activities for each follow-up visit
Table 10 Characteristics of the selected participants for proteomic analysis ($N = 12$)97
Table 11 Baseline characteristics of participants of study I (N = 85)105
Table 12 The mean concentrations of PPG at individual time points and AUC $_{0-180 \text{ min}}$
of glucose after receiving the test beverages110
Table 13 Adverse events of the different doses of mulberry leaves
Table 14 Categories of impaired in glucose metabolism114
Table 15 Baseline characteristics of participants of study II ($N = 54$)115
Table 16 The mean concentrations and the mean changes of glycemic outcomes at
baseline and week 12 (N = 54)

Table 17 The mean concentrations and the mean FPI and HOMA-IR at baseline and
week 12 (N = 53)
Table 18 Changes in the categories of impaired glucose metabolism ($N = 54$) 125
Table 19 The mean anthropometric outcomes and vital signs at baseline and week 12
(N = 54)126
Table 20 The mean concentrations of blood lipids at baseline and week 12 ($N = 54$)
Table 21 The mean concentrations of blood lipids in persons with dyslipidemia at
baseline and week 12 (N = 41)
Table 22 The mean concentrations of AST, ALT, and Cr at baseline and week 12 ($N =$
54)
Table 23 Adverse events of daily administration of mulberry leaves reported by the
study participants
Table 24 The mean total calorie and macronutrients intake per day at baseline and
week 12 (N = 54)
Table 25 Baseline characteristics of participants of study III ($N = 12$)136
Table 26 KEGG pathways and the matching proteins
Table 27 The candidate proteins, biological roles, and expressions in response to the
study interventions regarding functional categories

LIST OF FIGURES

Figure 1 The development and progression of prediabetes and type 2 diabetes10
Figure 2 Molecular pathogenesis of insulin resistance and β -cell dysfunction11
Figure 3 Treatment regimen for prediabetes and newly diagnosed type 2 diabetes26
Figure 4 Roles of postprandial hyperglycemia in the development of type 2 diabetes and cardiovascular diseases
Figure 5 Chemical structure of DNJ in comparison with glucose
Figure 6 Mulberry leaves intervention: (a) fresh mulberry leaves; (b) dried mulberry powder; (c) a single-meal ration of mulberry leaves powder in a light- and moisture-protection sachet; and (d) mulberry leaves powder in warm water
Figure 7 Experimental protocol of study I
Figure 8 Schematic flow of study II91
Figure 9 Protein separation using 1D SDS-PAGE and the excised sections for protein identification
Figure 10 Procedures of proteomic analysis
Figure 11 Algorithm for study enrollment and data collection of study I103
Figure 12 Postprandial glucose excursion over 180 min following co-administration of 50-g sucrose and the different doses of mulberry DNJ: control (●), DNJ 6 mg (■), DNJ 12 mg (♦), and DNJ 18 mg (▲)
Figure 13 The AUC _{0-180 min} of blood glucose following co-administration of 50-g sucrose and the different doses of mulberry DNJ
Figure 14 Algorithm for study enrollment and data collection of study II113
Figure 15 The alterations in FPG of the treatment group (\bullet) and the control group (\blacksquare) throughout the 12-week study period

Figure 16 The numbers of identified proteins in the pooled plasma samples before and
after receiving the interventions (n = 1,291)
Figure 17 The differential expressed proteins categorized by biological functions $(n = n)$
523)
Figure 18 Functional categories of KEGG pathways

LIST OF ABBREVIATIONS

ACE	Angiotensin-converting enzyme
ACO	Acyl-CoA oxidase
AGE	Advanced glycation end product
Akt	Protein kinase B
ALT	Alanine aminotransferase
AMPK	Adenosine monophosphate-activated protein kinase
AST	Aspartate aminotransferase
AP-1	Activator protein-1
AUC	Area under the curve
A1C	Glycated hemoglobin
внт	Butylated hydroxytoluene
BMI	Body mass index
BUN	Blood urea nitrogen
CI	Confidence interval
cm	Centimetre
COX-2	Cyclooxygenase-2
СРТ	Carnitine palmitoyltranferase
Cr จุหาล	Serum creatinine
CRP CHILA	C-reactive protein
DAG	Diacylglycerol
DNJ	1-Deoxynojirimycin
DPP	Diabetes Prevention Program
DPPH	1,1-Diphenyl-2-picrylhydrazyl
ECM	Extracellular matrix
emPAI	Exponentially Modified Protein Abundance Index
ER	Endoplasmic reticulum
FAS	Fatty acid synthase
FFA	Free fatty acid
FPI	Fasting plasma insulin

FPG	Fasting plasma glucose
g	Gram
GABA	γ-Aminobutyric acid
GLUT	Glucose transporter
GO	Gene ontology
GR	Glutathione reductase
GSK-3β	Glycogen synthase kinase-3β
GST	Glutathione-S-transferase
GPAT	Glycerol-3-phosphate acyltransferase
GPx	Glutathione peroxidase
G6Pase	Glucose-6-phosphatase
G-6-PD	Glucose-6-phosphase dehydrogenase
g/mol	Grams per mole
HDL-C	High-density lipoprotein cholesterol
HMG-CoA	β-hydroxy β-methylglutaryl-CoA
HOMA-IR	Homeostasis model assessment of insulin resistance
HPLC	High-performance liquid chromatography
HR	Hazard ratio
Hz	Hertz
IC ₅₀	50% Inhibitory concentration
IFG	Impaired fasting glucose
IGT GHULALO	Impaired glucose tolerance
IKK	Inhibitor of nuclear factor-kB kinase
IL	Interleukin
iNOS	Inducible nitric oxide synthase
IPAQ	International Physical Activity Questionnaire
IRS	Insulin receptor substrate
ISO	Isoproterenol
IU/L	International units per litre
ΙκΒ	Inhibitor of NF-κB
JAK-STAT	Janus kinase-signal transducer

JNK	Jun N-terminal kinase
KEGG	Kyoto Encyclopedia of Genes and Genomes
kg	Kilogram
kGray	Kilogray
kg/m ²	Kilograms per square metre
LC	Liquid chromatography
LDL-C	Low-density lipoprotein cholesterol
LXR	Liver X receptor
МАРК	Mitogen-activated protein kinase
MCP-1	Monocyte chemoattractant protein-1
MD	Mean difference
mg/dL	Milligrams per decilitre
mg/g	Milligrams per gram
min	Minute
mIU/L	Milli-International Units per litre
mL	Millilitre
MS	Mass spectrometry
mTORC1	Mammalian target of rapamycin complex 1
NCD	Non-communicable diseases
NEMO	NF-κB essential modulator
NH4HCO3	Ammonium bicarbonate
NF-κB	Nuclear factor-ĸB
NLRP	NOD-like receptor protein
NLRP-7	NACHT, LRR and PYD domains-containing
	protein 7
NOD-2	Nucleotide-binding oligomerization domain-
	containing protein 2
OGTT	Oral glucose tolerance test
PEPCK	Phosphoenolpyruvate carboxykinase
PIP3	Phosphatidylinositol 3,4,5-trisphosphate
РІЗК	Phosphatidylinositol-3-kinase

PPAR	Peroxisome proliferator-activated receptor
PPG	Postprandial plasma glucose
RBP-4	Retinol-binding protein 4
RCT	Randomized controlled trial
ROS	Reactive oxygen species
RR	Relative risk
SDS-PAGE	Sodium dodecyl sulphate-polyacrylamide gel
	electrophoresis
SMD	Standardized mean difference
SOD	Superoxide dismutase
SREBP	Sterol regulatory element-binding protein
STZ	Streptozotocin
sVCAM-1	sSoluble vascular cell adhesion molecule-1
TC	Total cholesterol
TG	Triglycerides
TLR	Toll-like receptor
TNF	Tumor necrosis factor
TNF-R1	TNF receptor superfamily member 1A
UPR	Unfolded protein response
US	United States
V	Volt
WC GHULAL	Waist circumference
WMD	Weighed mean difference
µg/mL	Micrograms per millilitre
µIU/mL	Micro- international units per millilitre
μL	Microlitre
μm	Micrometre
µmol/L	Micromoles per litre
1,5-AG	1,5-Anhydroglucitol
°C	Degree Celsius

CHAPTER I INTRODUCTION

1.1 Background and rationale

Type 2 diabetes is one of the most challenging public health problems in recent decades. Persistent hyperglycemia, the major manifestation of diabetes, leads to life-threatening complications and related mortality [1-3]. Over 600 million adults worldwide predict to have type 2 diabetes in the next 25 years [4]. In addition to the rapidly growing prevalence, type 2 diabetes imposes substantially high economic costs in the health care system [5]. Beyond optimizing glycemic control in known diabetic patients, clinical management nowadays focuses on preventing and delaying the disease onset in persons at high risk of type 2 diabetes to limit the numbers of new diabetic cases [6, 7].

Prediabetes, also known as intermediate hyperglycemia [8], refers to a crucially high-risk state for the development of type 2 diabetes [7]. It is an ongoing stage of insulin resistance and β -cell dysfunction, which are the key defects in glucose homeostasis in type 2 diabetes [9], and related to metabolic syndromes and cardiovascular events [8]. It is documented that impaired glucose metabolism in prediabetes could be reversed to normal condition by proper therapeutic approaches. Strategies that improve insulin sensitivity and preserve β -cell function would be the cornerstone for the management of prediabetes [8, 9].

Development of prediabetes as well as type 2 diabetes results from an integration of genetic susceptibility and environmental factors [6]. Obesity, poor eating habits, and sedentary lifestyle can be corrected in order to lessen individual diabetic risk [10, 11]. Obesity is established as the most crucial risk factor for insulin resistance and the fundamental of metabolic disturbance [12]. Obese persons are almost 10 times more likely to develop type 2 diabetes than lean persons [13]. Worldwide prevalence of obesity is projected to be dramatic in parallel with the growing of type 2 diabetes as well as metabolic syndrome and cardiovascular diseases [13, 14].

Poor eating habits are also the leading cause of prediabetes and type 2 diabetes in modern society [14, 15]. Carbohydrate-rich foods and high glycemic index carbohydrates directly aggravate postprandial hyperglycemia, which is an independent risk factor for diabetic complications and cardiovascular diseases [15, 16]. Moreover, chronic stimulation of insulin secretion by carbohydrate-rich diets provokes β -cell disruption [14]. Asian meals commonly have a greater proportion of carbohydrates with a higher glycemic index when compare with Western foods. For example, white rice is considered a staple food of Asians. A robust association between white rice consumption and an increased diabetic risk was found in previous meta-analyses [17, 18]. Moreover, regarding genetic disposition, Southeast Asians populations had the higher severity of postprandial hyperglycemia and impaired glucose metabolism in relative to people in other regions [19].

Several approaches intervene the progression of prediabetes in different populations. Two large randomized controlled trials showed that intensive lifestyle intervention including weight reduction, eating healthy diets, and increased physical activity decreased the risk for type 2 diabetes by 58% in individuals who were diagnosed with prediabetes [10, 11]. Its advantages are easily accessible and affordable, but long-term maintenance of lifestyle modification remains challenging in the real life. Pharmacotherapy also exhibited favorable effects on diabetic risk [2]. Alpha-glucosidase inhibitor is one of many drug classes that effectively prevent the development of type 2 diabetes. Acarbose and voglibose reduced the rate of type 2 diabetes by 25% and 40%, respectively, in persons with prediabetes [20, 21]. The drugs suppressed postprandial hyperglycemia through their major mechanism of action, resulting in the better control in A1C [22]. Acarbose also alleviated excessive insulin secretion, β -cell disruption, and impaired vascular homeostasis and coagulation that involved in metabolic disturbance [23-25]. Furthermore, acarbose lowered the risk for cardiovascular events by 35% in patients with type 2 diabetes [26]. These suggest rationales for consideration of α -glucosidase inhibitors in the management of prediabetes. Nonetheless, the synthetic α -glucosidase inhibitors caused significant gastrointestinal events such as flatulence, diarrhea, and abdominal pain [27], contributing to the high discontinuation rate in clinical and surveillance studies [22, 28].

Mulberry (*Morus* spp.; family Moraceae) is a multi-functional plant widely distributed in Asian countries. Leaves of mulberry play the important role in sericulture industry because it is the only food of silkworm. In addition, they are known as traditional medicine and functional food with no report of toxicity and serious adverse event. Mulberry leaves contain a cluster of bioactive compounds such as alkaloids, phenolic acids, and flavonoids [29]. 1-deoxynojirimycin (DNJ) is the most notable antihyperglycemic agent of mulberry leaves exhibiting an inhibitory effect on α -glucosidase enzymes, resulting in the decrease in postprandial plasma glucose (PPG) [30]. Mulberry leaves have been therefore gained the attention as a natural source of a promising α -glucosidase inhibitor.

Antihyperglycemic efficacy of mulberry leaves is widely demonstrated in clinical trials. A single administration of mulberry leaves attenuated postprandial hyperglycemia during carbohydrate tolerance test [31-33]. Furthermore, daily supplementation of mulberry leaves improved glycemic control in persons with prediabetes and poorly controlled patients with type 2 diabetes [32, 34, 35]. Mulberry leaves reduced fasting plasma glucose (FPG) and increased 1,5-anhydroglucitol (1,5-AG). The level of glycated hemoglobin (A1C) tended to be improved by mulberry leaves treatment [34]. Mulberry leaves also ameliorated the impairments in glucose homeostasis in several pathways: reversing insulin resistance [36], suppressing hepatic gluconeogenesis [37-39], and restoring β -cell viability [40, 41]. In terms of safety, mulberry leaves are safe and well tolerated with the most common side effects including gastrointestinal discomfort [34, 35]. As a result, mulberry leaves could have potentials for glycemic control and delay the progression of type 2 diabetes.

To date, there are difficulties in the implementation of mulberry leaves in evidence-based practice. First, antihyperglycemic effect of mulberry leaves against postprandial hyperglycemia has been well established; however, it is questionable whether mulberry leaves can effectively reduce the concentrations of FPG and A1C [32, 34, 35]. Second, mulberry leaves can improve insulin sensitivity [36-39] and preserve β -cell function in animals [40, 41], yet these effects have not been determined in clinical trials. Third, beyond the direct lowering effect on postprandial glucose, little is known about mechanisms of action of mulberry leaves on glucose

and insulin homeostasis at the molecular level, particularly in human. Fourth, the optimal dose of mulberry DNJ was clearly defined in few studies [32, 33, 35]. In general, the effective dose of administration was mainly considered based on the glucose-lowering effectiveness, but not the safety issues. It remains unclear whether the dosage regimen is safe and tolerable in the long-term use. Last, a huge variation in response to α -glucosidase inhibitors regarding the different eating habits and ethnicity was reported [27, 42]. A greater magnitude of reduction in PPG by acarbose was observed in persons who consume Eastern foods than those consuming Western ones [43]. In addition, the Southeast Asian population is more likely to have high PPG and insulin resistance than other ethnic groups eating the same foods [44]. At present, there has been no study investigating effects of mulberry leaves on glycemic responses in Southeast Asians, including Thai population.

The ultimate purpose of this work is to highlight potentials of the product derived from mulberry leaves, an easily accessible medicinal plant in Thailand, for the management of type 2 diabetes, particularly for the early phases of the disease. Two randomized controlled clinical studies were consecutively conducted. First, a multi-dose study was performed in order to explore the optimal dose of mulberry DNJ as defined by the effective dose with minimal adverse effects. This study also aimed to ensure efficacy and safety of our mulberry leaf product as a preliminary data for the further clinical investigations. Second, a 12-week, two-parallel group study was conducted to determine efficacy and safety of daily mulberry leaves supplementation on glycemic control and insulin resistance profile in Thai adults who had impaired glucose metabolism, including obese persons with prediabetes and patients with early-stage type 2 diabetes. Beyond clinical outcomes evaluation, effect of mulberry leaves on plasma protein expression was also evaluated using proteomic analysis in order to better understand the possible molecular mechanisms of action of mulberry leaves against metabolic impairments in prediabetes and type 2 diabetes.

1.2 Objectives

Study I

1. To determine efficacy of mulberry leaves on lowering postprandial hyperglycemia in response to carbohydrate load in healthy non-diabetic adults

2. To determine safety of mulberry leaves in healthy non-diabetic adults

3. To explore the optimal dose of mulberry DNJ on lowering postprandial hyperglycemia in response to carbohydrate load

Study II

1. To determine efficacy of mulberry leaves on glycemic control in obese persons who have prediabetes and patients with early-stage type 2 diabetes regarding effects on the following variables;

(i) PPG excursion over 2 hours following the standard 75-g OGTT

(ii) A1C

(iii) FPG

(iv) Insulin resistance: FPI and HOMA-IR

2. To determine effects of mulberry leaves on lipid profiles in obese persons who have prediabetes and patients with early-stage type 2 diabetes regarding effects on the following variables;

(i) Total cholesterol (TC)

(ii) Triglycerides (TG)

(iii) High-density lipoprotein cholesterol (HDL-C)

(iv) Low-density lipoprotein cholesterol (LDL-C)

3. To determine effects of mulberry leaves on anthropometric profiles (body weight, waist circumference, and body mass index; BMI) in obese persons who have prediabetes and patients with early-stage type 2 diabetes

4. To determine possible adverse events of the daily mulberry leaves supplementation in obese persons who have prediabetes and patients with early-stage type 2 diabetes regarding effects on the following variables;

- (i) Hepatic function: aspartate aminotransferase (AST) and alanine aminotransferase (ALT)
- (ii) Renal function: serum creatinine (Cr)
- (iii) Self-report adverse events

Study III

To determine effects of mulberry leaves on protein expression in plasma of obese persons who have prediabetes and patients with early-stage type 2 diabetes using proteomic analysis

1.3 Benefits of this study

1. Provides additional information about potentials of mulberry leaves and mulberry DNJ for the management of prediabetes and type 2 diabetes

- 1.1 Verifies the optimal dose of mulberry DNJ for the long-term administration
- 1.2 Verifies glucose-lowering effect of mulberry leaves against the elevated PPG, A1C and FPG concentration
- 1.3 Suggests modulating effects of mulberry leaves on glucose intolerance and insulin resistance
- 1.4 Suggests the possible molecular mechanisms of action of mulberry leaves

2. Highlights the promising roles of Asian medicinal plant in evidence-based practice for diabetes management

CHAPTER II LITERATURE REVIEW

Content of the review

- 2.1 Prediabetes and type 2 diabetes
- 2.2 Postprandial hyperglycemia
- 2.3 Evaluation of glycemic control and insulin resistance
- 2.4 Determination of protein expression using proteomic analysis
- 2.5 Evidence-based medicinal plants in the management of prediabetes and type 2 diabetes
- 2.6 Mulberry leaves

2.1 Prediabetes and type 2 diabetes

2.1.1 Overview

หาลงกรณ์มหาวิทยาลัย

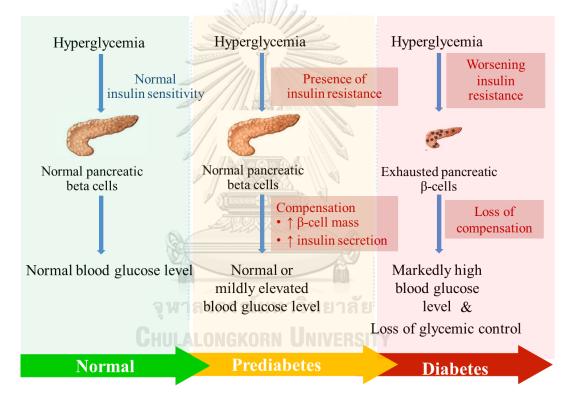
Type 2 diabetes is one of the most common non-communicable diseases (NCD) and ranked the seventh leading cause of death [1]. The disease is associated with the dysregulation of glucose metabolism, leading to persistent hyperglycemia [3]. Prolonged uncontrolled hyperglycemia subsequently causes morbidity and mortality because of irreversible dysfunction and failure of several vital organs including eyes, nerves, kidneys, and blood vessels [3]. These clinical consequences diminish quality of life of diabetic patients inevitably [45].

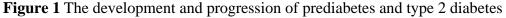
The global prevalence of type 2 diabetes has been rising at alarming rate. It is estimated that 415 million of adults were living with diabetes and the numbers of the patients could be reach to 640 million in the next 25 years [4]. In Thai population, the prevalence of type 2 diabetes was comparable to the projection of diabetes worldwide.

The recent National Health Examination Survey (NHES) reported the increasing prevalence from 7.0% in 2004 to 9.7% in 2014 among Thai adults aged over 20 years [46]. The survey additionally showed that 40% of these patients remained undiagnosed and were not treated properly [46]. It is noteworthy that the diabetes prevalence varies across the different geographical areas and socioeconomic statuses. An increasing trend of type 2 diabetes remains observed in developing countries [47]. In parallel with the dramatic growth of disease prevalence, health care related costs of type 2 diabetes have been rising over years. In 2017, the total national estimated cost of diabetes was \$327 billion in the United States (U.S.), which was 26% higher than the costs in the past five years [5].

Prediabetes is a medical condition refers to an intermediate stage between normal glucose metabolism and type 2 diabetes [7]. Individuals with prediabetes are at high risk of developing type 2 diabetes. Approximately 70% of those with prediabetes can progress to type 2 diabetes [48]. It is one of the independent risk factors of microvascular- and macrovascular complications [45]. One-tenth of prediabetic patients had retinopathy, nephropathy, and neuropathy even signs and symptoms of diabetes are not yet present [9]. Furthermore, prediabetes is strongly associated with metabolic syndromes, including insulin resistance, abdominal obesity, dyslipidemia, and hypertension [8]. It has been hypothesized that the mild impairments in glucose metabolism in prediabetes are well evident because it provides benefits on prevention and delaying the onset of type 2 diabetes [6, 7].

The prevalence of prediabetes is largely epidemic in alignment with the trend of type 2 diabetes. A recent estimation showed that 352 million adults worldwide at the age of 20 to 79 years had prediabetes [49]. More than 400 million adults are predicted to develop prediabetes in 2030 [49]. In similar, 8.2 million Thais aged over 15 years were classified as prediabetes in 2014 [50].


2.1.2 Pathophysiology and pathogenesis


Type 2 diabetes is a multifactorial disease involved multi-organ dysfunction [3]. Insulin resistance and pancreatic β -cell dysfunction are well established as the major

pathophysiology of the disease [2, 3]. Defects in glucose metabolism silently and gradually develops at the molecular level for years before the overt diabetes can be diagnosed [3]. In other words, the early phases of type 2 diabetes are commonly asymptomatic; nonetheless, the disease progression is irreversible and endless [2, 9]. The significant signs and symptoms of diabetes are detected when the impairments extremely worsen [9].


Liver, skeletal muscle, and adipocytes are the peripheral target of insulin and the vital components of metabolic regulation [3]. Hepatic cells take part in glucose storage, gluconeogenesis, and glucose liberation under the regulations of insulin and glucagon in order to normalize the basal blood glucose level during the fasting state [3, 9]. Meanwhile, skeletal muscle and adipocytes are responsible for glucose clearance from blood circulation. In response to the increased blood glucose after meals, the processes of glucose uptake in skeletal muscle and adipocytes are upregulated to alleviate postprandial hyperglycemia [8, 9]. Moreover, adipose tissue is the key source of adipocytokine production, which significantly involved in various metabolic controls and inflammatory responses [51].

Dysregulation and dysfunction of these metabolic tissues play the central roles in the development of insulin resistance and the subsequent β -cell dysfunction, which are well established as the major pathophysiology of type 2 diabetes [2, 3]. Insulin resistance, an insufficient response of the insulin-target tissues to insulin, is the hallmark of prediabetes and the early stage of diabetes [3]. Hepatic insulin resistance contributes to fasting hyperglycemia due to glucose dysregulation during basal state [52]. Meanwhile, the impairments in glucose uptake into the resistant skeletal muscle and adipocytes lead to postprandial hyperglycemia [9]. Figure 1 demonstrates the development and progression of prediabetes and type 2 diabetes. When insulin sensitivity of the target cells slightly diminishes, healthy β -cells are able to compensate by increasing the cell mass and insulin production in order to maintain normoglycemic condition [8, 9]. Thus, it is general to observe hyperinsulinemia in the early stages of type 2 diabetes [52]. Peripheral insulin resistance continuously aggravates over time concurrently with the compensatory processes by β -cells. It causes β -cells exhaust and no longer fully compensate. In this phase, insulin secretion is not sufficient to regulate blood glucose, contributing to the emerge of mild hyperglycemia [9]. After a long period of cellular adaptation, the extremely exhausted β -cells are unable to overcome the elevated blood glucose because of the critical loss of β -cell mass and function [8, 9]. Consequently, persistent and marked hyperglycemia emerges. Moreover, since insulin plays the essential roles in fat and fatty acid metabolism, the mentioned circumstances inevitably lead to the dysregulation of lipid homeostasis It is not only the root cause of the overt dyslipidemia and excessive lipid accumulation, but also lipotoxicity-induced metabolic inflammation [53].

Various changes at the molecular level have been established as pathogenesis of insulin resistance and β -cell dysfunction Herein, we reviewed the underlying mechanisms that extensively proposed in scientific studies and summarized in Figure 2.

Figure 2 Molecular pathogenesis of insulin resistance and β -cell dysfunction (AGE: advanced glycation end product; FFA: free fatty acid; ER: endoplasmic reticulum; ROS: reactive oxygen species; TLR: Toll-like receptor; JNK: c-Jun N-terminal kinase; IKK: inhibitor of nuclear factor- κ B kinase; AP-1: activator protein-1; IRS1: insulin receptor substrate 1; NF- κ B: nuclear factor- κ B; PI3K: phosphatidylinositol 3-kinase; Akt: protein kinase B: mTORC1: mammalian target of rapamycin complex 1)

1) Extracellular matrix remodeling

Persistent hyperglycemia directly aggravates non-enzymatic glycation of blood glucose and protein, leading to the formation of advanced glycation end products (AGEs) [54]. The deleterious role of AGEs in insulin resistance is that the substances vitally affect compositions and organization of extracellular matrix (ECM), which is also known as ECM remodeling, in the metabolic tissues [55]. ECM refers to the non-cellular components that provide structural support to the cells. It is composed of a linking network of glycoproteins (i.e. collagens, elastin, laminin, and fibronectin) and proteoglycans [56, 57]. ECM is a highly dynamic biological substance. Its compositions and structure alter in response to stimuli to maintain cell integrity and homeostasis. Furthermore, ECM regulates cellular processes, including cell proliferation and cell differentiation. The interactions between ECM molecules and cell surface receptors facilitate intercellular communication [57].

In addition, high fat consumption is another cause of ECM remodeling. Due to the excessive lipid storage, the enlarged adipocytes promote ECM production and deposition in the cell surface [58]. The structure acts as a physical barrier for angiogenesis that decreases blood supply to the cells and results in adipocyte necrosis, which is the leading cause of adipocytokine dysregulation [58, 59]. Also, dysregulation of ECM organization serves as the trigger of innate immune system. It induces macrophage infiltration into the cells, contributing to the elevated inflammatory responses. The elevation of inflammatory mediators subsequently impair insulin signaling of insulin receptor substrate (IRS)-1 and cause insulin resistance [54, 55, 58].

Previous studies observed the massive alterations in structural components and excessive deposition of ECM in liver, skeletal muscle, and adipose tissue during the development of insulin resistance and type 2 diabetes in animals and human [58-60]. The findings indicate the strong association between ECM remodeling and metabolic impairments.

2) Pattern recognition proteins and inflammasome

Besides ECM remodeling, there are several factors taking the important parts in the immune activation that related to insulin resistance and β -cell dysfunction. It has been established that the development of insulin resistance is linked to innate immune system via the overexpression of pattern recognition proteins, particularly Toll-like receptor (TLR)-4, and inflammasome. TLR-4 is the transmembrane protein sensor detecting lipopolysaccharides and lipopeptides derived from the elevated body fat and blood glucose and microbial pathogens [61, 62]. Meanwhile, inflammasome, also known as NOD-like receptor protein (NLRP), refers to the complex of intracellular proteins located in the cytoplasm of immune cells. Studies showed that free fatty acid (FFA), ceramides, and hyperglycemia are considered the major triggers of TLR-4 and inflammasome responses [62-64]. In general, to maintain cellular homeostasis, oligomerization of pattern recognition proteins and the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) of the inflammasome complex activates immune system [65]. However, the overinduction of pattern recognition proteins and inflammasome pathways causes tissue inflammation and tissue damage via the caspase-1 activation [66]. The activated caspase-1 eventually contributes to the secretion of interleukin (IL)-1 β , which mediates macrophage accumulation in the peripheral tissues [67]. Deposition of macrophage, especially in adipose tissue, provokes the production of other inflammatory cytokines, including tumor necrosis factor (TNF)- α and IL-6. The up-regulated TLR-4 is additionally involved in the insulin signaling impairment due to the increased serine/threonine phosphorylation of IRS-1 [61].

Moreover, the dysregulation of pattern recognition proteins might be associated with adaptive immune system; however, the certain mechanism is poorly understood at present. It has been also suggested that ligation of pattern recognition proteins in dendritic cells can aggravate biological responses of T cells and B cells [63]. The hyperactivated pattern recognition proteins and inflammasome are the risk factors of insulin resistance as well as impaired glucose homeostasis [67]. Many experiments have consistently supported that depletion of the genes encoding TLR-4 and

inflammasome modulated metabolic inflammation and insulin resistance in obese animals and high-calorie diet-induced insulin-resistant mice [64-66].

3) Chemoattractant

Chemoattractant, including monocyte chemoattractant protein-1 (MCP-1), is considered as another explanation of immune activation during the development of metabolic impairments. MCP-1 is formed under the condition with excessive fat accumulation. It attracts the adhesion of monocytes and macrophages to the cell surface and mediates immune cells infiltration [61]. The increased macrophage level was observed in adipocytes of mice overexpressing MCP-1. The transgenic mice also developed insulin resistance afterwards. On the other hand, knockout MCP-1 mice exhibited the decreased macrophage accumulation in adipocytes [68]. Studies further found that MCP-1 activates the production inflammatory cytokines as well as tissue inflammation by provoking inflammatory reactions, which exert the deleterious effects on insulin signaling pathway [61, 68].

4) Oxidative stress

Excessive reactive oxygen species (ROS) accumulation is regarded as the common trigger of inflammatory signaling pathways. A primary origin of metabolic tissue inflammation is hyperglycemia-induced ROS formation, resulting from autooxidation of glucose [69]. Similarly, saturated FFA serves as the major deleterious molecule that directly aggravates cellular oxidative stress [70]. Furthermore, it is involved in the production of lipid metabolites: ceramide and diacylglycerol (DAG). The metabolites are toxic to the cells because they do not stimulate ROS formation only, but they also deteriorate endogenous antioxidative activities [70].

Under the stress conditions such as hyperglycemia and obesity, the unfolded/misfolded proteins are generated in the lumen of endoplasmic reticulum (ER) [69]. Unfolded protein response (UPR) is also considered as the inflammatory mediator. It refers to a cellular mechanism resulting from accumulation of the unfolded protein in response to ER stress [71]. The UPR is normally activated in order to restore cell homeostasis and cell survival [71]. The increased expression of

UPR was found in adipocytes and skeletal muscle of obese persons and glucose intolerant individuals, whereas their expressions were modulated by weight reduction [72, 73]. The intimate link between the increased UPR activity and the impaired insulin signaling transduction has been addressed. Like ROS and lipid metabolites, the UPR induces inflammatory signaling via Jun N-terminal kinase (JNK) and inhibitory- κ B kinase (IKK)/nuclear factor (NF)- κ B signaling pathways, contributing to serine/threonine phosphorylation of IRS-1 [69]. Moreover, the prolonged ER stress promotes β -cell apoptosis, resulting in the decreased insulin secretion in pancreas [69].

5) Inflammatory signaling pathways associated with insulin resistance and β-cell dysfunction

Insulin resistance are believed to be the chronic, low-grade inflammation [74]. The JNK and IKK/NF- κ B signaling pathways are the primary regulatory mechanisms of metabolic inflammation as well as metabolic diseases. First, the activated JNK, one of the downstream components belonging to mitogen-activated protein kinase (MAPK) signaling pathway, primarily promotes serine/threonine phosphorylation of IRS-1 and results in the impaired insulin signaling [75]. The JNK pathway is also associated with the reduced insulin secretion due to the inhibitory effect of IL-1 [76]. It has been proposed that the up-regulation of JNK causes insulin resistance by facilitating the phosphorylation of the activator protein (AP-1) transcription factor and subsequently promoting inflammatory gene transcription [61]. Studies supported that suppression of the JNK pathway improved insulin sensitivity and glucose tolerance [76]. JNK knockout mice were protected from diet-induced insulin resistance. Also, depletion of JNK in adipose tissue exerted the protective effect against hepatic steatosis and increased insulin clearance [75].

Second, the activation of IKK/NF- κ B follows a parallel pathway to the JNK responses. Under the normal condition, the inactive NF- κ B is stabilized by interacting with the inhibitory molecules termed inhibitor of NF- κ B (I κ B). In response to stimuli, the IKK complex (IKK- $\alpha/\beta/\gamma$) is up-regulated which leads to phosphorylation and degradation of the I κ B proteins. Subsequently, the free form of NF- κ B localizes to the nucleus, resulting in the up-expression of inflammatory cytokines, for example, TNF-

 α , IL-1 β , and IL-6 [77, 78]. The activated IKK also inhibits the expression of antiinflammatory cytokines such as leptin and adiponectin [70]. On the other hand, IKK deficiency results in the lowered expression of TNF- α and IL-6 in transgenic mice when compared with controls. In addition, the deletion of IKK improved glucose tolerance and insulin sensitivity [77].

6) Inflammatory cytokines and acute-phase reactants

The elevation of inflammatory cytokines was found in various models of obesity, insulin resistance, and type 2 diabetes and a strong relationship between multiple cytokines and insulin resistance has been evident [61, 74]. TNF- α plays a central role in inflammatory responses by mediating adipocyte lipolysis and promoting serine/threonine phosphorylation of IRS-1 [79, 80]. Furthermore, it impairs glucose uptake in skeletal muscle by interfering glucose transporter (GLUT)-4 translocation [79]. Previous studies found the impaired insulin action and glucose tolerance in animals fed with TNF- α when compared with controls [80]. By contrast, the treatment of TNF- α antagonist exerted the favorable effects against insulin resistance in animals and human [80, 81]. IL-6, the key regulator of Janus kinasesignal transducer (JAK-STAT) signaling pathway, is directly involved in the activation of TLR-4 expression and the decreased expression of IRS-1 signaling [74]. IL-6 also disturbs glucose homeostasis in the insulin-targeted tissues by disrupting GLUT4 expression and inhibiting transcription genes related to hepatic glycogenenolysis [61]. Meanwhile, IL-1 β is associated with the inflamed pancreatic β -cells, subsequently contributing to the impaired insulin secretion [74, 82]. Also, it mediates macrophage accumulation in the peripheral insulin-target tissues, leading to the decreased responses to insulin action [67].

In addition to the overexpression of inflammatory cytokines, the increase in positive acute-phase reactants is the indicator of inflammation [61]. It refers to the circulating proteins that considerably elevate during the inflammatory processes [83]. The positive acute-phase reactants, for example, C-reactive protein (CRP), fibrinogen, hepcidin, and serum amyloid A, are primarily synthesized by hepatocytes, whereas the few amounts are also produced by adipocytes, macrophage, and endothelial cells [84]. They are considered the indicators of inflammation both in the short- and long-

term states [83]. It has also believed that the presences of acute-phase reactants can last in the blood circulation for the whole duration of chronic inflammation. However, they are not specific to the certain inflammatory stimuli [83]. Besides inflammation, the changes in acute-phase reactants expression result from metabolic stress, infection, trauma, and autoimmune diseases [84].

Evidences has demonstrated the association between acute-phase reactants expression and metabolic impairments. Nonetheless, the casual roles of various inflammatory proteins in the development of insulin resistance as well as type 2 diabetes are largely varied among the studies. In the recent large cohort study, the elevated concentrations of CRP, orosomucoid, and haptoglobin, were suggested to be the risk factors of type 2 diabetes development with hazard ratio (HR)1.40 (95% confidence interval (CI): 1.01-1.95; p = 0.046), 1.18 (95%CI: 0.83-1.67; p = 0.51), and 1.19 (95%CI: 0.85-1.62; p = 0.10), respectively [85]. The increased CRP, erythrocyte sedimentation rate, fibrinogen, white blood cells count, and complement C3 were observed in prediabetic individuals [86]. Similarly, persons who diagnosed with type 2 diabetes exhibited the higher concentrations of CRP, ceruloplasmin, and total sialic acid than non-diabetic controls (p < 0.01) [87]. In addition, interleukin-1 receptor antagonist and hs-CRP were positively associated with impaired insulin sensitivity (HR = 1.13; 95% CI: 1.07-1.20), whereas glycoprotein acetyls was associated with impaired insulin secretion, hyperglycemia, and type 2 diabetes (HR = 1.37; 95% CI: 1.29-1.46) [88].

2.1.3 Diagnosis

Table 1 demonstrates the cut-off values of blood glucose for diagnosis of prediabetes and type 2 diabetes. Prediabetes is defined on the basis of the levels of FPG, 2-hour PPG following a standard oral glucose tolerance test (OGTT), and A1C [6, 7]. The levels of blood glucose among individuals with prediabetes are higher than the normal ranges; nonetheless, the levels do not reach the threshold of diabetes [9]. Similarly, diagnosis of type 2 diabetes relies on the mentioned glycemic indices. Random plasma glucose is additionally considered for persons who have significant

symptoms of hyperglycemia (i.e. increased thirst, increased hunger, and frequent urination) or hyperglycemic crisis [6, 7].

Glycemic indices	Prediabetes	Type 2 diabetes
FPG (mg/dL)	100 – 125	≥ 126
2-hour PPG (mg/dL) ^a	140 – 199	\geq 200
A1C (%)	5.7 - 6.4	≥ 6.5
Random plasma glucose (mg/dL)	_	≥ 200

Table 1 Diagnosis of prediabetes and type 2 diabetes

^a 2-hour PPG following 75-g OGTT

FPG: fasting plasma glucose; PPG: postprandial glucose; A1C: glycated hemoglobin

2.1.4 Characteristics of impaired glucose metabolism

Impaired glucose metabolism is a metabolic disturbance in which the body losses normal regulation of glucose utilization and production as described previously, resulting in presentations of abnormally high blood glucose that comprises both prediabetes and type 2 diabetes.

Impaired glucose metabolism is categorized into impaired fasting glucose (IFG), impaired glucose tolerance (IGT), and type 2 diabetes. Meanwhile, IFG and IGT are the subsets of prediabetes and characterized by the values of FPG (100-125 mg/dL) and 2-hour PPG (140-199 mg/dL), respectively [6]. In each individual, the abnormal glycemic indices can be present solely or in combination because there is no concordance between the two glycemic parameters [89]. For example, a person who have IFG may have either normal or impaired glucose tolerance.

There are characteristics differences among the types of impaired glucose metabolism. In individuals with IFG in which insulin resistance develops in hepatic cells, an increase in FPG could be detected [48]. In contrast to persons who have IGT, insulin resistance emerges in skeletal muscle cells; thus, the significant disturbance in glucose uptake into peripheral cells results in an elevation of PPG [48]. Meanwhile, patients with overt type 2 diabetes have the aggressive insulin resistance and β -cell dysfunction, resulting in prolonged hyperglycemia both in fasting and postprandial periods [8, 9].

2.1.5 Risk factors

There are several risk factors aggravating the development of prediabetes and type 2 diabetes [6, 7]. Table 2 summarizes the possible risk factors, which are classified into modifiable and non-modifiable factors. Non-modifiable risk factors are intrinsically unavoidable in any persons. Therefore, correction of modifiable one is the only possible way to lessen the risk for developing the disease [10, 11]. Relationship of modifiable risk factors and the development of prediabetes and type 2 diabetes are described below.

Modifiable risk factors	Non-modifiable risk factors
Obesity	Increased age
Poor eating habits	First-degree relatives to diabetic patients
Sedentary lifestyle	African American, American Indian,
	Hispanic/Latino, and Asian American

1) Obesity

Obesity refers to a condition of having excess body weight due to overstorage of adipose tissue inside body [12]. Asian adults who have BMI equal to 25.0 kg/m² or higher are considered obese [13]. In addition to genetics, an imbalance between energy intake and energy output primarily causes weight gain [12]. The condition is established as a crucial health problem because it is the fundamental of metabolic disturbance; thus, obesity is the common concomitant of many cardiometabolic disorders [13]. Obesity is the major predictor for insulin resistance and type 2 diabetes [51]. Evidences showed that the incidence rate of insulin resistance sharply rises when BMI over 25.0 kg/m² and increased waist circumference [90]. Compared with lean persons, obese adults had around seven times greater chance to have future type 2 diabetes [13]. Besides, region of fat accumulation is also associated with the disease development. Previous studies showed that visceral fat appears more predictive to insulin resistance than subcutaneous fat because of the highly diabetogenic property [91]. This indicates that individuals who have abdominal obesity have a higher tendency to have insulin resistance and type 2 diabetes when compare to others [12]. The numbers of obese persons have been dramatically growing. It was reported that approximately 35% of adults in the U.S. have BMI over 25.0 kg/m² in the recent decade [1]. A cross-sectional study revealed that Thais were the second-rank population having the highest average BMI among 10 Asian countries [92]. This study also supported that urban lifestyle including high-caloric intake and physical inactive are the significant leading causes of obesity in the study population [92]. The prevalence of obesity is in parallel with type 2 diabetes. More than 80% of type 2 diabetic cases worldwide were concurrently obese [51], whereas around 70% of Thai patients with type 2 diabetes were diagnosed with obesity [93].

Underlying pathways linking between obesity and insulin resistance were postulated. During obese state, numerous biological substances are produced by malfunctional adipocytes and they negatively affect insulin-target tissues, leading to insulin resistance [91]. First, overstorage of fat cells in adipose tissue contributes to FFA overproduction, which is a crucial substance disrupting insulin receptor functions and diminishing insulin sensitivity. Particularly, adipocytes in visceral fat are more likely to breakdown and release excess FFA to blood circulation subsequently [12]. Moreover, the oxidized products of FFA including diacylglycerol and ceramides are also cytotoxic. The substances induce β -cell apoptosis, impair β cell function, and deteriorate insulin sensitivity of peripheral cells [51]. Second, obesity promotes biosynthesis of proinflammatory cytokines, for example, CRP, TNF- α , and IL-6 in adipocytes. The presences of cytokines are not only associated with chronic low-grade inflammation in obesity, but they also interrupt insulin signaling pathway and induce FFA production [51, 53]. Third, obesity-induced dysregulation of adipokines is also linked to development of insulin resistance [12]. Alterations in plasma concentration of adiponectin and leptin, the key adipokines regulating glucose and fat metabolism [91], were observed in individuals with overweight and obesity [93], resulting in the greater risk of developing insulin resistance, type 2 diabetes, as well as metabolic syndrome [94, 95].

2) Poor eating habits

Many analyses revealed a robust relationship between dietary pattern and the risks of NCDs, particularly in individuals who have metabolic disturbance at baseline

[14]. Excess carbohydrate and fat consumption contribute to obesity and impaired glucose metabolism. Dietary carbohydrates directly cause postprandial hyperglycemia, which activates insulin output by β cells in order to keep blood glucose in the normal range. Repeated stimulation of insulin secretion by chronic high carbohydrate intake accelerates β cell exhaustion [15]. Meanwhile, high-fat diets result in high lipid accumulation, especially TG, in peripheral cells. Lipolysis of TG by lipoprotein lipase eventually produces excess FFA that diminishes insulin signaling pathways as described in the previous session [12].

In general, the relatively high quantity of carbohydrate consumption, especially white rice, was found in Asian populations [43]. The average white rice consumption were three to four servings daily in Asians and one to two servings weekly in Westerns [17]. Evidence showed that high consumption of white rice was associated with the increased risk for type 2 diabetes with the relative risk (RR) 1.55 (95%CI: 1.20-2.01), especially in Asians [17]. Also, white rice consumption may induce the occurrence of metabolic syndrome with the pooled RR 1.44 (95%CI: 1.10-1.90; p = 0.02) [96]. It was proposed that the high glycemic index of white rice could lead to excessive compensatory hyperinsulinemia and lipogenesis, resulting in the development of insulin resistance [96]. Moreover, due to the transitions of socioeconomic factors among Asian countries in recent decades, the typical Asian diets are affected by the Western food styles, characterized by the increased proportion of processed meat, high-fat dairy products, and oils consumption [19]. According to the eating habits simultaneously with genetic susceptibility of Asians, it contributed to the higher severity of postprandial hyperglycemia and impaired glucose metabolism as observed in Asians, especially Southeast Asians, in relative to people in other regions [19, 43].

3) Sedentary lifestyle

Relationship of sedentary lifestyle and the development of type 2 diabetes was revealed in epidemiological studies. The incidence of type 2 diabetes was considerably higher among persons with sedentary lifestyle and lack of frequent exercise than those with higher exercise level [97-99]. It was also evident that urbanization and economic growth are the major contributor to have less physically active in Asian population to date [19].

2.1.6 Management

Regarding scope of the present study, management for persons with prediabetes and untreated, newly diagnosed patients with type 2 diabetes who have FPG < 180 mg/dL and A1C < 8.0% were hereby reviewed.

1) Screening

American Diabetes Association (ADA) [6] suggests consideration of screening test for prediabetes and type 2 diabetes in asymptomatic adults who meet the following criteria.

(i) Persons age \geq 45 years

(ii) Persons at any ages who have $BMI \ge 25 \text{ kg/m}^2$ or $BMI \ge 23 \text{ kg/m}^2$ (Asian Americans) together with at least one of the risk factors as followed;

- First-degree relative with diabetes
- African American, Latino, Native American, Asian American, Pacific Islander
- History of cardiovascular diseases
- Hypertension (defined by blood pressure ≥ 140/90 mmHg or treated with antihypertensive drug)
- HDL-C < 35 mg/dL and/or TG > 250 mg/dL
- Women with polycystic ovary syndrome and/or have history of gestational diabetes
- Physical inactivity
- Medical conditions that associated with insulin resistance i.e. severe obesity and acanthosis nigricans

Consistently, the Diabetes Association of Thailand [100] recommends using a risk score model to predict individual diabetic risk in the next 12 years for Thai

population. Screening test are strongly recommended for persons who have the score ≥ 6 , indicating the high risk state for type 2 diabetes [101]. The test should be performed every three years or more frequently as needed in normal persons. Meanwhile, at least annual monitoring for the disease progression should be considered afterwards in persons with prediabetes. Levels of FPG, 2-hour PPG following 75-g OGTT, and A1C are equally appropriate to be used as glycemic parameters for diagnosis [6].

2) Diabetes self-management education and support (DSMES)

At the time of diagnosis, individuals with prediabetes and type 2 diabetes should be received DSMES, which is a fundamental element for diabetes care aiming to provide knowledge, skills, and ability of self-management of the disease as well as the related conditions for persons at high risk and known cases of diabetes [6]. It is an effective tool for improving health behaviors, individual goal-setting for glycemic control, self-monitoring blood glucose, and prevention and delay the disease progression [6, 100]. Previous report showed that DSMES can reduce A1C up to 1% [102]. The DSMES program is required specialized skills of health care professionals (i.e. physician, nurse, registered dietitian, and pharmacist) to educate and provide a patient-centered consultation to the patients [102].

3) Nutrition therapy

Nutrition therapy is an essential component of lifestyle intervention. Cornerstone of nutrition therapy includes reducing caloric intake and improving eating patterns in order to promote and maintain weight loss in overweight and obese persons, optimize glycemic control, and lessen cardiovascular risk [102]. It was evident that nutrition therapy by registered dietitian can result in the decrease in A1C by 0.5-2.0% [100]. Patient education and counseling should be based on individual metabolic profiles, personal preference, and cultural to reinforce the long term adherence [100]. Nutritional recommendations for the high-risk population as well as patients with type 2 diabetes are described below [103].

(i) Macronutrients (carbohydrate, protein, and fat) distribution: an ideal percentage of calories from macronutrients remains inconclusive. The optimal amount

of macronutrients intake should be based on eating habits, preferences, and metabolic goals.

(ii) Carbohydrate: increase consumption of fiber-rich foods (i.e. vegetables, fruits, legumes, and unprocessed grains), avoid sugar-sweetened beverages, and minimize the added sugar in foods

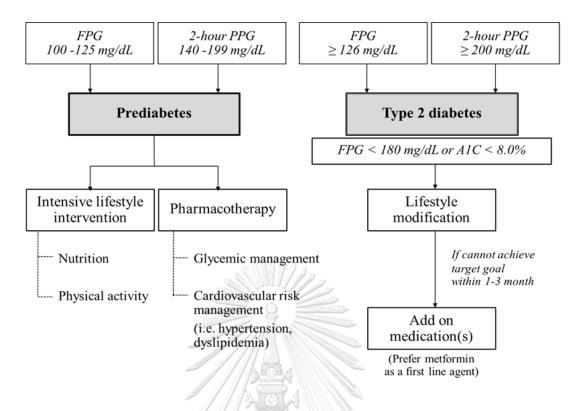
(iii) Protein: increase good protein sources (i.e. lean animal, tofu, and legumes), decrease fat dairy products, and avoid carbohydrate source with high protein content because the food can provoke insulin response without causing elevated PPG.

(iv) Fat: increase a Mediterranean-style diet rich in monounsaturated- and polyunsaturated fats, and long chain n-3 fatty acid, and avoid trans-fat and limit intake of processed- and fast food, red meat, and full-fat dairy products

(v) Micronutrients: roles of vitamins and minerals on glycemic control and prevention of cardiovascular diseases are unclear

(vi) Alcohol: no more than one drink per day for adult women and no more than two drinks per day for adult men.

In addition, benefits of restriction of carbohydrate intake on endogenous glucose metabolism have been demonstrated. The reduced carbohydrate consumption attenuated hyperglycemia, contributing to the positive impact on the management of type 2 diabetes [15, 104]. Evidence showed that dietary carbohydrate restriction is the most effective approach to improve glycemic control [15].


4) Physical activity

Physical activity is emphasized concurrently with nutritional therapy in order to balance between energy expenditure and caloric input. It is also one of the fundamentals of weight reduction and glycemic control management [7]. Evidences strongly suggested that sedentary lifestyle (i.e. prolonged sitting) should be minimized in all adults [7, 105, 106]. Moderate-to-vigorous intensity aerobic activity at least 150 min/week, distributing at least three days/week with no more than two consecutive days without activity or resistance exercises at least twice a week on nonconsecutive days is recommended [5]. Previous meta-analysis of 16 randomized controlled trials (RCTs) supported that aerobic exercises and resistance exercises significantly lowered A1C by 0.66% (p < 0.001) in the intervention group when compared with the control group [107].

Benefits of increased physical activity on insulin resistance were proposed. Activities of adenosine monophosphate-activated protein kinase (AMPK)/GLUT-4 signaling pathway were enhanced by exercise, contributing to the improvement in glucose uptake in skeletal muscle [108, 109]. Moreover, fatty acids oxidation in insulin-target tissues was accelerated [110]. Favorable mechanisms were maintained for about 60 hours and returns to pre-exercise levels three to five days afterwards. Moreover, repeated moderate intensity exercise was capable of extending insulin sensitivity profile. Thus, it was proposed that repeating exercise within a time interval of 48 to 60 hours may help control blood glucose levels over the long term [111].

Treatment regimen for persons who are diagnosed with prediabetes and type 2 diabetes (only patients with FPG < 180 mg/dL and A1C < 8.0%) is presented in Figure 3. Lifestyle modification is established as the fundamental therapeutic approach regardless of the disease severity [6, 7] because it is strongly effective, easily affordable and cost-saving. Evidences also showed that clinical efficacy of lifestyle modification was superior to medications [10, 112, 113].

CHULALONGKORN UNIVERSITY

Figure 3 Treatment regimen for prediabetes and newly diagnosed type 2 diabetes (FPG: fasting plasma glucose; PPG: postprandial plasma glucose; A1C: glycated hemoglobin)

5) Management of prediabetes

Patients with prediabetes should be referred to intensive lifestyle intervention according to the Diabetes Prevention Program (DPP) study [10]. The following interventions are recommended to lessen diabetic risk in prediabetic persons [6].

(i) Healthy low-caloric eating patterns

(ii) At least 7% weight reduction of initial body weight and maintenance in obese persons

(iii) A minimum of 150 min a week of moderate-intensity physical activity (i.e. brisk walking), distributing at least three days/week with no more than two consecutive days without activity

Efficacy of pharmacotherapy on the prevention of type 2 diabetes and cardiovascular events in the high-risk population is well established. Purpose of pharmacotherapy is to optimize glycemic control. In addition, known cases of dyslipidemia and hypertension should be concurrently treated to modify cardiovascular risks. The ADA [6, 7] also suggests the consideration of metformin in specific population with prediabetes, including persons age older than 60 years, obese persons who have BMI \geq 35 kg/m², and women with a history of gestational diabetes according to the findings of DPP study [10].

Importance of early detection and management of prediabetes on prevention and delay the onset of type 2 diabetes is well documented. Due to the disease pathophysiology, ultimate goals of the disease management are to improve insulin sensitivity and preserve β -cell function by correcting the modifiable risk factors [9]. Lifestyle modification [10, 11, 114-116] and medications [10, 20, 21, 112, 113, 117-119] provided favorable effects on the improvement in insulin sensitivity and the reduction in diabetic risk among persons who had prediabetes as summarized in Table 3.

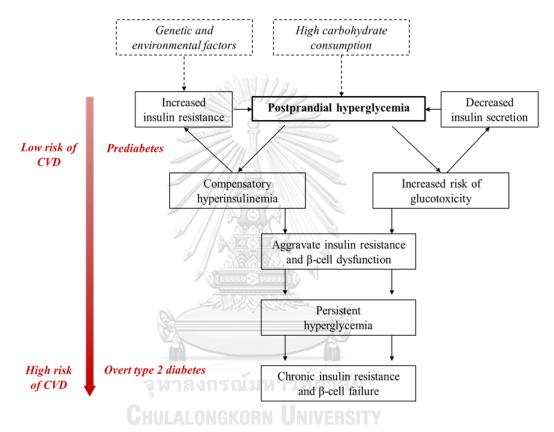
duration - Diet control 6 years - Increase leisure physical 6 years - Increase leisure physical 3.2 years - Diet control plus exercise 3.2 years Intensive lifestyle 3.2 years intervention: ≥ 5% weight 3.2 years and moderate-intensity 3.2 years physical activity ≥ 30 min/day 2.8 years intervention: low_caloric and 2.8 years	Persons with IGT (577) Obese persons with IGT (522)	reduction ^a - 31% for diet control - 46% for exercise - 42% for diet control plus exercise 58%	Da Qing study: Pan <i>et al.</i> , 1997 [114]
×	าลงก	 - 31% for diet control - 46% for exercise - 42% for diet control plus exercise 58% 	Da Qing study: Pan <i>et al.</i> , 1997 [114]
>	าลงก	- 46% for exercise- 42% for diet control plus exercise58%	1997 [114]
×.	าลงก	- 42% for diet control plus exercise 58%	
>	าลงก	plus exercise 58%	
~	าลงก	58%	
X	(522)		Finnish Diabetes Prevention
Ś		E North	study: Tuomilehto et al.,
Ŷ			2001 [11]
N			
intervention. low-celoric and	Obese persons with FPG 95-	58%	US DPP study: DPP
IIICI ACIIIOIII. IOW CUIOIIC UIG	125 mg/dL and/or 2-hour		research group, 2002 [120]
low-fat diet to reduce and	PPG 140-199 mg/dL (3,234)		
maintain $\ge 7\%$ of the initial			
body weight and moderate-			
intensity physical activity for			
at least 150 min/week			
Metformin 2.8 years	Obese persons with FPG 95-	31%	US DPP study: DPP
	125 mg/dL and/or 2-hour		research group, 2002 [120]
	PPG 140-199 mg/aL (3,234)		

Table 3 Efficacy of lifestyle modification and medications on the management of prediabetes

Interventione	Study	Interventione Study Derticinente (N) Diahatee rich	Diahatas risk	Dafarancae
	duration	t at uctpants (14)	reduction ^a	WCICI CIICCS
Metformin	2.5 years	Obese persons with IGT	26%	Indian DPP study:
		(531)		Ramachandran <i>et al.</i> , 2006
				[112]
Pioglitazone	2.4 years	Persons with IGT (441)	70%	ACT NOW study: DeFronzo et
				<i>al.</i> , 2013 [121]
Rosiglitazone	3 years	Persons with IFG and/or IGT	55%	DREAM study: Gerstein et al.,
		(4,999)		2006 [117]
Acarbose	3.3 years	Persons with IGT (412)	25%	STOP-NIDDM study: Chiasson
	ม์ม OR			et al., 2002 [20]
Voglibose	48 weeks	Persons with IGT (1,780)	40%	Kawamori <i>et al.</i> , 2009 [21]
Orlistat	4 years	Obese persons with IGT	37%	XENDOS study: Torgerson et
		(3,305)		<i>al.</i> , 2004 [118]
Lorcaserin	1 year	Overweight and obese person	38%	BLOSSOM: Fidler et al., 2011
		(4,008)		[119]
^{<i>a</i>} compared with control group FPG: fasting plasma glucose; Pl	PG: postprandial	^a compared with control group FPG: fasting plasma glucose; PPG: postprandial glucose; IFG: impaired fasting glucose; IGT; impaired glucose tolerance	glucose; IGT; impaire	ed glucose tolerance

Limitations of lifestyle modification and pharmacotherapy for the management of prediabetes are addressed. Long term maintenance and good adherence to lifestyle changes remains challenging in real life setting. Meanwhile, therapeutic efficacy of medications is not durable after discontinuation. In addition, cost-effectiveness and severe drug adverse events limit the medication uses in clinical practice nowadays [2].

6) Management of newly diagnosed patients with type 2 diabetes


In newly diagnosed patients with type 2 diabetes who have FPG < 180 mg/dL, A1C < 8.0%, and without the significant hyperglycemia signs and symptoms, lifestyle intervention is recommended as the primary strategy. Pharmacotherapy is considered when the patients fail to response to lifestyle modification alone [6, 7].

2.2 Postprandial hyperglycemia

Postprandial hyperglycemia refers to an increase in blood glucose level after meals, defined by the 2-hour PPG \geq 140 mg/dL [122]. Dietary carbohydrates are digested into monosaccharaides and absorbed through gastrointestinal brush-border membrane [122]. In non-diabetic persons, blood glucose elevates and reaches the peak level around 30 to 60 min after carbohydrate ingestion, generally not more than 140 mg/dL, and returns to the basal level within two to three hours [123].

2.2.1 Roles of postprandial hyperglycemia in the development of type 2 diabetes and cardiovascular diseases

Postprandial hyperglycemia is an important manifestation in prediabetes and early-phase type 2 diabetes [122]. In addition, it potentiates the risk of developing cardiovascular events and diabetic complications [25, 28]. Role of postprandial hyperglycemia in the development of type 2 diabetes and cardiovascular diseases is shown in Figure 4. Blood glucose raising, especially after consumption of carbohydrate-rich diets and high glycemic index carbohydrate, activates excessive insulin production and secretion in order to maintain normoglycemic state [8]. Chronic hyperinsulinemia aggravates impairments in insulin sensitivity and β -cell function. When compensatory processes no longer overcome persistent hyperglycemia, type 2 diabetes can be diagnosed [8, 9]. Elevated PPG results in the progression of cardiovascular diseases via independent mechanisms. Postprandial hyperglycemia induces free radical production, diminishes vasodilating effect of nitric oxide, and interferes coagulation processes, eventually leading to endothelial dysfunction and atherosclerosis [24, 124].

Figure 4 Roles of postprandial hyperglycemia in the development of type 2 diabetes and cardiovascular diseases(CVD: cardiovascular disease)

Previous clinical data supported that PPG-related variables including PPG at individual time points, 2-hour PPG, and area under the curve (AUC) of glucose were markedly correlated with atherosclerotic events [125]. These variables also showed the stronger correlation with the risk for atherosclerosis when compared with FPG and A1C [125]. The peak glucose during postprandial state possessed the most robust link with oxidative stress production, leading to the undesired consequences in cardiovascular system [25]. Epidemiological studies also found that chronic postprandial hyperglycemia promotes the risk for macrovascular complications and related mortality [23, 25, 126]. This condition is more robustly related to cardiovascular diseases in relative to fasting hyperglycemia [127].

2.2.2 Factors influencing postprandial hyperglycemia

Excursion of postprandial glucose is influenced by internal and external determinants. First, beyond intestinal digestion and absorption, a rising in PPG involves physiological capacities of insulin and glucagon secretion, hepatic glucose synthesis, and glucose uptake by peripheral tissues [9]. Individuals who have any defects in glucose metabolism regulation could have abnormal postprandial glucose excursion, for example, the higher and delay in glucose peak, and more prolonged hyperglycemia, in relative to non-diabetic persons [123]. Second, diets influence postprandial hyperglycemia. High carbohydrate meals and high glycemic index carbohydrates aggravate the great magnitude of hyperglycemia [128], especially in persons who have baseline impaired glucose metabolism [14]. Complexity of diet composition also results in variation in glycemic responses. The mixed diets containing complex carbohydrates, fats, and proteins provoke the higher degree of postprandial hyperglycemia than glucose consumption alone [25]. Moreover, solidand liquid meals affect glycemic excursion in the different ways regarding the time remaining in gastrointestinal tract. A longer gastric emptying time was observed after eating solid meals than liquid meals matched for volume and energy content [129]. For these reasons, eating habits also play an important role affecting patterns of postprandial excursion. Third, there is ethnic differences in the underlying pathophysiology that leads to the diversity of glycemic responses [19]. Southeast Asians had the highest PPG and the lowest insulin sensitivity in response to the standard carbohydrate load when compared with South Asians, East Asians, European Caucasians, and Arabic Caucasians who were matched for age, BMI, and waist circumference [19, 44].

2.2.3 Conventional α-glucosidase inhibitors in management of postprandial hyperglycemia

Scientific data suggested potentials of synthetic α -glucosidase inhibitors, including acarbose, voglibose, and miglitol, in the early management of type 2 diabetes. With respect to the local effect of α -glucosidase inhibitors against α glucosidase enzymes along brush border of small intestine, the agents directly alleviate postprandial hyperglycemia [130]. A recent meta-analysis revealed that α glucosidase inhibitors reduced 1-hour PPG by -2.16 mmol/L (95%CI: -3.37 to -0.95) and 2-hour PPG by -3.00 mmol/L (95%CI: -3.58 to -2.42) in comparison with placebo in Asian population [27]. Efficacy of the medications on PPG suppression in Asians and non-Asians was comparable [27]. Consistently, therapeutic effects of conventional α -glucosidase inhibitors on glycemic indices among patients with type 2 diabetes was reported in a large meta-analysis of 41 clinical trials [131]. The results showed that a-glucosidase inhibitors dose-dependently reduced 1-hour postload glucose (2.32 mmol/L; 95%CI 1.92-2.73 mmol/L for acarbose) and FPG (1.09 mmol/L; 95%CI: 0.83-1.06 mmol/L for acarbose and 0.52 mmol/L; 95%CI: 0.16-0.88 mmol/L for miglitol). On the other hand, these medications lowered the level of A1C (0.77%; 95%CI: 0.64-0.90% for acarbose and 0.68%; 95%CI: 0.44-0.93% for miglitol) without the dose-response relationship. Subgroup analysis further found the greater reduction in A1C in individuals with the higher baseline A1C level. In comparison with the 12-24 week- clinical trials, the less reduction in A1C was seen in the over 24-week study period. In addition, acarbose treatment led to a decrease in BMI by 0.17 kg/m² (95%CI: 0.08-0.26 kg/m²), but no reduction in body weight was observed. The study also showed that there was no significant effect on fasting insulin, plasma lipids, and diabetes-related morbidity and mortality [131].

Management of postprandial hyperglycemia reduced the risk for cardiovascular events, including coronary heart disease, cardiovascular death, congestive heart failure, cerebrovascular event, and peripheral vascular disease [123]. Numerous RCTs showed beneficial effects of α -glucosidase inhibitors on cardiovascular events beyond glucose-lowering effect. A 49% reduction (HR 0.51; 95%CI: 0.28-0.95, p = 0.03) in cardiovascular events was a secondary result from

acarbose treatment over a mean follow-up of 3.3 years in persons with IGT (N = 1,429) [132]. A meta-analysis of seven double-blind, placebo-controlled trials (N = 2,180) consistently demonstrated that acarbose decreased the risk for cardiovascular events by 35% in patients with type 2 diabetes [26]. Delay in the progression of intima-media thickness were also reported among those with IGT treated with acarbose (N = 132) [133]. Moreover, when the presences of stroke, coronary revascularization, and angina were additionally included into the analysis, acarbose decreased these cardiovascular events by 35% [133]. It was postulated that the favorable effect of acarbose resulted from the reductions in body weight, BMI, and TG [26]. Meanwhile, a recent randomized, double-blind, placebo-controlled study reported that acarbose reduced the progression to type 2 diabetes by 18% in patients with coronary heart disease who had IGT (N = 6,522); however, no significant benefit on the overall cardiovascular events was observed in this study [134].

2.3 Evaluation of glycemic control and insulin resistance

2.3.1 Blood glucose

FPG, 2-hour PPG following 75-g OGTT, and A1C are considered the three conventional standard glycemic indices for diagnosis of diabetes and monitoring glycemic control [6, 7]. All of the three conventional tests are effective for evaluating blood glucose in the different contexts and purposes. Investigation of blood glucose is minimally invasive. Many quantitative assays are reliable, easily accessible, and well standardized in general laboratories at present [135].

1) FPG

FPG is related to hepatic glucose efflux because blood glucose is mainly under the regulation of liver cells during the fasting state [9]. It is the most common glucose measurement in routine practice due to its simplicity and inexpensiveness. An 8-hour overnight fast is required for the testing. A great day-to-day variation of FPG was evident. The level of FPG could be affected by stress, diurnal variation, diets, and medications (i.e. corticosteroids, second-generation antipsychotics, thiazide diuretics, and β -blockers) [136].

2) A1C

A1C is well established as the gold standard marker for evaluating long-term glycemic control [6, 7, 105]. Since A1C is the amount of glucose molecules attached to hemoglobin in red blood cells, it reflects the average concentration of glucose over the past two to three months [135]. In other words, A1C is an integration of blood glucose in both fasting- and postprandial states. As a result, normalizations of FPG and PPG are the key components for achieving the goal of A1C and optimizing glycemic control [123].

Evidences showed that A1C is also a robust predictor for diabetic complications [135]. The measurement of A1C is convenient and there is no need for fasting blood sample [6]. However, its cost is considerably higher than FPG. Accuracy of A1C analysis is influenced by abnormal metabolism of red blood cells such as hemolytic anemia, iron deficiency, and renal dysfunction [135]. It was also found that the measurement of A1C appears unreliable in the conditions with rapid fluctuation of blood glucose level [137].

3) PPG following a standard OGTT

A standard OGTT refers to a test in which 75-g glucose is orally administered and blood glucose is monitored afterwards over the 2-hour period (i.e. at 30, 60, 90, and 120 min) [6]. The result directly reflects patterns of postprandial glucose excursion in response to glucose load. It also reveals the values of PPG at individual time points of blood collection, AUC, glucose peak, and time observed glucose peak [125]. The 2-hour PPG is one of the standard glycemic marker for diagnosis of type 2 diabetes [138, 139] and it is also the most robust predictor for atherosclerotic events when compared with the other glycemic indices [125]. Furthermore, the test is performed to determine glucose tolerance of insulin-target cells, predominantly of skeletal muscle [138]. Glucose tolerance is the ability of peripheral cells to maintain normoglycemia by absorption circulating glucose into the cells when blood glucose elevates during postprandial state [9]. The OGTT is set after at least 8-hour overnight fast [123]. The test is rarely performed for the diagnostic purpose in general population because of practical considerations. Patient preparations including restriction of carbohydrate consumption and heavy exercise few days before the test are required [122]. The procedure for measuring 2-hour PPG is also time-consuming. In addition, there is a high within-person variation [137]. However, the test has been used in many scientific researches for determining the existence of IGT [139].

2.3.2 Insulin resistance

Aims of the assessment of insulin resistance are to determine the initial presentation of type 2 diabetes and to screen the risk factor for metabolic syndromes [140]. At present, the test is not common for diagnostic purpose, on the other hand, it is mainly performed in human studies [138].

Hyperinsulinemic euglycemic glucose clamp is the gold standard method for assessing the whole body insulin resistance [141]. However, the method is impractical in the large-scale studies because of its labor, time-consuming, and expensiveness [138]. Surrogate markers were therefore developed and validated to overcome these limitations.

1) Fasting plasma insulin

Fasting plasma insulin (FPI) represents plasma concentration of insulin produced by β -cells during the basal state [139]. Fasting specimen is required for the assay. It is the simplest surrogate marker for evaluating insulin resistance, but assessment of insulin resistance using FPI should be in caution regarding pathophysiological heterogeneity of type 2 diabetes [138].

An increased FPI, also called as hyperinsulinemia, is the initial manifestation of insulin resistance and commonly found in individuals with prediabetes and the early-phase type 2 diabetes [8, 9]. Hyperinsulinemia represents the β -cell compensation to the resistant insulin-target cells by increasing insulin production and secretion [9]. After that, the level of insulin continuously declines over the period of

diabetes progression according to β -cell degeneration and dysfunction. Absolute loss of insulin secretion is eventually found in the late phase of type 2 diabetes [138].

Previous evidences found that the level of FPI is considerably varied among studies. The concentration of FPI in high-risk populations for type 2 diabetes was reported. Choi *et al.* [142] and Gaddam *et al.* [143] showed that the mean FPI in individuals who met the criteria of prediabetes and mild-stage type 2 diabetes was approximately 11.6 ± 5.3 and $11.2 \pm 3.7 \mu$ IU/mL, respectively. Meanwhile, a study of Chuengsamarn et al. [144], which was conducted in Thai people, similarly found that the value of FPI was $15.84 \pm 6.19 \mu$ IU/mL in prediabetic persons.

2) Homeostasis model assessment

Another surrogate marker for insulin resistance assessment widely used in research is the homeostasis model assessment of insulin resistance (HOMA-IR) because of its simplicity and being minimally invasive [139]. Previous data also suggested a strong correlation between HOMA-IR and the hyperinsulinemic euglycemic glucose clamp method (correlation coefficient; r = 0.88, p < 0.0001) [145, 146]. The HOMA-IR is also a predictor for cardiometabolic risks [145]. The value of HOMA-IR positively correlated with BMI, body fat percentage, waist circumference, and TG and inversely correlated with HDL-C [90, 147]. Moreover, individuals with the HOMA-IR values in the highest quartile had the greatest risks of hypertriglyceridemia, low HDL-C, and hypertension [147].

The HOMA refers to a model describing the relationship between glucose and insulin in the basal state, representing the balance between hepatic glucose efflux and pancreatic insulin secretion [140]. A mathematic equation relies on FPG (in mg/dL) and FPI (in μ IU/mL) is used to quantify the degree of insulin resistance as follow: HOMA-IR = (FPG x FPI)/450 [140]. The output of the model is calibrated to give normal insulin resistance of 1 [145].

The higher value of HOMA-IR indicates the greater degree of insulin resistance [138, 147]. The HOMA-IR ≥ 2.5 was initially suggested as the cut-off point for determining insulin resistance in general population in the study of Matthews *et al.* [140]. However, differences in the HOMA-IR level among populations were reported.

The HOMA-IR of 3.16 was used for pubertal obese children and adolescents [148], whereas the value of 2.0 or over was used for young women with polycystic ovarian [149]. In addition, there is a large variation in the proposed cut-off values of HOMA-IR among different race and ethics groups. Previous studies showed that the cut-off points of HOMA-IR for diagnosis of insulin resistance were > 3.80 for Hispanic [150], ≥ 2.5 for Japanese [151], and ≥ 2.0 for Chinese [152]. In Thai population, the study of Do *et al.* [147] proposed the HOMA-IR ≥ 1.56 and ≥ 1.64 for men and women for classifying insulin resistance and estimating the prevalence of insulin resistance in Thai adults aged over 35 years. The results additionally reported approximately 25.1% of men and 21.5% of women had insulin resistance [147]. In prediabetic persons and early, non-treated type 2 diabetic patients, the approximate HOMA-IR were in the range of 2.70-4.03 [142-144].

2.4 Determination of protein expression using proteomic analysis

2.4.1 Overview of proteomic analysis

The term "proteomics" is a combination of "proteome" and "omics". Proteome is the total set of proteins produced and regulated by living organisms, whereas omics refers to an analysis of large amounts of data, specifically in biological field [153]. Proteomics is a high-throughput bioinformatics technology for large-scale analysis of proteins [154, 155]. The objective of proteomics is to determine characteristics of the entire set of proteins, in terms of identity, structure, expression, function, and protein-protein interaction network [153, 154]. Rationale of proteomics is that protein is the endpoint component responsible for cell phenotypes and biological functions [156]; therefore, expression of proteins reflects the ongoing processes at the cellular level in response to the circumstances that the cell experiences [156, 157]. Furthermore, the technique is capable of determining the large number of proteins at the same time [155]. In other words, proteomics reveals the comprehensive view of protein profile in a specific condition at the specific time point.

Regarding the purposes of investigation, proteomics can be categorized into (a) structural proteomics, (b) expression proteomics, and (c) functional proteomics [153]. The latter two fields are considerably important in medical and pharmaceutical areas. Expression proteomics distinguishes the protein expression profile in relation to the different conditions, for example, disease *vs.* non-disease and before treatment *vs.* after treatment. In addition to the patterns of protein dysregulation (over- and down-expression), the analysis reveals the expression level of proteins as quantitative data [158]. Meanwhile, functional proteomics explores the activities of proteins in specific pathways. The findings expose a relationship between proteins and disease mechanism [154, 158]. As a result, proteomics is useful in clinical implementation to help understanding pathophysiology of the disease of interest at the molecular level and to uncover disease-associated proteins for screening and predicting the risk of disease [153, 154]. Moreover, the protein markers may have potential for developing drug targets and evaluating response to the assigned treatment [159].

The main procedures of proteomic analysis include sample collection and preparation, protein separation and digestion, protein identification, and quantitative determination of protein expression level. First, protein samples are harvested from cells, tissues, and biological fluids. Selection of the sample source is normally performed based on relevance and specificity to the disease pathophysiology [159]. Next, due to complexity of biological samples, it is necessary to separate individual proteins from the complex mixture before the identification process [158]. For the procedure of protein separation, gel-based techniques (i.e. one- and two-dimensional gel electrophoresis) were widely used in the early era of proteomics; however, many limitations have been noted in previous data. Subsequently, the gel-free techniques (i.e. liquid chromatography (LC) and high-performance liquid chromatography (HPLC)) have been applied in the recent studies [158, 160]. After separation, tryptic digestion is performed to digest proteins to peptides. The unique proteins are then subjected to mass spectrometer (MS). To identify the selected molecules, the mass to charge ratios (m/z) of the peptides are matched to the known proteins existing in the database. Then, quantification of protein abundance or expression level is further investigated [158].

2.4.2 Rationales of proteomic analysis in diabetic research

With respect to the ability of reflecting the global view of proteome, proteomics has been implemented in biomedical research, especially in the complex disease with multiple etiologies including cancer, Alzheimer's disease, and diabetes [154, 158]. As described, the development of insulin resistance and type 2 diabetes is complicated involving multiple organ dysfunction, primarily in adipose tissue, liver, skeletal muscle, and pancreatic β -cells. A huge diversity of proteins therefore plays the distinct roles in the molecular mechanisms underlying these conditions [159]. Disease-associated markers are the cornerstone of diabetes care [135]. In general, the measurement of FPG, PPG, and A1C are performed as the standard tools for diagnosis and management of type 2 diabetes due to accessibility, simplicity, and cost-effectiveness [135]. Nonetheless, the significant shortcoming of the glucose-based parameters should be addressed. It is important to note that metabolic dysregulation develops in the specific cells over time although the blood glucose concentration remains in the normal range because of the silent progression of prediabetes and the early-stage type 2 diabetes [9].

For these reasons, there have been the great interests in molecular biology approaches, including genomics, transcriptomics, and proteomics, in order to gain the insight knowledge of cellular modification [155]. Of these, proteomics seems superior to the others. Protein is the final modified product passing through multiple cellular processes; hence, it reflects the real-time status of the disease better than its encoding gene and upstream molecules [157, 161].

2.4.3 Implementation of proteomics in clinical research of type 2 diabetes

Proteomics has been implemented in numerous studies among type 2 diabetic patients as well as the high-risk populations. Characteristics of the studies that included in this review are demonstrated in Table 4. The majority of existing studies aimed to explore protein profiles among the specific population of interest, whereas few studies investigated changes in protein expression in response to the given treatment.

Purposes of study	Design	Participants (N)	Samples	References
To characterize and identify differentially expressed proteins	Cross- sectional study	 Healthy controls (12) Individuals with type 2 diabetes with FPG 11.6 ± 1.9 mM (8) 	Erythrocyte membrane	Jiang M, <i>et al</i> ., 2003 [162]
To characterize and identify differentially expressed proteins	Cross- sectional study	Individuals with NGT (3) Individuals with type 2 diabetes based on OGTT (the WHO criteria) (3)	Serum	Sundsten T, <i>et</i> <i>al.</i> , 2006 [163]
To characterize and identify differentially expressed proteins	Cross- sectional study	Healthy controls (50) Individuals with type 2 diabetes based on the ADA criteria (125)	Serum	Riaz S, <i>et al.</i> , 2010 [164]
To characterize and identify differentially expressed proteins	Cross- sectional study	 Non-diabetic controls (mean age 67.6 ± 1.67 years) Individuals with type 2 diabetes (mean age 67 ± 1.71 years) 	Serum	Li RX, et al., 2008 [165]

Table 4 Characteristics of clinical studies of type 2 diabetes using proteomic analysis

41

Purposes of study	Design	Participants (N)	Samples	References
To characterize and identify differentially expressed proteins	Cross- sectional	Individuals with NGT (20):NGT with no family history of	Serum	Sundsten Y, <i>et</i> <i>al.</i> , 2008 [166]
To determine influences of	study	diabetes (10)		
genetics on protein expression		- NGT with family history of diabetes		
		(10)		
		- Individuals with IGT (20)		
		- Individuals with type 2 diabetes		
		(20):		
		- type 2 diabetes with no family		
		history of diabetes (10)		
		- type 2 diabetes with family history		
		of diabetes (10)		
To characterize and identify	Cross-	- Individuals with NGT (10)	Plasma	Sundsten Y, et
differentially expressed proteins	sectional	- Individuals with type 2 diabetes with		al., 2008 [167]
To investigate variations of protein	study	high EIR (10)		
expression regarding the severity		- Individuals with type 2 diabetes with		
of β-cell dysfunction		low EIR (10)		

Table 4 Characteristics of clinical studies of type 2 diabetes using proteomic analysis (cont.)

	4			
Purposes of study	Design	Participants (N)	Samples	References
To characterize and identify differentially expressed proteins	Cross- sectional study	Healthy controls (29)Individuals with type 2 diabetes (28)	Urine	Chu L, <i>et al.</i> , 2013 [168]
To characterize and identify differentially expressed proteins	Cross-sectional study	 Clinically healthy controls (10) Individuals with IGT (10) Individuals with IFG + IGT (10) Individuals with type 2 diabetes based on the ADA criteria (10) 	Saliva	Rao PV, <i>et al.</i> , 2009 [169]
To characterize and identify differentially expressed proteins	Cross- sectional study	Pre-obese, individuals with NGT (8) Pre-obese, individuals with type 2 diabetes (8)	Visceral adipose tissue	Murri M, <i>et al.</i> , 2013 [170]
To investigate changes in protein abundance in insulin resistant individuals	Cross- sectional study	Lean, non-diabetic controls (8) Obese, non-diabetic controls (8) Individuals with type 2 diabetes (8)	Skeletal muscle	Hwang H, <i>et al.</i> , 2010 [171]

Table 4 Characteristics of clinical studies of type 2 diabetes using proteomic analysis (cont.)

43

Purposes of study	Design	Participants (N)	Samples	References
To characterize and identify	Cross-	- Lean, non-diabetic controls (27)	Serum	Sleddering MA,
differentially expressed proteins	sectional study	- Obese, non-diabetic controls (27)		<i>et al.</i> , 2014 [172]
	2	- Obese, type 2 diabetes patients who were on insulin therapy (27)		
To investigate changes in protein markers after receiving the given	Open-label, RCT (16	 Obese, type 2 diabetes patients who were on insulin therapy 	Serum	Sleddering MA, et al., 2014 [172]
intervention	weeks)	- VLCD only (14)		
	งาวิ เ U	- VLCD + exercise (13)		
NGT: normal glucose tolerance; FPC glucose tolerance; OGTT: oral gluco	G: fasting plasma ose tolerance test	NGT: normal glucose tolerance; FPG: fasting plasma glucose; PPG: postprandial glucose; IFG: impaired fasting glucose; IGT; impaired glucose tolerance; OGTT: oral glucose tolerance test; WHO: World Health Organization; ADA: American Diabetes Association; RCT:	mpaired fasting gluc American Diabetes	cose; IGT; impaired Association; RCT:

randomized controlled trial; VLCD: very low caloric diet

 Table 4 Characteristics of clinical studies of type 2 diabetes using proteomic analysis (cont.)

The earliest study of Jiang *et al.* [162] found the different pattern of protein expression in erythrocyte of type 2 diabetic patients (n = 8) when compared with nondiabetic controls (n = 12) (p < 0.05). The investigation was on the basis of structural alteration in GLUT-1 aligned in erythrocyte membrane is associated with pathophysiology of diabetes. Forty-two proteins: 27 over-expressed and 15 down-expressed proteins were found in erythrocyte membrane of diabetic patients. Of these, three proteins were identified as flotillin-1, arginase, and syntaxin 1C in this study [162].

A total of 15 differentially expressed proteins were detected in serum of type 2 diabetic patients (n = 3) aged between 54 to 65 years old when compared with persons with normal glucose tolerance (NGT) at the same age (n = 3) (p < 0.05). Two over-expressed proteins were identified as apolipoprotein C3 and transthyretin, whereas two down-expressed proteins were albumin and transferrin in diabetic serum [163]. Due to the small number of study participants, the results could not represent much information of diabetic serum proteome.

A study of Riaz *et al.* [164] was further conducted with the larger sample size of patients with type 2 diabetes (n = 125) and healthy controls (n = 50). Identification and quantitative determination of serum proteins were performed. The expressions of apolipoprotein E, CRP, and leptin in serum of diabetic patients were higher than that of the controls, suggesting the up-regulation of these proteins. By contrast, apolipoprotein A-I was identified as the only down-expressed protein in diabetic serum [164].

Investigation of serum proteome in type 2 diabetes was also conducted in elderly. Persons aged older than 65 years with and without history of diabetes were recruited into the study of Li *et al.* [173]. A total of 1,377 serum proteins were identified, including 266 and 223 proteins that uniquely present in persons with type 2 diabetes and non-diabetic ones, respectively, whereas the rest were concurrently found in the both groups. Furthermore, there were 142 serum proteins in diabetic patients that expressed differentially when compared with the controls (p < 0.01). The functional analysis also suggested that the proteins were involved in complement

system, peroxisome proliferator-activated receptors (PPARs) system, and cell communication [173].

In addition, the different protein profile was observed in serum of type 2 diabetic patients who have the different genetic background as defined by the family history of diabetes [166]. In this study, a total of 13 differentially expressed proteins were reported. Among these, alteration of three proteins were relevant to genetics, including apolipoprotein C3 and albumin, whereas the other remained unknown. The finding confirmed the relationship between genetics and diabetic risk.

Blood-derived specimens have been extensively used in proteomic studies. Moreover, other biological samples, for example, urine, saliva, and adipose tissues, have been investigated to demonstrate the comprehensive view of protein profile in type 2 diabetes [154]. Chu *et al.* [168] examined urinary proteome among individuals with type 2 diabetes (n = 28) and healthy persons (n = 29). The results showed that the expressions of histidine triad nucleotide-binding protein 1 (HINT1), bifunctional aminoacyl-tRNA synthetase (EPRS), and clusterin precursor protein (CLU) were down-regulated in urine samples of diabetic persons.

Furthermore, proteomic analysis has been implemented in the studies of persons at high risk of type 2 diabetes, including prediabetic- and obese individuals. The study of Rao *et al.* [169] was conducted to distinguish the pattern of salivary proteome in type 2 diabetes from prediabetic- and non-diabetic conditions. A total of 487 proteins were identified in this work. The significant differences in protein profile were observed in diabetic saliva when compared with the other groups. In terms of function, the identified proteins were associated with several pathways, including metabolism regulation, immune response, signal transduction, development, cell organization and biogenesis, and cell motility [169]. Sundsten *et al.* [166] also discovered the differential protein expression in type 2 diabetic patients (n = 20) in comparison with those who were diagnosed with prediabetes (n = 20). The analysis found eight over-expressed and five down-expressed proteins in the diabetic samples.

In addition, protein expression in adipocytes of obese adults with and without type 2 diabetes were investigated. The study revealed the difference in adipocyte

proteins between the two groups. The 19 dysregulated proteins are associated with oxidative stress, inflammation, and metabolic process [170]. Hwang *et al.* [171] found that obese subjects (n = 8) had more impaired insulin sensitivity than lean subjects (n = 8). In accordance with the insulin sensitivity profile, protein expression in insulin-resistant skeletal muscle significantly differed from the controls

Association between obesity and type 2 diabetes was further elucidated in serum proteome in the recent study of Sleddering et al. [172]. The study participants consisted of obese patients with type 2 diabetes who were on insulin treatment, obese non-diabetic controls, and lean non-diabetic controls. Thirteen targeted serum proteins were identified and measured their expression level. An overexpression of complement C3 was observed in the both obese groups regardless of diabetic status, indicating that complement C3 could be an obesity-associated marker. Furthermore, apolipoprotein A-IV, apolipoprotein B-100, and fibrinogens (α , β , and γ chains) overexpressed in diabetic patients when compared to controls. Meanwhile, transthyretin expression was in the similar trend as apolipoproteins and fibrinogens; however, the protein underexpressed in type 2 diabetic group. Apolipoprotein A-IV, apolipoprotein B-100, fibrinogens, and transthyretin were proposed as diabetesassociated markers. This study also revealed another application of proteomics in clinical research. Patients with type 2 diabetes were further recruited into the 16-week prospective study and randomly assigned into two groups: (a) very low caloric diet (VLCD) only and (b) VLCD together with exercise program. Longitudinal changes in expression level of the candidate proteins were analyzed to evaluate effects of the given interventions on protein markers. At the end of study, the significant changes in expression of several proteins were observed, for example, apolipoproteins and complement C3 when compared to the baseline level (p < 0.05). Nonetheless, there was no difference in the intervention effects between the groups [172].

The review suggests that proteomics plays the promising roles to uncover the proteins associated with insulin resistance and type 2 diabetes. A large number of the differentially expressed proteins and their functions were discovered in previous researches. The findings are useful for advanced understanding the pathophysiology and the underlying mechanism of the disease.

2.4.4 Limitations of proteomics

Many difficulties of implementation of proteomic analysis in clinical studies have been noted.

1) Disease-based limitations

A critical challenge of proteomics is that there is a large variation in protein profiles towards disease stages and interindividual and intraindividual differences [158]. In addition, consideration of sample sources is based on the involvement in the disease pathophysiology [159]. Type 2 diabetes is a multifactorial disease associated with the dysfunction of many organs: pancreas, liver, skeletal muscle, and adipose tissue. To obtain the samples, the tissue biopsy method is required [163]; however, the procedure is relatively invasive with enhanced risks for infection and bleeding in the donors. Investigations of protein profiling and human proteome in these relevant tissues are still limited to few clinical studies.

2) Experiment-based limitations

Experiment-based limitations of proteomics are that the methods are timeconsuming and expensive. Also, the high-throughput technologies, including instruments, software, and database, are not easily accessible. Lack of the standardized protocol, resulting in the low reproducibility across laboratories, remains problematic for the implementation of proteomics in general settings. Furthermore, biological samples are considerably vulnerable. Procedures for harvesting, handling, and storage of specimens are the critical step of the investigation [160]. The complexities of biological samples are evident as another major limitation of proteomics analysis. Although serum and plasma are commonly used for proteomics analysis in human studies, a large diversity of proteins in blood-derived samples is significantly problematic in general experiments. The challenge in developing the analytic tools and techniques used in proteomics is the capacity for separating individual proteins and to remove interferences, including binding proteins and lipids, from the complex mixture. Moreover, the concentrations of circulating proteins vary widely from picograms to milligrams [160]. The limit of detection of the tools is a significant concern for accurate findings.

2.5 Evidence-based medicinal plants in the management of prediabetes and type 2 diabetes

A large number of medicinal plants with antidiabetic effects have been used in traditional medicine for many decades. The plants have been also received much attention in scientific researches in order to explore novel agents with antidiabetic potentials at present. It was proposed that medicinal plants could be effective for the management of type 2 diabetes via several pathways, including lowering blood glucose, improving insulin resistance, restoration of β -cell function, and delay disease progression.

2.5.1 Efficacy of medicinal plants with antidiabetic effects in clinical studies

1) Cinnamon (Cinnamomum spp.)

The recent meta-analysis of 10 RCTs showed that daily supplementation with 120 to 6,000 mg of cinnamon extract for 4 - 18 weeks significantly decreased FPG by -24.59 mg/dL (95% CI: -40.52 to -8.67 mg/dL) [174]. A 12-week supplementation of 1,000 mg of cinnamon was also effective in diabetic patients with poorly glycemic control. FPG significantly reduced by -17.4% (p < 0.001) compared with the baseline level and placebo [175]. In addition, a single-dose administration of 1,000 mg of cinnamon extract ameliorated postprandial hyperglycemia. The AUC_{0-60 min} of glucose significantly decreased by -21.2% (p < 0.05) after receiving intervention [176]. Preclinical studies reported that antidiabetic effects of cinnamon were the result of polyphenol compounds that activated PPARs expression [177] and enhanced GLUT-4 translocation [178]. Furthermore, Beejmohun *et al.* [176] showed that cinnamon had the inhibitory effect on α -glucosidase and amylase enzymes in gastrointestinal tract.

2) Aloe (Aloe barbadensis)

A total of nine RCTs involving 283 diabetic patients were recruited in the recent meta-analysis of Dick *et al.* [179]. The authors found a wide range of daily dose were used and aloe products were prepared in the form of dried powder, leaf juice, and latex resin. Huge reductions in FPG and A1C by -46.6 mg/dL (p < 0.001)

and -1.05% (p = 0.004), respectively, in relative to the control group by aloe consumption. A greater benefit was observed in patients with FPG higher than 200 mg/dL. Similarly, these effects were reported in individuals with prediabetes and type 2 diabetes who had mild elevation of FPG. Weighed mean difference (WMD) of FPG was -30.05 mg/dL (95% CI: -54.87 to -5.23 mg/dL) and A1C was -0.41% (95% CI: -0.55 to -0.27%) in the aloe-treated group when compared with the placebo-control group [180]. The HOMA-IR significantly reduced (p = 0.047) after the eight weeks of aloe consumption when compared with placebo [142]. High molecular weight polysaccharides in aloe could diminish the activities of intestinal α -glucosidase enzymes [181]. In addition, it was hypothesized that aloe could enhance insulin secretion, improve insulin sensitivity [181], inhibit gluconeogenesis [182], and modify expressions of genes involved in glucose and fat metabolism [183].

3) Garlic (Allium sativum)

Recently, a meta-analysis of seven RCTs revealed that garlic products, including raw, powder, oil, and aged extract, in the daily dose varied from 600 to 1500 mg were supplemented for 4-24 weeks. The level of FPG significantly decreased standardized mean differences (SMD) by -1.67 (95% CI: -2.80 to -0.55; p = 0.004) at the end of study [184]. Few studies suggested significant reductions in A1C (p < 0.005) and PPG (p < 0.01) among the group receiving garlic in combination with conventional drugs [185, 186]. Magnitude of glucose-lowering effect of garlic depended on baseline glucose level, daily dose intake, and treatment duration [184]. Garlic products could be an alternative supplement for diabetic patients with abnormally high cholesterol level because blood lipid profiles simultaneously improved by the long-term administration of garlic [187]. Organosulfur compounds are mainly responsible for antidiabetic effect of garlic. Proposed mechanisms of action include promoting insulin secretion and improving insulin sensitivity [188].

4) Fenugreek (Trigonella foenum-graecum)

Improvement in glycemic control among patients with type 2 diabetes treated with fenugreek seed was found in a meta-analysis of 10 RCTs. Fenugreek seed powder and seed extract were prepared in the form of capsule or as an active ingredient in bread. In comparison with placebo, FPG and A1C significantly reduced by -0.96 mmol/L (95% CI: -1.52 to -0.4 mmol/L) and 0.85% (95% CI: -1.49 to -0.22%), respectively. Two-hour PPG following 75-g OGTT significantly decreased by -2.19 mmol/L (95% CI: -3.19 to -1.19 mmol/L) [189]. A 3-year RCT additionally found that fenugreek ingestion was inversely associated with development of diabetes in prediabetic subjects. Preventive action was linked to reversion of insulin resistance [143]. Favorable effects on glucose homeostasis of fenugreek seed and its extracts could be from various compounds, including soluble fiber, saponins, trigonelline, and 4-hydroxyisoleucine [189]. Moreover, Zhou *et al.* and Hannan *et al.* [190, 191] suggested that fenugreek inhibited intestinal glucose absorption, stimulated insulin secretion, and modulated insulin sensitivity.

5) Ginseng (Panax spp.)

A meta-analysis of eight studies revealed the significant effects of ginseng supplementation on FPG, postprandial insulin, and insulin resistance in the treatment group when compared with the non-treated group. The SMDs were -0.306 (95% CI: -0.539 to -0.074; p = 0.01) for FPG, -2.132 (95% CI: -3.706 to -0.558; p = 0.008) for postprandial insulin, and -0.397 (95% CI: -0.679 to -0.115; p = 0.006) for HOMA-IR [192]. Meanwhile, the other meta-analysis involving 16 RCTs did not found the improvement in insulin resistance although FPG significantly reduced by -0.31 mmol/L (95% CI: -0.59 to -0.03 mmol/L; p = 0.03) [193]. The large differences in participant characteristics might be attributed to the inconsistent findings. Persons with IGT and type 2 diabetes were recruited into the former study, whereas both healthy and diabetic subjects were included to the latter one. There was no alteration in A1C from baseline observed in the both meta-analyses. Over 30 ginsenosides, which are saponin derivatives, are related to antihyperglycemic effect of ginseng [192]. Possible mechanisms of action of ginseng include promoting insulin production and secretion, blocking intestinal glucose absorption, and increasing glucose uptake via up-regulating GLUT-4 translocation [194].

6) Tea (Camellia sinensis)

A meta-analysis of 12 cohort studies found that daily consumption of more than three cups of tea appeared to reduce the risk for diabetes; nonetheless, the association was not statistically significant [195]. The conflicting results were reported in the other meta-analysis of 17 RCTs involving 1,133 participants. Tea products were administered in a wide variation of catechins doses from 208-1,207 mg/day over the period of 2 - 24 weeks. Green tea consumption was associated with the significant decreases in FPG and A1C by -0.09 mmol/L (95% CI: -0.15 to -0.03 mmol/L; p < 0.01) and -0.30% (95% CI: -0.37 to -0.22%; p < 0.01), respectively, in comparison with the control. However, there was no effect of tea consumption on PPG. The effects were found only in those at high risk for metabolic syndromes, but not in healthy subjects [196]. The major constituents accounting for health-promoting effect of tea are flavonol compounds called catechins and its derivatives [195, 197]. A study of Ortsater *et al.* [198] showed that glucose-lowering effect of catechins and its extracts involved enhancing insulin secretion and inhibiting gluconeogenesis enzymes in animal model.

7) Milk thistle (Silybum marianum)

Seed extract of milk thistle, a well-known natural product among Western countries, contains a bioactive constituent named silymarin. Silymarin exerted favorable effects on glycemic profiles although its mechanism of lowering blood glucose remains unclear [199, 200]. A recent meta-analysis of five RCTs and 270 patients with type 2 diabetes reported that daily administered dose of silymarin was in the range from 200-600 mg for 45 days to six months. In comparison with placebo, FPG and A1C were significantly affected by silymarin (mean difference; MD of FPG = -26.86 mg/dL; 95% CI: -35.42 to -18.30 mg/dL and MD of A1C = -1.07%; 95% CI: -1.73 to -0.40%). The results also suggested therapeutic efficacy on diabetic nephropathy in the silymarin-treated group [200].

8) Bitter melon (Momordica charantia)

A total of 95 patients with type 2 diabetes who had no history of taking oral antidiabetic drug were randomly assigned to receive 2,000 and 4,000 mg of bitter melon powder in capsule, or 5 mg of glibenclamide daily for 10 weeks. In comparison with baseline levels, treatment of 2,000 and 4,000 mg of bitter melon significantly decreased the levels of A1C (p < 0.05 and p < 0.02, respectively) and FPG (p < 0.05 and p < 0.04, respectively). There was however no difference among the three groups at the end of study [201]. A significant reduction in fructosamine at week 4 was found

in the groups receiving 1,000 mg/day of metformin and 2000 mg/day of bitter melon by -16.8 μ mol/L (95% CI: -31.2 to -2.4 μ mol/L) and 10.2 μ mol/L (95% CI: -19.1 to -1.3 μ mol/L), respectively. The lower doses of bitter melon (500 and 1,000 mg/day) seemed slightly effective [202]. No change in 2-hour PPG following the standard OGTT, serum lipids, and anthropometric profiles was observed in previous studies [201, 202]. Benefits of bitter melon on glucose homeostasis could be from several mechanisms, including enhance glucose utilization of muscle cells [203], decrease intestinal glucose absorption [204], and inhibit hepatic gluconeogenesis [205]. Bitter melon did not exhibit only blood glucose-lowering effect, but it also preserved β -cell mass and function in animal studies [206].

9) Ivy gourd (Coccinia cordifolia)

A total of 60 patients with early diagnosed type 2 diabetes were included in a RCT to treat with 1,000 mg alcoholic extract of ivy gourd over a period of 12 weeks. The results suggested significant decreases in FPG (-20.6 mg/dL), A1C, and PPG (-34 mg/dL) levels at the end of study were associated with the ivy gourd supplementation and lifestyle intervention [207]. The findings were consistent with a prior study, showing the significant decreases in FPG and PPG by 1,800 mg of freeze-dried leaf tablet daily in 16 patients with type 2 diabetes [208]. It was hypothesized that antidiabetic effects of ivy gourd are caused by active compounds that mimicking insulin action. Previous animal studies also found the reduction in activities of enzymes related to gluconeogenesis by ivy gourd extract [209].

10) Turmeric (Curcuma longa)

A single administration of six grams of turmeric extract following the 75-g OGTT significantly increased postprandial insulin level, but without the suppression on glucose level [210]. A large RCT aimed to investigate preventive effect of turmeric on development of type 2 diabetes in 240 prediabetic subjects. After daily consumption of 1,500 mg of turmeric extract concurrently with lifestyle modification for nine months, none of participant in the treatment group developed type 2 diabetes. In contrast, there was 16.4% of the control group diagnosed with diabetes in this study [210]. Furthermore, β -cells function and insulin resistance as assessed by the HOMA method significantly improved by turmeric intervention throughout the study period.

A significant elevation of adiponectin was additionally observed among the turmerictreated group [144]. Promising activities of turmeric extract were also confirmed in a 4-week within-subject study. Although a slight reduction in FPG was seen, progression of diabetic nephropathy was markedly improved at the end of study [211]. Rhizome of turmeric contains curcumin exerting antidiabetic properties. Reversing insulin resistance [212], improving β -cell function, and preventing β -cells apoptosis [213] were proposed as mechanisms of action of turmeric. In addition, antioxidative- and anti-inflammatory effects of curcumin were postulated to be effective for delaying the onset of diabetic complications [211, 214].

11) Gymnema sylvestre and Gymnema inodorum

Gymnema plants are the genus of vegetable commonly found in Southeast Asian countries. Leaf of Gymnema exhibits antihyperglycemic effect via various mechanisms. Animal studies proposed inhibitory effect on mammalian α -glucosidase enzymes of Gymnema [215]. Gymnemic acids isolated from the leaf is associated with pancreatic β -cells recovery, leading to improving in insulin secretion [216]. Limited numbers of human studies indicated efficacy of Gymnema on glycemic outcomes. Effect of a single administration of *G. inodorum* tea following carbohydrate meals on PPG was examined among 73 healthy volunteers. Results showed that the peak glucose level significantly decreased regardless of carbohydrate sources. However, favorable changes in FPG and insulin secretion were not found throughout a 28-day treatment period [217].

2.5.2 Safety of medicinal plants

Table 5 demonstrates adverse effects and toxicity of medicinal plants that have been suggested in previous evidences in preclinical and clinical studies.

Medicinal plants	Adverse effects/toxicity	Experiment models
Cinnamon	Hepatotoxicity resulting from isolated coumarin	In vivo [218]
	Platelet count drop	In vivo [219]
	Allergic contact dermatitis caused by the exposure of cinnamon products	Human (case report) [220]
	Non-immunologic and immunologic allergic reactions (i.e. stomatitis, gingivitis, and lip edema) after cinnamon ingestion	Human (case report) [220]
Aloe	Genotoxic caused by anthraquinone glycosides	In vitro [221]
	Diarrhea after chronic consumption, leading to water loss and electrolyte imbalance	Human (case report) [222]
Garlic	Unpleasant odor and gastrointestinal symptoms (i.e. nausea and diarrhea)	Human (meta-analysis) [184, 188]
Fenugreek	Hypersensitivity Specific sweat and urine smell	Human (case report) [223] Human (meta-analysis) [189]
	Abdominal distention, dyspepsia, and nausea	Human (meta-analysis) [223]
Ginseng	Hypersensitivity Weakness, gastrointestinal discomfort, and upper respiratory infection	Human (case report) [223] Human (RCT) [224]
Tea	Significant elevation of transaminase levels and acute reversible hepatitis	Human (case report) [223]

Table 5 Adverse effects and toxicity of medicinal plants

Medicinal	Adverse effects/toxicity	Experiment models
plants		
Soy	Mild gastrointestinal symptoms	Human (case report) [223]
	including nausea, bloating, and constipation	
	Increasing risk of estrogen-dependent	In vivo and human [222]
	tumors	
Milk thistle	Gastrointestinal disturbances and	Human (RCT) [200]
	headache	
Bitter	Favism in individuals with G6PD	In vitro and human [223]
melon	deficiency	
	Heartburn, loss of appetite, and	Human (RCT) [201]
	headache	
Turmeric	Anaphylaxis	Human (case report) [223]
	Kidney stone due to high level of	In vitro [223]
	oxalate	
Gymneman	Taste alteration	Human (case report) [223]
spp.	Hepatotoxicity	Human (case report) [223]

 Table 5 Adverse effects and toxicity of medicinal plants (cont.)

RCT: randomized controlled trial; G6PD: glucose-6-phosphate dehydrogenase

2.6 Mulberry leaves

Mulberry (Morus spp.; family Moraceae) is a multi-functional plant widespread in tropical and subtropical areas throughout the world, particularly in Asia [225]. In agriculture field, leaves of mulberry serve as the food of silkworm and dairy cattle [226]. In addition, mulberry leaves have been traditionally used in folk remedies for treating several conditions such as fever, cough, hypertension, hypercholesterolemia, and hyperglycemia [227]. Moreover, many functional foods and dietary supplements were made from mulberry leaves and commercially available at present [228].

2.6.1 Phytochemicals

There are plenty of macronutrients, vitamins, and minerals such as ascorbic acid (160-280 mg/100g), β -carotene (10,000.00-14,688.00 μ g/100g), iron (19.00-35.72 mg/100g), zinc (0.72-3.65 mg/100g), and calcium (786.66-2,266.66 mg/100g)in

mulberry leaves in relative to other green leafy vegetables [229]. Moreover, mulberry leaves are known as an excellent source of secondary metabolites exhibiting various biological activities. Mulberry leaves are rich in alkaloids [30]. A huge numbers of polyhydroxylated alkaloids with inhibitory effect against α -glucosidase enzymes in mulberry leaves were isolated and identified, for example, 1-deoxynojirimycin (DNJ), fagomine, isofagomine, and 2-*O*- α -D-Gal-DNJ [230, 231]. In addition, mulberry leaves contain various antioxidative compounds, including phenolic acids (i.e. chlorogenic acid, gallic acid, and caffeic acid) and flavonoids (i.e. rutin, kaempferol, quercetin, and isoquercitrin) [232-236]. Of these, DNJ is established as the most remarkable secondary metabolite responsible for antihyperglycemic property of mulberry leaves. Chemistry, determination, occurrence, and pharmacokinetics of DNJ are hereby described below.

1) Chemistry of DNJ

DNJ (chemical formula: $C_6H_{13}NO_4$, molecular mass: 163.17 g/mol, IUPAC name: (2R,3R,4R,5S)-2-(hydroxymethyl)piperidine-3,4,5-triol, synonym: moranoline) is a naturally occurring polyhydroxylated piperidine alkaloid (also called as iminosugar) [30]. As shown in Figure 5, DNJ is a highly polar molecule containing multiple hydroxyl groups. Its chemical structure is closely similar to glucose, but the pyranose ring contains nitrogen atom instead of oxygen atom [230].

ລາສາວາບແບບເບັນການຄາວເຄ

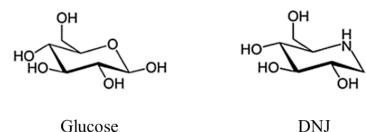


Figure 5 Chemical structure of DNJ in comparison with glucose

2) Determination and occurrence of DNJ in mulberry leaves

DNJ is the most abundant compound accounting for over 50% of alkaloids in mulberry leaves [237]. Regarding the different species, varieties, and cultivated areas of mulberry leaves, a large variation in DNJ concentration in the leaves samples was reported in prior studies. Vichasilp *et al.* [238] found the concentration of DNJ in Thai mulberry leaves varieties ranged from 0.3 to 1.7 mg/g. Song *et al.* [236] and Hao *et al.* [239] revealed that DNJ constituted 1.389 to 3.483 mg/g and 0.401 to 5.309 mg/g, respectively in dried mulberry leaves harvested in China. Meanwhile, Bajpai *et al.* [240] showed that the content of DNJ varied in the range of 0.68 to 2.72 mg/g of Indian dried mulberry leaves. In addition, seasons of harvesting and leaf positions also affected the concentration of DNJ in mulberry leaves [32]. Young leaves collected from the top part of branches provided the highest amount of DNJ when compared with mature leaves [32, 238]. Moreover, differences in drying methods, extraction techniques, and extracted solvents are the factors influencing the content of DNJ in mulberry leaves [238, 241].

3) Pharmacokinetics of DNJ

Oral pharmacokinetic profiles of DNJ in the form of extracts and purified DNJ was determined in preclinical models [242-245]. Around 1% of administered DNJ was incorporated into plasma in the intact form, suggesting a slight absorption of DNJ into bloodstream [243]. After ingestion of 110 mg/kg of purified DNJ (purity > 95%) from aqueous mulberry leaves extract, DNJ reached the maximum plasma level of 15 μ g/mL at 30 min [243]. Prior pharmacokinetic studies reported that plasma concentration at 30 min of DNJ was higher than other phytochemicals, including fagomine, 1,4-dideoxy-1,4-imino-d-arabinitol, anthocyanin, and catechin [245-247]. Furthermore, gastrointestinal absorption of DNJ was observed in a dose-dependent manner when the leaves extracts containing 1.1, 11, and 110 mg/kg of DNJ were ingested [243]. The studies further found that concentration of DNJ rapidly declined over few hours after absorption [242, 243].

Since DNJ is a high-polar compound, the small amount of DNJ was distributed into tissues [243]. Nonetheless, the highest concentration of DNJ was detected in stomach and duodenum at 0.25 hour and in the high blood supply organs, including kidney and liver, within 0.5 hour after ingestion 40 mg/kg of the extract [244]. It was also proposed that a decrease in hepatic glucose production could be attributed to hepatic distribution of DNJ [244]. DNJ was unchanged throughout metabolic pathways in the body [242, 243]. No metabolite and degradation product of

DNJ was found in blood circulation and tissues [243]. The intact form of DNJ was majorly excreted in feces (7%) and the relatively low amount of DNJ was also found in urine (2%) [242, 243]. With respect to the rapid absorption and excretion, it was suggested that DNJ has the relatively low half-life of 0.71 ± 0.02 hours [245].

Furthermore, DNJ from the whole mulberry leaves extract underwent the similar metabolic processes to purified DNJ in *in vitro* and *in vivo* models [244, 245]. However, the higher absorption and bioavailability of DNJ was observed after ingestion of purified DNJ in relative to the whole extract [242]. It was postulated that soluble fiber and flavonoids may interfere absorption of DNJ in mulberry leaves extract [242]. Conversely, the higher amount of DNJ was excreted after ingestion of mulberry leaves extract than the purified form [242].

2.6.2 Glucose-lowering effect

In the early era of research and discovery, a marked reduction in blood glucose in streptozotocin (STZ)-induced diabetic mice fed with mulberry leaves was found promptly with the discovery of many iminosugar alkaloids including DNJ in mulberry leaves extract [230]. Mulberry DNJ is a potent α -glucosidase inhibitor, principally responsible for antihyperglycemic effect of mulberry leaves. According to the sugarmimicking structure, DNJ acts as a competitive inhibitor of dietary sugar by binding to the active sites of α -glucosidases in mammalian small intestine [230]. These enzymes play the key roles in disaccharides hydrolysis and monosaccharide absorption through intestinal brush border membrane. Inhibition on α -glucosidases results in the delay of carbohydrate digestion and absorption, and the decrease in blood glucose, particularly in postprandial state [227, 230].

1) Preclinical studies

The greater content of DNJ in the concentrated fractions of mulberry leaves extract exhibited the relatively stronger inhibitory action on α -glucosidase enzymes than crude extract [248]. This finding was supported by the robust correlation between the content of DNJ and the magnitude of inhibition on α -glucosidases with r = 0.84 [238] and r = 0.90, p < 0.001 [249].

Mulberry DNJ possessed the potent effect comparable to conventional α glucosidase inhibitor in *in vitro* studies [248, 250]. The 50% inhibitory concentration (IC₅₀) value of mulberry leaves extract containing 0.11% DNJ was 41.0 µg/mL, whereas the IC₅₀ of acarbose (positive control) was 19.0 µg/mL against rat α glucosidase [250]. The most dominant inhibitory effect of mulberry DNJ was found for sucrase followed by isomaltase and maltase, respectively [248, 251, 252]. In contrast, it slightly inhibited the activities of trehalase, lactase, and α -amylase [248, 250, 251]. Hot water extract of mulberry leaves suppressed the digestive activities of sucrase and maltase bound on Caco-2 cell lines. This cell culture experiment found the decrease in glucose liberation in the apical chamber and the delay of glucose transportation to basal chamber through the Caco-2 cell monolayer [252].

Effects of mulberry leaves on blood glucose level among various animal models are present in Table 6. The results suggested that mulberry leaves did not only reduce blood glucose after carbohydrate load, but it was also effective for glycemic outcomes in the long-term feeding studies. Moreover, mulberry leaves ameliorated insulin resistance in multiple pathways. The studies of Hamdy et al. [37] and Liu et al. [38] showed modulation of proteins regulating hepatic glucose metabolism including the suppressive effect on gluconeogenic enzymes: glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK) by mulberry leaves water extract. Mulberry leaves also activated glucose uptake in skeletal muscle and adipose tissue by regulating phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) and glycogen synthase kinase- 3β (GSK- 3β) signaling pathways, leading to GLUT-4 translocation to the cell membrane [36, 39]. In addition, mulberry leaves could preserve β -cell morphology and function. Histological examination by Mohammadi et al. [40] and Saenthaweesuk et al. [41] showed the restoration of β cells to be closely to the normal condition in diabetic rats after the daily feeding of mulberry leaves extract.

Models	Interventions	Experiments	Results	References
Non-diabetic Wistar rats	- Water extract of mulberry leaves (0.11% DNJ)	Single-dose feeding with	- The AUC 0-3 hours of blood glucose and the peak glucose level after carbohydrate load	Kim <i>et al.</i> , 2011 [36]
	- Dose: 1,000 mg of	carbohydrate load	in the mulberry-treatment group were lower than the non-treated oronn (n <	
	cauacuag our weight		0.001 and $p < 0.01$, respectively)	
			regardless of carbohydrate sources.	
Non-diabetic	- Water-ethanolic extract of	Single-dose	- The level of 2-hour PPG was suppressed	Miyahara et al.,
Wistar rats	mulberry leaves (1.10%	feeding with	when 100 and 500 mg of the extract were	2004 [248]
	GK (IND	carbohydrate	simultaneously fed with sucrose and	
	- Dose: 20, 100, and 500	load	\odot starch (p < 0.05).	
	mg of extract/kg body		- Time observed the significant suppression	
	weight		were 0.5 to 1 hour and 1 to 2 hours after	
	ุ่กย IIV		sucrose and starch load, respectively.	

-	leaves
	Animal studies investigating antihyperglycemic effects of mulberry leave
	Tects of
•	emic el
-	perglyc
	antihy
•	ligating
•	s invest
;	studie
•	Animal
`	ف
	ā
5	ð
1	a
r	· .

Models	Interventions	Experiments	Results	References
Non-diabetic	- Water extract of mulberry	Single-dose	- Mulberry leaves feeding was associated	Park et al., 2009
Wistar rats and	leaves (0.16 g of DNJ/100	feeding with	with the decreases in PPG and AUC in	[253]
non-obese,	g)	carbohydrate	after maltose and glucose load in non-	
spontaneous	- Dose: 3.75 g of extract/kg	load	diabetic rats and diabetic rats.	
diabetic Goto-	body weight (6 mg of		- The stronger suppressive effect of the	
Kakizaki rats	DNJ/kg body weight)		extract on PPG was observed in normal	
			rats than diabetic rats.	
			- The peak level of PPG in the treatment	
			groups significantly decreased by 62%	
			and 28% in normal rats and diabetic rats,	
			respectively.	
Non-diabetic	- Crude extract of mulberry	Daily feeding for	- Glucose-lowering effect was found in	Park et al., 2009
Wistar rats and	leaves (0.05 g of DNJ/100	8 weeks	diabetic rats, but not in non-diabetic rats.	[253]
non-obese,	g powder)		- FPG significantly decreased in diabetic	
spontaneous	- Dose: $3.15 \pm 0.11 \text{ mg of}$	3	rats fed with mulberry leaves $(p < 0.05)$.	
diabetic Goto-	DNJ/kg body weight/day		- The levels of plasma insulin and HOMA-	
Kakizaki rats			IR in diabetic rats tended to reduce by	
			12% and 18%, respectively, at the end of	
			study.	

Table 6 Animal studies investigating antihyperglycemic effects of mulberry leaves (cont.)

Models	Interventions	Experiments	Results	References
STZ-induced	- Ethanolic extract of	Daily feeding for	- FPG and A1C significantly decreased (p	Mohammadi et
diabetic Wistar	mulberry leaves	5 weeks	< 0.05) after daily feeding of mulberry	<i>al</i> ., 2008 [40]
rats	- Dose: 400 and 600 mg/kg		leaves extract in the mulberry-treatment	
	body weight /day		group.	
STZ-induced	- Ethanolic extract of	Daily feeding for	- Daily treatment of 500 and 1,000 mg/kg	Naowaboot et al.,
diabetic Sprague	mulberry leaves	6 weeks	of mulberry leave extract decreased FPG	2009 [254]
Dawley rats	- Dose: 250, 500, and 1,000		at the end of study.	
	mg/kg body weight /day		- Mulberry leaves exerted antiglycation	
	รณ์ GK		effect in vitro, resulting in the decline in	
	โม DRI		glycation product including A1C.	
Alloxan-induced	- Water extract of mulberry	Daily feeding for	- The reductions in FPG were observed	Kumar, 2012
diabetic Albino	leaves	28 days	throughout the treatment period when	[186]
rats	- Dose: 600 mg/kg body		compared with the baseline level.	
	weight /day		- Antihyperglycemic effect of mulberry	
			leave was comparable to the treatment of	
			0.5 mg/kg glibenclamide and 10 mg/kg	
			metformin.	

Table 6 Animal studies investigating antibunerolycemic effects of mulherry leaves (cont.)

Models	Models - Interventions Experiments - Results	Experiments	- Results	References
STZ-induced	- Water extract of	Daily feeding	- Mulberry leaves had no effect on glycemic	Saenthaweesuk,
Dawley rats	- Dose: 150, 300, and 600 mg/kg body weight /day	e (b) 21 101	contrast, the extract at the dose of 300, and 600 mg/kg significantly decreased the level of FPG in diabetic-treated rats.	[1+] COOZ (:)n 13
High-fat and high- sucrose diet induced overweight Sprague	- Water extract of mulberry leaves (0.365 g of DNJ/100 g)	Daily feeding for 6 weeks	- Compared with the baseline levels, mulberry leave extract significantly reduced plasma insulin, HOMA-IR, and plasma free fatty	Kim <i>et al.</i> , 2011 [36]
Dawley rats	- Dose: 5% of daily diets		acid (p < 0.05).	
High-fat diet and Alloxan-induced diabetic Sprague	 Water extract of mulberry leaves (5% DNJ) 	Daily feeding for 3 weeks	- Mulberry leave extract reduced FPG in the mulberry-treatment group (p < 0.05 and < 0.001) when compared with the non-treated	Liu <i>et al.</i> , 2016 [38]
Dawley rats	 Dose: 75 mg/kg body weight /day 		group.	
DNJ: 1-deoxynojirimycin; STZ: strept glucose; IGT; impaired glucose toleran model assessment of insulin resistance	cin; STZ: streptozotocin; F d glucose tolerance; OGTT nsulin resistance	FPG: fasting plasma : oral glucose tolera	DNJ: 1-deoxynojirimycin; STZ: streptozotocin; FPG: fasting plasma glucose; PPG: postprandial glucose; IFG: impaired fasting glucose; IGT; impaired glucose tolerance; OGTT: oral glucose tolerance test; AUC: area under the curve; HOMA-IR: homeostasis model assessment of insulin resistance	red fasting : homeostasis

2) Clinical trials

Glucose-lowering efficacy of mulberry leaves was extensively demonstrated in clinical studies [31-34, 255-259]. Experiments of carbohydrate challenge test concurrently with a single-dose administration of mulberry leaves aim to determine effect of mulberry leaves on the elevation of blood glucose after carbohydrate load. Investigation of the effective doses of mulberry DNJ was performed simultaneously; however, it was determined in few studies [31, 32, 34, 259]. Characteristics of the studies and the main findings are summarized in Table 7. The results revealed the significant reduction in PPG in the mulberry leaves-treated group when compared with the control group regardless of participant characteristics (non-diabetic-, prediabetic-, and type 2 diabetic patients) and carbohydrate sources (disaccharides and complex carbohydrate). These indicated efficacy of mulberry leaves on postprandial hyperglycemia. Furthermore, the study of Chung *et al.* [31] also found that order of administration of mulberry leaves (30-min before and co-administered with carbohydrate) did not affect glucose-lowering efficacy of mulberry leaves.

With respect to the favorable effect on the elevated PPG, previous studies investigated efficacy of mulberry leaves on other glycemic indices including FPG and A1C in order to determine effects of daily supplementation of mulberry leaves on long term glycemic control [32, 34, 35, 260, 261]. The studies details are described in Table 8.

CHULALONGKORN UNIVERSITY

Design	Participants (N)	Interventions	Outcomes	Results	References
A double-	Healthy persons	- DNJ-enriched mulberry	- Pre- and	- Mulberry leaves containing	Kimura et al.,
blinded,	aged 25.3 ± 0.7	leaves powder (1.5%	postprandial	12 and 18 mg of DNJ	2007 [32]
randomized,	years (24)	DNJ) or placebo	glucose (at 30,	effectively reduced PPG in	
placebo-		dissolved in hot solution	60, 90, and 120	response to sucrose load	
controlled, 4-		of sucrose	min)	- Time observed the significant	
group		- Test doses of DNJ: 6,		suppression on plasma	
parallel trial		12, and 18 mg		glucose was 60 min after	
		- Carbohydrate: 50 g of		receiving intervention	
		sucrose			
A double-	1) Healthy persons	- 1 g of mulberry leaves	- Pre- and	- The significant reductions in	Mudra <i>et al</i> .,
blinded,	aged 24 - 61	extract or placebo plus	postprandial	PPG were observed in both	2007 [33]
randomized,	years (10)	sucrose in hot water	glucose (at 30,	healthy persons and patients	
placebo-	2) Patients with	- Test doses of DNJ: not	60, 90, and 120	with type 2 diabetes who	
controlled,	type 2 diabetes	indicated	min)	taking mulberry leaves when	
cross-over	(A1C 7.1 ±	- Carbohydrate: 75 g of	- Breath	compared with control	
trial	0.9%) treated	sucrose	hydrogen	- Breath hydrogen	
	with oral		concentration	concentration in the treatment	
	antidiabetic			group increased comparing	
	drugs and aged			with the control group,	
	59 -75 years (10)			indicating the undigested	
				carbohydrate remained in the	
				digestive tract	

Design	Participants (N)	- Interventions	- Outcomes	- Results	References
A within-	Healthy females	- 1.2 g and 3.0 g of dried	- Pre- and	- Both 1.2 g and 3.0 g of dried	Nakamura <i>et</i>
person,	with no history of	powder of mulberry	postprandial	powder of mulberry leaves	<i>al</i> ., 2009
repeated	type 2 diabetes	leaves ethanolic extract	glucose (at 30,	significantly lowered the level	[255]
measures trial	aged 22.3 years	(0.77% DNJ) mixed	60, 90, 120,	of PPG at 30 min when	
	(10)	with sucrose solution	150, and 180	compared with control in the	
		- Test doses of DNJ: not	min)	dose-dependent manner	
		indicated			
		- Carbohydrate: 30 g of			
		sucrose			
A within-	Healthy females	- Confections (mizu-	- Pre- and	- The suppressive effects of	Nakamura <i>et</i>
person,	with no history of	yokan, daifuku-mochi,	postprandial	mulberry leaves on glucose	<i>al</i> ., 2009
repeated	type 2 diabetes	and chiffon cake) added	glucose and	and insulin were observed at	[255]
measures trial	aged 22.3 years	with mulberry leaves	insulin (at 30,	30 and 60 min after daifuku-	
	(10)	extract in the ratio of	60, 90, 120,	mochi ingestion, and at 30	
		sucrose and mulberry	150, and 180	min after mizu-yokan and	
		leaves = 10.1	min)	chiffon cake ingestion	
		- Test doses of DNJ: not	- AUC 0-3 hour of	- Glucose-lowering efficacy of	
		indicated	postprandial	mulberry leaves seemed to be	
			glucose and	affected by the complication	
			insulin	of food composition (i.e. oil,	
				baking powder, egg, and milk)	

Design	Participants (N)	- Interventions	- Outcomes	- Results	References
A double-	Persons who had	- Dried powder of	- Pre- and	- The effective doses of	Asai <i>et al.</i> ,
blinded,	FPG between 100	mulberry leaves extract	postprandial	mulberry DNJ for suppressing	2011 [34]
randomized,	and 140 mg/dL	(1.5% DNJ) or placebo	glucose and	the elevated PPG were 6 and 9	
placebo-	aged 50.0 ± 10.6	in capsules, followed by	insulin (at 30,	mg	
controlled,	years (12)	boiled white rice with	60, 90, and 120	- Time observed the significant	
cross-over		seasoning at the next 15	min)	suppression on plasma	
trial		min		glucose and insulin was 30	
		- Test doses of DNJ: 3, 6,		min after receiving	
		and 9 mg		intervention	
		- Carbohydrate: 200 g of			
		boiled white rice with 2 g			
		of dry seasoning			
A single-	1) Healthy persons	- Jelly containing 3.3 g of	- Pre- and	- Pre- and - The AUC 0-2 hour of glucose	Nakamura <i>et</i>
blinded,	aged 23.6 ± 2.1	mulberry leaves extract	postprandial	excursion in the treatment	<i>al</i> ., 2011
randomized	years (10)	$(254 \ \mu g \ of DNJ)$ or	glucose (at 30,	group was lower than the	[256]
placebo-	2) Patients with	placebo jelly	60, 90, and 120	control group	
controlled, 4-	type 2 diabetes	- Test doses of DNJ: not	min)	- Time observed the significant	
group parallel	aged 62.4 ± 12.5	indicated	- $AUC 0.2 hour of$	suppression on PPG were 30	
trial	years who treated	- Carbohydrate: sucrose	postprandial	min for healthy persons and	
	with or without	added in jelly (a ratio of	glucose	60 min for patients with type	
	sulfonylurea (10)	sucrose to mulberry		2 diabetes after receiving	
		leaves extracts of 10:1)		intervention	

tact (nont) untry with corbobydrate tale ${f Table \, 7}$ Clinical studies investigating effect of a single-does administration of multi-angle ${f 1}$

C	×	0	
١	١	D	
	7		

I able / Clinic	al studies investigating	g effect of a single-dose administrat	tion of mulberry leave	I able / Clinical studies investigating effect of a single-dose administration of mulberry leaves concurrently with carbonydrate tolerance test (cont.)	lerance test (cont.)
Design	Participants (N)	Interventions	- Outcomes	- Results	References
A double-	Healthy persons	1) Dried powder of mulberry	- Pre- and	- Mulberry DNJ at the doses of	Chung et al.,
blinded,	aged 22.7 ± 0.4	leaves aqueous extract	postprandial	9 and 18 mg were effective to	2013 [31]
randomized,	years who had	(0.36% DNJ) or placebo	glucose (at 30,	suppress the elevated PPG	
placebo-	FPG below 125	dissolved in water mixed	60, 90, and	resulting from maltose load.	
controlled, 5-	mg/dL (50)	with maltose	120 min)	- Time observed the significant	
group		2) Dried powder of mulberry	- AUC 0-2 hour of	suppression on PPG were 30	
parallel trial		leaves aqueous extract	postprandial	and 60 min after receiving	
		(0.36% DNJ) dissolved in	glucose	intervention	
		water, followed by maltose	I		
		solution at the next 30 min			
		- Test doses of DNJ: 4.5, 9,			
		and 18 mg			
		- Carbohydrate: 75 g of			
		maltose			
A placebo-	Patients with	- 70 mL of mulberry leaves	- Pre- and	_ The level of PPG at 90 min in	Banu <i>et al.</i> ,
controlled, 2-	type 2 diabetes	tea (DNJ content was not	postprandial	the mulberry leaves-treated	2015 [257]
group	who treated with	indicated) in hot water	glucose (at 90	group was lower than the	
parallel trial	oral antidiabetic	mixed with 1 teaspoon of	min)	control group	
	drugs and aged	sugar			
	53.80 ± 11.15	- Carbohydrate: 2 idlis with			
	years (48)	coconut paste			

Design	Participants (N)	- Interventions	- Outcomes	- Results	References
A placebo- controlled, randomized, crossover	Healthy persons aged 51.21 ± 9.45 years who had FPG below 126	 2 g of mulberry leaves tea powder mixed with boiling water, followed by sucrose solution at the 	- Pre- and postprandial glucose and insulin (at 30,	- When compared with control, the treatment group had the decreases in PPG at 30 min and the AUC of glucose and	Bumrungpert et al., 2016 [258]
trial	mg/dL (14)	next 30 min - Test doses of DNJ: not indicated - Carbohydrate: 75 g of sucrose	60, 90, 120, and 150 min) - AUC of glucose and insulin	insulin	
A double- blinded, randomized, placebo- controlled, cross-over trial	A double-Normoglycemic- Capsules containing 125- Pre- and mg of mulberry leaves- The AUC 0.2 hour of glucoseLown et al.,blinded,adults aged 19-mg of mulberry leavespostprandialand insulin excursion in the and insulin excursion in the2017 [259]randomized,59 years (37)aqueous extract (5% DNJ)glucose and insulin (at 15,and insulin excursion in the treatment group were lower2017 [259]placebo-co-administered withinsulin (at 15,than the control group2017 [259]controlled,co-administered withinsulin (at 15,than the control group2017 [259]controlled,aqueous extract (5% DNJ)glucose andthan the control group2017 [259]controlled,co-administered withinsulin (at 15,than the control group2017 [259]controlled,and look30, 45, 60, 90,- The effective doses were 12.5and 25 mg of DNJcross-over12.5, and 25 mg- AUC 0.2 hour of- Time observed the significanttrial- Carbohydrate: 50 g ofpostprandialsuppression on plasmamaltodextringlucose andglucose and insulin was 30insulinmin after receivingmin after receivinginsulinmin after receivingmin after receiving	 Capsules containing 125 mg of mulberry leaves aqueous extract (5% DNJ) co-administered with maltodextrin solution Test doses of DNJ: 6.75, 12.5, and 25 mg Carbohydrate: 50 g of maltodextrin 	 Pre- and postprandial glucose and insulin (at 15, 30, 45, 60, 90, and 120 min) AUC 0-2 hour of postprandial glucose and insulin 	 The AUC 0.2 hour of glucose and insulin excursion in the treatment group were lower than the control group The effective doses were 12.5 and 25 mg of DNJ Time observed the significant suppression on plasma glucose and insulin was 30 min after receiving intervention 	Lown <i>et al.</i> , 2017 [259]

Design	Participants (N) Interventions	Interventions	Outcomes	Results	References
(duration)					
A double-	Healthy persons	- DNJ-enriched mulberry	FPG and lipids (day	No significant change in	Kimura <i>et al.</i> ,
blinded,	(12)	leave powder (1.5%	0, 24, and 38)	the levels of FPG and	2007 [32]
randomized,	- Age: 24.7 ± 1.0	DNJ) or placebo		lipids in the treatment	
placebo-	years	dissolved in hot water		group when compared to	
controlled, 2-	- BMI: 21.3 ±	- Test dose: 18 mg of DNJ		the control and baseline	
group parallel	0.6 kg/m^2	(1.2 g of powder) thrice		levels throughout the	
trial (38 days)		daily before meals		treatment period.	
		- Daily dose: 54 mg of			
		DNJ (3.6 g of powder)			
A double-	Persons who had	- Capsule of mulberry	FPG, A1C,	No reduction in FPG and	Asai et al., 2011
blinded,	FPG between	leaves extract (1.5%	fructosamine,	FPI was observed in both	[34]
randomized,	110 and 140	DNJ) or placebo	GA,1,5-AG, and	groups throughout the	
placebo-	mg/dL (65)	- Test doses: 6 mg of DNJ	FPI (week 0, 4, 8,	study. However,	
controlled, 2-	- Age: 53.7 ± 6.7	(3 capsules) thrice daily	12, and 16)	mulberry leaves	
group parallel	years	before meals		treatment was associated	
trial (12 weeks		- Daily dose: 18 mg of DNJ		with the significant	
of treatment		(9 capsules)		increase in 1,5-AG level,	
period and 4				whereas the level of A1C	
weeks of post-				and GA tended to be	
treatment				improved during	
observation)				supplementation period.	

Design (duration)	Participants (N)	Interventions	Outcomes	Results	References
A within-person trial (8 weeks)	Patients with dyslipidemia (46)	 Mulberry leaves tea Daily dose: 2 g of mulberry leaves tea thrice daily before meals 	FPG	The level of FPG significantly decreased from 97.65 ± 10.09 to 85.43 ± 7.76 mg/dL at the end of study	Banchobphutsa, 2012 [260]
A placebo- controlled, 2- group parallel trial (2 weeks of run-in period and 4 weeks of treatment period)	Patients who had FPG between 100 and 125 mg/dL (42) - Age: 53.0 \pm 7.2 years - BMI: 24.7 \pm 2.2 kg/m ²	 Tablet of mulberry leaves extract (0.36% DNJ) or placebo Test dose: 6 mg of DNJ (6 tablets) thrice daily before meals Daily dose: 18 mg of DNJ (18 tablets) 	2-hour postprandial glucose, insulin, and C-peptide (week 0 and 4)	The level of 2-hour PPG was significant suppressed by mulberry leaves. Moreover, improvement in postprandial insulin response was observed at the end of study.	Kim et al., 2014 [35]
A double- blinded, randomized, placebo- controlled, 2- group parallel trial (2 weeks of run-in and 12 weeks of treatment period)	Patients with type 2 diabetes who had A1C 7.0 – 8.0%, but not treated with insulin (17)	 Capsule containing 500 mg of standardized mulberry leaves extract (DNJ content was not indicated) or placebo Test dose: 1,000 mg of extract (2 capsules) thrice daily before meals Daily dose: 6 capsules 	Postprandial SMBG and A1C (week 0 and 12)	At the end of study, postprandial self-monitoring blood glucose in the treatment group was significantly reduced when compared to the control group and baseline levels. In addition, A1C tended to decrease from baseline; however, no difference between the groups was found.	Riche et al., 2017 [261]
DNJ: 1-deoxynojii AG: 1,5-anhydrog curve: HOMA-IR:	DNJ: 1-deoxynojirimycin; FPG: fasting plasma g AG: 1,5-anhydroglucitol; IFG: impaired fasting curve: HOM A-IR - homeostasis model assessment	DNJ: 1-deoxynojirimycin; FPG: fasting plasma glucose; PPG: postprandi AG: 1,5-anhydroglucitol; IFG: impaired fasting glucose; IGT; impaired g	al glucose; A1C: gly lucose tolerance; OC	DNJ: 1-deoxynojirimycin; FPG: fasting plasma glucose; PPG: postprandial glucose; A1C: glycated hemoglobin; FPI: fasting plasma insulin; 1,5- AG: 1,5-anhydroglucitol; IFG: impaired fasting glucose; IGT; impaired glucose tolerance; OGTT: oral glucose tolerance test; AUC: area under the	sma insulin; 1,5 JC: area under t

2.6.3 Lipid-lowering effect

In this section, lipid-lowering effect includes anti-obesity and antihyperlipidemic properties. Anti-obesity refers to the effects of mulberry leaves on modulating lipid accumulation in adipocytes. Meanwhile, antihyperlipidemia is the effects of mulberry leaves on reducing blood lipids including cholesterols and TG.

1) Preclinical studies

Lipid-lowering effect of mulberry leaves were demonstrated in numerous *in vitro* and *in vivo* studies. Mulberry leaves exerted several effects on lipid metabolism including inhibiting lipogenesis and promoting lipolysis through multiple mechanisms of action.

Being the α -glucosidase inhibitor was postulated as a plausible explanation of lipid-lowering effect of mulberry leaves. In hepatic cells, excess circulating glucose is converted to fatty acid, which is the substrate of TG. DNJ could lower glucose hepatic influx because it inhibits carbohydrate digestion and absorption, resulting in the decreased blood glucose [251].

An enzyme activity analysis of Tsuduki *et al.* [262] showed that mulberry leaves extract enriched with DNJ promoted the activities of PPAR- α in the transcription level by upregulating mRNA expressions of the PPAR- α target genes: carnitine palmitoyltranferase (CPT) and acyl-CoA oxidase (ACO). This leads to an increased lipolysis. Results in animal model consistently found a significant reduction in hepatic TG. Polyphenols also possessed the agonistic effect on PPAR- α . Kobayashi et al. [263, 264] suggested that polyphenol-rich extract of mulberry leaves upregulated the transcription of *PPAR-\alpha* gene. In addition, the extract lowered mRNA expressions of β -hydroxy β -methylglutaryl-CoA (HMG-CoA) reductase, the ratelimiting step of endogenous cholesterol synthesis.

Ethanolic mulberry leaves extract containing quercetin, kaemferol, caffeic acid, and hydroxyflavin regulated expressions of several genes and proteins involved in lipid metabolism including sterol regulatory element-binding proteins (SREBPs), HMG-CoA reductase, fatty acid synthase (FAS), glycerol-3-phosphate acyltransferase

(GPAT), and liver X receptor (LXR) in hepatic cells and adipocytes [265-267]. Histological examination confirmed the decrease in lipid accumulation in the cells [265].

Inhibition on adipogenesis was also stated as the major anti-obesity mechanism of mulberry leaves. Ethanolic and water extracts of mulberry leaves suppressed expressions of SREBP-1 and PPARs, which are the transcriptional factors of adipocyte differentiation and maturation [265, 266, 268]. Mulberry leaves also promoted apoptosis in adipocytes [266]. These findings could explain the decreases in the numbers of mature and functional adipocytes [269, 270]. In addition, mulberry leaves containing the high content of DNJ stimulated mRNA expression level of adiponectin [262], a significant adipokine regulating metabolic pathways of glucose and fatty acid.

Furthermore, the mixture of mulberry polyphenols and fiber showed efficacy on body weight and plasma lipids reduction in the recent study of Li *et al.* [271]. It was proposed that soluble fiber might potentiate lipid-lowering activity of mulberry leaves. Soluble fiber interferes dietary cholesterol absorption by binding with bile acid and delays gastric emptying time [272].

These mechanisms were the explanations of the induction of β -oxidation of FFA and the decrease in lipid accumulation in peripheral tissues. Mulberry leaves retarded body weight gain in high-fat diet-induced obese rats [265, 266, 273]. The final body weight of the mulberry leaves-treated group was 7 to 10% lower than the control group [265]. Mulberry leaves feeding was also able to decrease fat to body ratio in obese mice induced by high-fat diet, reflecting the reduction in body fat mass [265]. This was in line with the finding from microscopic analyses. There were significant reductions in the amount of adipocytes as well as size and numbers of lipid droplets in the cells after mulberry leaves interventions [262, 265, 266, 268]. In addition to antiobesity effect, mulberry leaves exhibited favorable effect on plasma lipids. The marked reductions in TC, LDL-C, and TG and the increase in HDL-C in blood circulation were observed in hypercholesterolemic animals fed with mulberry leaves [263, 265, 266, 269, 274].

2) Clinical studies

Many clinical studies consistently reported potentials of mulberry leaves for improving lipid profiles in persons with known history of dyslipidemia. Patients with early-stage dyslipidemia (N = 23) defined by the baseline LDL-C concentration in the range of 140 – 189 mg/dL were recruited to the study of Aramwit *et al.* [275]. The study intervention was mulberry leaves tablets containing 0.367 mg of DNJ/tablet. All participants were assigned to take three tablets thrice daily before meals consecutively for 12 weeks. Results suggested that mulberry leaves significantly decreased TC (-4.9%, p < 0.05), LDL-C (-5.6%, p < 0.05), and TG (-14.1%, p < 0.05), and increased HDL-C (19.7%, p < 0.05) compared with the baseline levels. The authors further suggested that lipid-lowering efficacy of mulberry leaves was superior to lifestyle modification alone.

Banchobphutsa *et al.* [260] consistently found that mulberry leaves brewed tea was effective for lowering blood lipids in patients with dyslipidemia (N = 46) defined by TC \geq 200, LDL-C 101 – 190, or TG \geq 150 mg/dL. Daily consumption of 3 g mulberry leaves tea three times a day before meals was capable of reducing the concentrations of TC (-9.8%), TG (-14.9%), and LDL-C (-2.02%) after the 8-week intervention period in comparison with the baseline levels.

The other 12-week within-person study of Kojima *et al.* [276] was conducted to determine efficacy of mulberry leaves capsules corresponding to 36 mg DNJ/day among patients with hypertriglyceridemia defined by the level of TG \geq 200 mg/dL (N = 10). The authors found the moderate effect of mulberry leaves on plasma TG, which decreased from 312 ± 90 mg/dL at baseline to 252 ± 78 mg/dL at week 12 (p = 0.058); however, no improvement in the other lipid outcomes was observed. Moreover, this study showed that mulberry leaves lowered very small, dense LDL particles, which are highly atherogenic.

In addition, Andallu *et al.* [277] reported that mulberry leaves were effective for improving lipid profiles in patients with type 2 diabetes who had abnormal lipids levels (N = 24). Participants were randomly divided into two groups to take mulberry leaves capsules (500 mg/capsule) and 5 mg glibenclamide. There were the significant decreases in TC (-12%, p < 0.01), TG (-16%, p < 0.01), LDL-C (-23%, p < 0.01), very low-density lipoprotein cholesterol (VLDL-C) (-17%, p < 0.01), and plasma FFA (-12%, p < 0.01) from baseline after the 4-week treatment period. The lipid-lowering effect of mulberry leaves was comparable to glibenclamide. The authors also showed that mulberry leaves effectively reduced lipids on erythrocyte membrane, which are strongly associated with lipid peroxidation, vascular membrane rigidity, and atherosclerotic plaque formation.

2.6.4 Antihypertensive effect

Abnormally high systolic blood pressure, diastolic blood pressure, mean arterial pressure, and heart rate were normalized by mulberry leaves [278-280]. Investigation of vascular reactivity showed that mulberry leaves extract improved the responses of blood vessels to exogenous vasodilators and vasoconstrictors. Diminished dilatation and increased constriction of blood vessels significantly restored after long term mulberry leaves administration [279].

It was proposed that mulberry leaves reduced blood pressure as well as heart rate of the animals treated with mulberry leaves extract via the inhibition of angiotensin-converting enzyme (ACE). *In vitro* studies observed the lower ACE activity after the cells were treated with mulberry leaf extract with the IC₅₀ of 29.8 mg/mL [278]. Additionally, the decline contraction in response to phenylephrine indicated the blockade of calcium channel by mulberry leaves extract [280]. Antihypertensive effect of mulberry leaves could be from γ -aminobutyric acid (GABA) content in the extract. Results showed that the mean blood pressure in the mulberry leaves treatment group reduced in the similar trend as the group receiving pure GABA in a single administration study [278]. Moreover, published studies documented that antioxidative potentials of mulberry phenolics attenuated vascular dysfunction in hypertension [280].

2.6.5 Antioxidative and anti-inflammatory effects

Mulberry leaves were responsible for the significant increase in 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity; however, the effect was weaker than ascorbic acid and butylated hydroxytoluene (BHT) that used as positive controls [254, 281]. Determination of peroxides formation observed the lower level of lipid peroxidation end-products by mulberry leaves treatment [254, 280, 282]. The thiobarbituric acid (TBA) assay showed the lower level of malondialdehyde (MDA) in the dose-dependent fashion [279, 281]. The findings indicated potentials of mulberry leaves against free radical formation and oxidative stress damage. Activities of enzymes involved in antioxidant defense system– including glutathione reductase (GR), glutathione peroxidase (GPx), glutathione-S-transferase (GST), and superoxide dismutase (SOD)—in diabetic rats fed with mulberry leaves extract were significantly elevated [283].

Phenolic compounds are well established as the excellent antioxidants [233, 235]. Methanolic and ethanolic mulberry leaves extracts have the potent ability against oxidative stress because the extracts contain the great amount of phenolics. Quercetin, isoquercitrin, rutin, and chlorogenic acid were isolated and identified as antioxidants of mulberry leaves [281].

Mulberry leaves were associated with the suppression of inflammatory process through signaling pathways of NF- κ B, a crucial physiological part of macrophage activation-induced inflammation [284, 285]. Result found that the effects were due to the down-regulation of NF- κ B transcription factors, resulting from the decreases in proinflammatory cytokines including iNOS, cyclooxygenase-2 (COX-2), TNF- α , IL-1 β , and IL-6 [284]. In addition, endothelial cell adhesion of monocyte induced by TNF- α significantly reduced by the treatment of mulberry leaves extract [285]. The results consistently revealed that anti-inflammatory effect of mulberry leaves was in a dose-response relationship [284, 285].

Antioxidative and anti-inflammatory effects of mulberry leaves have been investigated in human by measuring various surrogate markers. A previous clinical trial suggested the significant reduction in 8-isoprostane, a surrogate marker of oxidative injury, in patients with mild dyslipidemia who supplemented with mulberry leaves tablet containing 0.367 mg of DNJ/tablet for the duration of 12 weeks. The improvement in GPx activities in erythrocytes was also observed. Moreover, the results showed that mulberry leaves treatment ameliorated inflammatory process. The mean monthly level of CRP had a decreasing tendency in this study. However, no significant difference between the initial and the final levels of GPx activities and CRP was reported [286]. Lack of statistically significant change might be from the low baseline levels among study population. Also, determination of the end-products of lipid peroxidation found that mulberry leaves consistently reduced the level of peroxides in various biological samples including plasma, erythrocyte, and urine after four weeks of mulberry leaves treatment [277].

2.6.6 Anti-atherosclerosis

Mulberry leaves treatment attenuated the development of atherosclerotic events. Benefits of mulberry leaves were observed both in the early- and the advanced stages of coronary atherosclerosis. Besides the inhibitory effects on oxidative modification of LDL particles, the transfer of LDL through arterial wall and foam cell formation were dose dependently inhibited by mulberry leaves extract in *in vitro* models [287]. Furthermore, the extract was capable of inhibiting vascular smooth muscle cells (VSMC) proliferation and migration, which contributes to the progression of atherosclerosis, in rat aortic smooth muscle cell lines as shown in the growth curve assay [288, 289]. Analysis of intracellular lipid additionally revealed the decreases in TC and TG accumulation in the foam cells [287]. Also, the levels of numerous markers related to endothelial dysfunction including soluble vascular cell adhesion molecule-1 (sVCAM-1), fibrinogen, and nitric oxide were restored to the normal levels [290].

GHULALONGKORN UNIVERSITY

Beneficial effects on atherosclerotic lesions were also demonstrated in animal studies. Pathological analysis showed that the atherosclerotic plaque volume was significantly decreased. Endothelial injury and the proliferation and migration of VSMCs were also inhibited by mulberry leaves extract in a dose-dependent fashion [291].

2.6.7 Cardioprotective effect

Mulberry leaves preserved cardiac structure and function in various experimental models. After the daily treatment of mulberry leaves extract, histological studies showed the amelioration of damaged heart structure in isoproterenol (ISO)-

induced myocardial infarction rats. Areas of myonecrosis and myocarditis were less distributed in the treatment group when compared to the non-treated group [280]. This was similar to hemodynamic and echocardiographic analyses since mulberry leaves extract treatment significantly reversed the defective heart development including left ventricular remodeling [292]. Also, mild infiltration of inflammatory cytokines and low fibrous tissues in myocardial cells were observed [280, 292]. In addition, the depression of abnormally high cardiac marker enzymes induced by ISO [280].

2.6.8 Safety of mulberry leaves

Mulberry leaves are considered a relatively safe medicinal plant regarding the traditional uses. Meanwhile, no report of toxicity and life-threatening adverse events of mulberry leaves was evident. The most common side effects of mulberry leaves are gastrointestinal symptoms including bloating, flatulence, loose stool, and constipation [32, 35]. These effects are explained by the major mechanism of action of mulberry DNJ. Being the α -glucosidase inhibitor results in the production of the large amount of gas and osmotic pressure by intestinal bacterial fermentation of undigested carbohydrate remaining in large intestine [293]. Nonetheless, it was proposed that mulberry leaves may cause fewer abdominal flatulence than acarbose. An *in vitro* study showed that mulberry leaves extract possessed the weak inhibitory effect against pancreatic α -amylase when compared with acarbose [250].

Clinical studies of Lown *et al.* [259] and Li *et al.* [293] found that the incidence rates of gastrointestinal symptoms of mulberry leaves in the early-period of the studies were approximately 50% among participants who receiving mulberry leaves. However, the severity and the numbers of persons suffering from the side effects subsequently reduced over time, suggesting the better tolerance to the side effects. There was no alteration in hematological and biochemical parameters from the baseline levels. The values remained in the normal range after receiving mulberry leaves in the long duration [35, 276].

CHAPTER III MATERIALS AND METHODS

The present work was divided into three studies as follows;

<u>Study I (Phase I clinical trial)</u>: to determine effect of a single administration of mulberry leaves on plasma glucose excursion in response to carbohydrate load among healthy persons and determining the effective dose with minimal adverse effects of mulberry DNJ

<u>Study II (Phase II clinical trial)</u>: to determine efficacy and safety of a longterm supplementation of mulberry leaves on glycemic control in persons who had impaired glucose metabolism including obese persons with prediabetes and patients with early-stage type 2 diabetes

<u>Study III (proteomic analysis)</u>: to determine effect of the long-term supplementation of mulberry leaves on expressions of plasma proteins in persons who had impaired glucose metabolism including obese persons with prediabetes and patients with early-stage type 2 diabetes

3.1 Study I (Phase I clinical trial)

The study protocol was reviewed and approved by the Research Ethics Review Committee for Research Involving Human Research Participants, Health Sciences Group, Chulalongkorn University (No. 121.1/59) (Appendix A).

3.1.1 Study design : A four-parallel group, randomized controlled trial

3.1.2 Participants : Healthy adults at Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand who met eligibility criteria.

1) Inclusion criteria

- a. Women and men aged 18 to 50 years
- b. No history of diabetes

- c. FPG < 100 mg/dL
- d. BMI 18.5 22.9 kg/m²

2) Exclusion criteria

- a. Allergic to mulberry leaves
- b. Aspartate aminotransferase (AST) and/or alanine aminotransferase (ALT) > 40 IU/L
- c. Serum creatinine (Cr) < 0.6 or > 1.2 mg/dL
- d. Blood urea nitrogen (BUN) > 20 mg/dL
- e. Had a history of gastrointestinal surgery or had abnormal conditions affecting digestion and intestinal absorption
- f. Presences of uncontrolled or life-threatening conditions
- g. Had a history of or diagnosed with hematological disorders, thyroid diseases, cardiovascular diseases, stroke, and chronic kidney disease
- h. Taking drugs, supplements, or herbs affecting blood glucose level: corticosteroids, second-generation antipsychotics, niacin, thiazide diuretics, and β-blockers, within a month prior to study enrollment
- i. Women during pregnancy or lactation

3) Sample size calculation Conversion

Sample size for comparing means of continuous variables between independent samples was calculated by following equations;

$$n/\text{group} = \frac{2 (Z_{\alpha} + Z_{\beta})^2 Q^2}{d^2}$$

Regarding the previous study of Asai *et al.* [34], the results showed a significant reduction in the level of PPG at 30 min (PPG-30) who receiving a single dose of mulberry leaves after sucrose load when compared to control group. The values of PPG-30 were 121 ± 19 mg/dL and 145 ± 28 mg/dL in the treatment group (n = 10) and the control group (n = 10), respectively (p < 0.05).

$$\begin{split} Z_{\alpha\,(0.05,\,2\text{-tailed})} &= 1.96\\ Z_{\beta\,(0.20,\,2\text{-tailed})} &= 0.84\\ Q^2 &= \frac{(n_1-1)\,S_1{}^2 + (n_2-1)\,S_2{}^2}{n_1+n_2-2}\\ &= \frac{(10-1)(19^2) + (10-1)(28^2)}{10+10-2} = 572.5\\ d &= A \text{ critical difference of PPG-30 between groups} \end{split}$$

= 121 - 145 = -24 mg/dL

n/group =
$$\frac{2 (1.96 + 0.84)^2 (572.5)}{(-24)^2} \approx 16$$

Assuming a 20% dropout rate; n/group = 16 = 20 1-0.2

Therefore, this study required total participants at least; N = 4 (20) = 80

3.1.3 Documents and interventions

1) Documents

- a. Clinical record forms (Appendix B)
 - General information
 - Clinical outcomes
 - Adverse events and Naranjo's algorithm
 - b. Participants information sheet
 - c. Informed consent form

2) Mulberry leaves powder

Mulberry leaves product used in this study was in the form of dried powder with no solvent extraction. Fresh leaves of white mulberry (*M. alba* L.; variety Sakonnakhon) were from Chiang Mai, Thailand. Young leaves (aged 50 to 70 days) from the top shoot to two feet below were harvested.

Foreign substances were removed, and the leaves were gently cleaned with tap water. Next, raw mulberry leaves were soaked in cold water (4°C) for 30 min. The leaves were then dried by microwave oven at 600 Watts until completely dry and ground to fine powder by blender. In addition, aluminum sieve (size No.70) was used to grade the powder size at 200 μ m and smaller and to remove undesirable contaminations. The dried powder was sterilized by gamma radiation with the standard radiation dose of 25 kGray for 30 min thereafter. Mulberry leaves powder was kept avoiding from light, heat, and moisture throughout the preparation processes. A single-meal ration of mulberry leaves powder at the weight equivalent to the desired dose of DNJ was packed in light- and moisture-protection sachets and stored at room temperature until dispensing. Figure 6 shows the mulberry leaves products used as the intervention in this study.

Figure 6 Mulberry leaves intervention: (a) fresh mulberry leaves; (b) dried mulberry powder; (c) a single-meal ration of mulberry leaves powder in a light- and moisture-protection sachet; and (d) mulberry leaves powder in warm water

Phytochemicals in mulberry leaves powder were determined using liquid chromatography coupled to mass spectrometry (LC/MS) and LC-system coupled with a Maxis Impact Ultra High-Resolution Time-of-flight mass spectrometry (TOF-MS) (Appendix C). The content of DNJ in the samples was 2.6 mg/g (0.26% DNJ).

Furthermore, stability of DNJ in mulberry leaves powder were also analyzed. The content of DNJ in our mulberry leaves product was stable after the 10-hour exposure of heat (80°C) and light (220 Volt; 50 Hz). The most optimal condition providing the highest DNJ content in the products was room temperature.

3.1.4 Randomization

Each participant was assigned a participant number based on the chronological order of study enrollment in order to identify their corresponding sequences for the study interventions and to protect their personal identity. The method of block randomization (block size of four) was used for random allocation to receive one of the following test beverages containing different doses of mulberry DNJ as described below:

Group 1: 50 g of sucrose in 150 ml of warm water (sucrose solution)

- Group 2: Sucrose solution mixed with 2.3 g of mulberry leaves powder (equivalent to DNJ 6 mg)
- Group 3: Sucrose solution mixed with 4.6 g of mulberry leaves powder (equivalent to DNJ 12 mg)
- Group 4: Sucrose solution mixed with 6.9 g of mulberry leaves powder (equivalent to DNJ 18 mg)

GHULALONGKORN UNI

3.1.5 Study protocol

Printed advertisements were used to announce a research recruitment. Purposes and methods of the study were informed before enrollment by the researcher. Individuals who met eligibility criteria were then asked to sign inform consent voluntarily.

Baseline characteristics of study participants were collected a week before experiment day. First, participants were asked to complete general information record forms for demographic data, health status, and current medications by themselves. Weight, height, BMI, blood pressure, and heart rate were measured. In addition, 12hour fasting blood sampling was performed for biochemical tests including FPG, A1C, AST, ALT, BUN, and Cr by registered nurse. Participants were requested to maintain regular diets as well as physical activity and avoid taking medications, supplements, or herbs affecting blood glucose level until the experiment day.

At the experiment visit, sucrose loading test was held at 7.00 AM. Participants were asked to take a whole glass of the assigned beverage within a five-minute period. After that, postprandial glucose excursion was measured by collecting capillary blood glucose. Blood samples were drawn five min before and at 30, 60, 90, 120, and 180 min after taking the test beverages. The brief protocol of the experiment is shown in Figure 7. Any foods and beverages, smoking, and heavy physical activities were prohibited throughout the three-hour experiment. Adverse events according to mulberry leaves ingestion and the study protocol were closely monitored over the session. Those who cannot tolerate the adverse events or did not well comply with the study protocol were withdrawn from the study. Moreover, participants in group 2, 3, and 4 were asked to self-monitor and report side effects of mulberry leaves for seven days after the experiment.

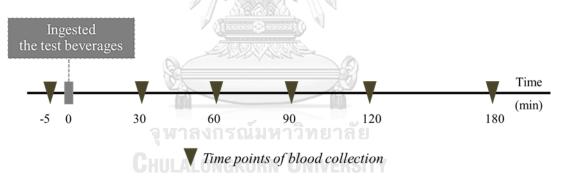


Figure 7 Experimental protocol of study I

3.1.6 Outcome measurement

1) Anthropometric data

Participants were asked to remove outer clothing, accessories, things in pockets, and shoes. Weight (in kg) was measured by digital-scale equipment and height (in cm) was measured by height meter. The measures of weight and height were to the nearest of 0.1 kg and 0.1 cm, respectively. BMI (in kg/m²) was then calculated based on body weight in kg divided by the square of height in m.

2) Vital signs

Systolic and diastolic blood pressure and heart rate were measured by digital sphygmomanometer after participants took a rest and relaxed for at least 10 - 15 min.

3) Biochemical parameters

Six mL of 12-hour fasting blood were obtained from the median cubital vein by registered nurse for the tests of FPG, A1C, AST, ALT, BUN, and Cr. The concentration of FPG was determined using glucose oxidize method, whereas the percentage of A1C was analyzed via high-performance liquid chromatography (HPLC). AST, ALT, BUN, and Cr were measured by colorimetric method using the Hitachi Model 7170 analyzer (Hitachi Ltd., Tokyo, Japan).

Meanwhile, capillary blood glucose was consecutively measured over three hours using blood glucometer (Accu-Chek[®] Performa: Roche Diagnostics, Manheim, Germany). Participants' fingers were sterilized by alcohol before collecting 300 μ L of the blood with disposable needles.

4) Adverse events

Participants were asked to self-monitor and report adverse events, including abdominal pain, diarrhea, constipation, allergic reaction, etc. during seven days after the experiment by completing a questionnaire. Probabilities of adverse reactions was evaluated by Naranjo's algorithm.

3.1.7 Statistical analysis

Per-protocol analysis was performed. The Kolmogorov-Smirnov test was used for normality test. To compare baseline characteristics of the four groups of participants, one-way analysis of variance (ANOVA) followed with Bonferroni posthoc test was used for continuous variables and chi-square test or Fisher's exact test for categorical variables.

Also, one-way ANOVA with Bonferroni post-hoc test was performed to compare the values of PPG at individual time point and the AUC _{0-180 min} of glucose following carbohydrate load among the four groups. Repeated measures ANOVA was also used for analysis the alteration in PPG over time within the same group.

A value of p < 0.05 was considered significant difference. All of statistical analyses were run on the Statistical Package for Social Scientists (SPSS) version 22.0 (SPSS. Co., Ltd, Bangkok Thailand).

3.2 Study II (Phase II clinical trial)

The study protocol was reviewed and approved by Institutional Review Boards of the Royal Thai Army Medical Department, Phramongkutklao College of Medicine (No. Q038h/60) (Appendix E).

3.2.1 Study design : A 12-week, two-parallel group, randomized controlled trial

3.2.2 Participants

1) Inclusion criteria

a. Women and men aged 20 to 65 years

b. Had one of the two characteristics as follows;

Obese (defined by BMI ≥ 25 kg/m²) and had prediabetes (defined by FPG 100 to 125 mg/dL and/or 2-hour PPG 140 to 199 mg/dL)

- Newly diagnosed with type 2 diabetes by physicians within six months before study enrollment and had no history of taking oral antidiabetic drugs and insulin
- c. Well communicate in the Thai language

2) Exclusion criteria

- a. Allergic to mulberry leaves
- b. Had indications for antidiabetic drugs and/or insulin (defined by FPG \geq 180 mg/dL and/or A1C \geq 8.0%)
- c. Presences of significant diabetic complications
- d. Elevated AST and/or $ALT \ge$ three times the upper limit of normal
- e. $Cr \ge 2.0 \text{ mg/dL}$
- f. Had a history of gastrointestinal surgery or had abnormal conditions affecting digestion and intestinal absorption
- g. Presences of uncontrolled or life-threatening conditions
- h. Diagnosed with hematological disorders, thyroid diseases, cardiovascular diseases, stroke, and chronic kidney disease
- i. Taking drugs, supplements, or herbs affecting blood glucose level: corticosteroids, second-generation antipsychotics, niacin, thiazide diuretics, and β -blockers, within one month prior to study enrollment
- j. Women during pregnancy or lactation

3) Sample size calculation

Sample size was calculated by the following equations to compare means of continuous variables between the two groups of independent samples.

n/group =
$$\frac{2 (Z_{\alpha} + Z_{\beta})^2 Q^2}{d^2}$$

The study of Kim *et al.* [35] reported that the AUC _{0-2 hour} of PPG of the mulberry leaves-treated group was significantly lower than the control group after a 4-

week supplementation period. The values of AUC $_{0-2 \text{ hour}}$ were 269.80 \pm 38.17 mg/dL.hour and 309.50 \pm 45.79 mg/dL.hour in treatment group (n = 19) and control group (n = 19), respectively (p < 0.05).

$$Z_{\alpha (0.05, 2\text{-tailed})} = 1.96$$

$$Z_{\beta (0.20, 2\text{-tailed})} = 0.84$$

$$Q^{2} = \frac{(n_{1} - 1) S_{1}^{2} + (n_{2} - 1) S_{2}^{2}}{n_{1} + n_{2} - 2}$$

$$= \frac{(19 - 1)(38.17)^{2} + (19 - 1)(45.79)^{2}}{19 + 19 - 2} = 1,776.84$$

$$I9 + 19 - 2$$

$$d = A \text{ critical difference of AUC }_{0-2 \text{ hour of PPG}} \text{ between groups}$$

$$= 309.50 - 269.80 = 39.70 \text{ mg/dL}$$

$$n/\text{group} = \frac{2 (1.96 + 0.84)^{2} (1,776.84)}{(20.70)^{2}} \approx 18$$

(39.70)² Assuming a 30% dropout rate; n/group = $\frac{18}{1-0.3}$ = 26

Therefore, this study required total participants at least; N = 2(26) = 52

3.2.3 Documents and interventions

1) Documents HULALONGKORN UNIVERSITY

- a. Clinical record forms (Appendix F)
 - General information
 - Clinical outcomes
 - Food diary
 - Compliance
 - Self-report questionnaire for monitoring adverse events
- b. Participants information sheet

c. Informed consent form

2) Mulberry leaves powder

Mulberry leaves powder was prepared by the methods as described previously. According to the results of study I, 12 mg of mulberry DNJ was the effective dose for suppressing the elevated PPG after carbohydrate load with minimal adverse effects; hence, the powder at the weight equivalent to 12 mg of DNJ was used as the study intervention.

The powder was packed in light- and moisture-protection sachets in a singlemeal ration. Participants in the treatment group were instructed to mix one sachet of the powder with 120 mL of warm water and then take thrice daily immediately before meals. They were also asked to rinse the glass with water and drink to ensure that the whole given powder was taken. Participants were also informed the proper condition for storage of the products to maintain the stability of DNJ in the products throughout the study period. The adequate amount of the test product was dispended monthly to participants and they were asked to return the remaining packets to assess % compliance every visit.

3) Diet control program

Diet control program was mainly conducted by a licensed dietitian. The program aimed at educating participants how to improve eating habit, which is the fundamental approach for the target population of the present study.

First, face-to-face diet counseling including review and discussion of usual eating habit and introduction to the food exchange method was performed to develop an individualized eating pattern. All participants were asked to maintain the modified eating pattern throughout the study period to minimize interfering effects of foods on clinical outcomes of interest.

In addition, participants were instructed how to record a food diary. They were assigned to record all items, portions, and cooking methods of foods, snacks, and drinks that they consumed in a represent day. The portion sizes were estimated using the standard household measuring cups and spoons. Individual total caloric intake and percentage of carbohydrate, protein, and fat consumed were calculated by Thai Nutrisurvey[®] software (developed by Faculty of Tropical Medicines, Mahidol University). Individual interview was also performed at every visit to ensure the compliance of the participants.

3.2.4 Randomization

Similar to study I, the recruited participants were assigned participants' number based on the chronological order of study enrollment in order to identify their corresponding sequences for the study interventions and to protect their personal identity. Participants were randomly assigned to one of the two groups including treatment group (mulberry leaves ingestion and diet control) and control group (diet control alone) by the method of block randomization (block size of four).

3.2.5 Study protocol

This study was divided into three periods: screening and recruitment, run-in period, and experimental period. Schematic flow of the study was shown in Figure 8.

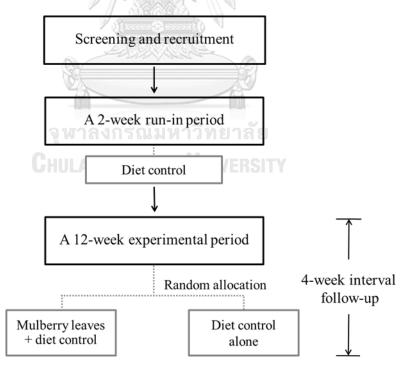


Figure 8 Schematic flow of study II

1) Screening and recruitment

Printed advertisements were used to announce a research recruitment. Medical records of outpatients who went to the Department of Family Medicine and the Department of Medicine, Phramongkutklao Hospital were also reviewed for screening. Individuals who met eligibility criteria were informed purposes and research methods. After making voluntary decision, they were asked to sign inform consent and participated in the two consecutive study periods: a 2-week run-in period followed by a 12-week experimental period.

2) Run-in period (week -2 to week 0)

Aims of the run-in period were to allow participants become acquainted with the diet control program and lower the dropout rate. On the first day, participants were asked to complete general information record form and then attend diet counseling. They were asked to maintain the modified eating habit and the usual physical activity over the period. Non-prescription drugs, supplements, or herbs that affecting clinical outcomes were prohibited.

Compliance to the diet control program was evaluated based on the food diary and individual interview at the end of this period. Those who well comply with the study protocol as assessed by dietitian were allowed to participate in the further period.

3) Experimental period (week 0 to week 12)

Baseline levels of anthropometric outcomes and vital signs were measured on the first day. Fasting blood was drawn for the analysis of blood glucose (FPG and A1C), insulin (FPI), lipids (TC, TG, HDL-C, and LDL-C), AST, ALT, and Cr. After that, OGTT was carried out to determine the ability in glucose clearance of insulin target tissues. Participants were assigned to ingest a 75-g glucose solution. The levels of PPG were then measured at 30, 60, 90, and 120 min thereafter. All of the outcomes were measured and collected by the same procedures at the end of study. Appointments were held every four weeks during the period, in which fasting blood was collected to monitor blood glucose level. Mulberry leaves were dispensed to participants in the treatment group. In addition, adverse events and compliance were also evaluated. A monthly review of treatment regimens and concomitant medications of participants was done using online medical records to avoid confounding effects. Scheduled activities for each follow-up visit are summarized in Table 9. Like the run-in period, all participants were assigned to maintain the intensity of physical activity and avoid taking non-prescription drugs, supplements, or herbs.

Visi	t 1	2	3	4	5
Week	-2	0	4	8	12
Signed inform consent	•				
Completed record forms for demographic data,	N.				
health status, current medications, eating habits,	-				
and physical activity					
Face-to-face diet counseling	•				
Dispensing of mulberry leaves (treatment group)	à l	•	٠	•	
Measurements					
Weight, height, BMI, and waist circumference	•	•			•
Blood pressure and heart rate		•			•
PPG following 75-g OGTT	A.	•			•
FPG		•	•	•	•
A1C จหาลงกรณ์มหาวิทย		•			•
FPI		•			•
HOMA-IR GHULALONGKORN UNIV		•			•
Lipids (TC, LDL-C, HDL-C, and TG)		•			•
AST, ALT, and Cr		•			•
Adverse events monitoring (treatment group)			•	•	•
% Compliance (treatment group)			•	•	•
Total caloric intake		•			•
% Carbohydrate, % protein, and % fat		•			•
consumed		•			•
Protein expression		•			•
Review of treatment regimen and concomitant		•	•	•	•
medications		•	•	•	•

BMI: body mass index FPG: fasting plasma glucose; PPG: postprandial glucose; OGTT: oral glucose tolerance test; A1C: glycated hemoglobin; FPI: fasting plasma insulin; HOMA-IR: homeostasis model assessment of insulin resistance; TC: total cholesterol;

LDL-C: low density lipoprotein-cholesterol; HDL-C: high density lipoprotein-cholesterol; TG: triglycerides; AST: aspartate aminotransferase; ALT: alanine aminotransferase; Cr: creatinine

3.2.6 Outcome measurement

1) Anthropometric data

Participants were asked to remove outer clothing, accessories, things in pockets, and shoes. Weight (in kg) was measured using digital-scale equipment and the nearest 0.1 kg was recorded. Height (in cm) was measured using height meter and reported to the nearest 0.1 cm. BMI (in kg/m²) was then calculated based on body weight in kg divided by the square of height in m. Waist circumference (in cm) was measured using measuring tape. The tape was placed parallel to the floor at the midline between the lowest rib and the top of the hip bone. The measure was done to the nearest of 0.1 cm.

2) Vital signs

Systolic and diastolic blood pressure, and heart rate were measured using standard autonomic device after at least 10 min relax.

3) Biochemical parameters

Participants were asked for 12-hour fasting overnight before appointments. Blood samples were collected from the median cubital vein by registered nurse. At week 0 and week 12, there were two experimental stages: fasting blood collection and followed by a 2-hour, 75-g OGTT. The total of nine mL of fasting blood was firstly obtained for analyzing FPG, A1C, FPI, TC, LDL-C, HDL-C, TG, AST, ALT, and Cr. A catheter with normal saline lock was inserted into the vein and then still placed for the next blood sampling until a 2-hour OGTT was completed. Participants were subsequently instructed to drink a solution of 75 g of glucose. To determine the concentration of 2-hour PPG, blood samples were collected every 30 min thereafter. Foods and heavy activities were not allowed during the test. Meanwhile, two mL of fasting blood was obtained to analyze FPG at the follow-up visits at week 4 and week 8. An enzymatic UV test (hexokinase method) using the Olympus AU 400 Analyzer was employed to analyze the values of FPG and PPG. The percentage of A1C was measured by using HPLC. The concentration of insulin was determined by radioimmunoassay technique. Then, the HOMA-IR was calculated from FPG (in mg/dL) multiplied by FPI (μ IU/mL), and divided by 405. Lipids, concentration were measured by enzymatic method. AST, ALT, and Cr were determined by colorimetric analysis using the Hitachi Model 7170 analyzer (Hitachi Ltd., Tokyo, Japan).

4) Adverse events

A 5-scale questionnaire was used to evaluate adverse events of interest from mulberry leaves ingestion including abdominal pain, flatulence, loose stool, constipation, and allergic reactions. Participants in the treatment group were asked to rate the events by severity (0 = none to 5 = worst). If any, other possible adverse events were welcome to be recorded in the document.

5) Compliance

Compliance of mulberry leaves ingestion was assessed on the same basis as pill count method. Numbers of the remaining sachets were counted and the percentage of compliance (% compliance) was calculated by the following equation.

% Compliance = (No. of dispensed sachets – No. of remaining sachets) x 100 No. of dispensed sachets

6) Total caloric intake and percentage of carbohydrate, protein, and fat consumed

All participants were requested to complete the food diary and returned to dietitian at the first week of experimental period (baseline) and at week 12. Individual total caloric intake and % carbohydrate, % protein, and % fat consumed were calculated by the Thai Nutrisurvey[®] program.

3.2.7 Statistical analysis

Per-protocol analysis was performed. The Kolmogorov-Smirnov test was used for normality test. One-way ANOVA and the chi-square or the Fisher's exact test were performed to compare the differences in baseline characteristics of participants in the treatment group and the control group for continuous variables and categorical variables, respectively.

For the analyses of clinical outcomes, both between-group and within-group comparisons were performed to evaluate the effects of daily administration of mulberry leaves. One-way ANOVA was carried out for between-group comparison, whereas paired t-test was used for within-group comparison of clinical outcomes. In addition, repeated measures ANOVA was performed to analyze the change in adherence to the study intervention in each group throughout the study. A value of p < 0.05 was considered significant difference. All of statistical analyses were run on the SPSS version 22.0 (SPSS. Co., Ltd, Bangkok Thailand).

3.3 Study III (Proteomic analysis)

A semiquantitative proteomic analysis was performed as part of our phase II study. The study protocol was approved by Institutional Review Boards of the Royal Thai Army Medical Department, Phramongkutklao College of Medicine (No. Q038h/60) (Appendix E).

3.3.1 Study design : A prospective, single-group, experimental study

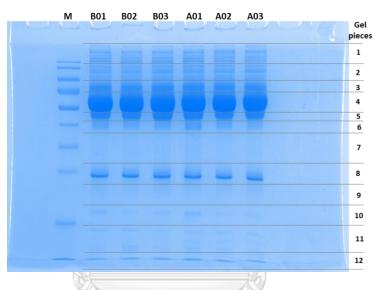
3.3.2 Participants : The participants who enrolled the clinical study II were considered as the selected cases for the determination of protein expression using proteomic analysis. The selection criteria are described below. Table 10 shows characteristics of the selected participants whose plasma protein expression were analyzed.

- 1) Participants who were assigned to the treatment group (mulberry leaves + diet control)
- 2) The top 12 persons who had the greatest reduction in A1C at the end of study

	Dortiginant	A1C (%)		
	Participant ID	Before ^a	After ^b	Δ A1C (after-before)
1	37	6.0	5.1	-0.9
2	35	6.9	6.5	-0.4
3	46	6.2	5.8	-0.4
4	49	6.2	5.9	-0.3
5	39	5.9	5.6	-0.3
6	33	6.0	5.8	-0.2
7	17	5.8	5.6	-0.2
8	7	5.6	5.4	-0.2
9	11 🚽	5.6	5.4	-0.2
10	22	5.5	5.3	-0.2
11	34	6.7	6.6	-0.1
12	1	6.0	5.9	-0.1

Table 10 Characteristics of the selected participants for proteomic analysis (N = 12)

3.3.3 Sample collection and preparation


At the time of blood collection at week 0 and week 12 of the study II, three mL of the blood specimen was obtained from each participant into an anticoagulant vacutainer (the lavender-top tube containing ethylenediaminetetraacetic acid; EDTA) and kept refrigerated intermediately. Then, the whole blood was centrifuged and the plasma fraction was carefully collected and stored frozen at -80°C until the analysis.

Plasma samples obtained from the 12 selected cases were divided into three groups (n = 4/group) and the samples were pooled in order to lower the individual variance of proteins within the study. Each of the pooled samples were considered as independent replicate and analyzed separately.

3.3.4 Wet-lab experiments

1) Protein separation by gel electrophoresis

Concentration of total proteins in the pooled samples was determined using Bradford protein assay (Bio-Rad[®], USA). Protein separation was conducted in onedimensional sodium dodecyl sulphate-polyacrylamide gel electrophoresis (1D SDS-PAGE) consisting of 4% stacking and 12% separating parts in the gel electrophoresis unit (Bio-Rad[®], USA). Each pooled sample were subjected to the gel in the individually parallel lanes before running the gel with the constant voltage at 120 Volt for 80 min. The protein gel was stained with Coomassie Blue-R for 10 min and then incubated in destaining solution containing 30% methanol and 10% acetic acid for three hours. Then, the gel was washed and incubated in distilled water for 15 min thereafter. Images of the gel were taken by the gel documentary (Bio-Rad[®], USA). As shown in Figure 9, each excised section was cut and divided into 12 pieces before storing separately in -20°C until the further processes.

Figure 9 Protein separation using 1D SDS-PAGE and the excised sections for protein identification (M: markers; B01-B03: before-treatment pooled samples 1-3; A01-A03: after-treatment pooled samples 1-3)

2) In-gel tryptic digestion

The gel pieces were first dehydrated in 50% acetonitrile (Merck[®], USA) in water (HPLC grade, Merck[®], USA). The proteins were reduced in 7 mM DTT in 50 mM ammonium bicarbonate (NH₄HCO₃) for 15 min at 60°C and alkylated in 250 mM iodoacetamide for 30 min at room temperature under the light-protection condition. Next, 7 mM DTT in 50 mM NH₄HCO₃ were added for quenching the alkylation reaction. Then, the solutions were removed before gel dehydration using 100% acetonitrile and drying at room temperature for one hour. In order to reduce the complexity of the proteins to peptides, the complex molecules of the samples were digested by trypsin in 50 mM NH₄HCO₃ at 37°C for 16 hours. The supernatants

containing the digested peptides were subsequently collected and centrifuged at 10,000 X g at room temperature for 15 min before drying by CentriVap Vacuum Concentrators (Labconco, USA) at 40°C until completely dried.

3) Label-free proteomic analysis for protein identification

Identification of the peptide sequences (protein fractions) was performed using MS analysis. The dried samples were dissolved in 0.1% formic acid. The label-free proteomic analysis was performed using the UltiMate[®] 3000 Nano-LC systems (Dionex, UK) with column Acclaim PepMap RSLC C18 75 μ m x 15 cm (Thermo Scientific, USA) as stationary phase. The pump flow rate was 300 nl/min. Mobile phase A was 0.1% formic acid and mobile phase B was 80% acetonitrile in 0.1% formic acid. The initial mobile phase was maintained at 4% solution B for 5 min. After that, the peptide mixtures were eluted using gradient condition from 4% to 50% solution B for 30 min and held for 5 min. Subsequently, the condition was followed to the initial step for 10 min. The eluates containing peptides were further subjected into the positive electrospray ionization system couple with microTOF-Q II (Bruker, Germany) to identify peptide spectra. The MS and MS/MS spectra were set covering the range of m/z 400-2000 and m/z 50-1500, respectively.

3.3.5 Computational analysis

First, the Data Analysis software (version 3.4) was used for conversion of the acquired MS/MS spectra to the mascot generic files. Second, identification of the peptide sequences was performed on November 2, 2020 using the Mascot Daemon program version 2.3.02 (Matrix Science, London, UK) and the SwissProt database specific to *Homo sapiens* species. Methionine oxidation and carbamidometylation of cysteines were considered as fixed modification and variable modification, respectively. Third, semiquantitative determination of protein expression level was determined by Exponentially Modified Protein Abundance Index (emPAI) [301], which is the parameter for estimation of absolute protein abundance in the samples based on the number of sequenced peptides per protein. Furthermore, the fold change in expression of individual protein was determined by the ratio of the protein

abundance of the two samples following the equation: fold change = $emPAI_{after}$ / $emPAI_{before}$.

Regarding scope of the present study, the proteins that expressed differentially in response to the assigned treatment were included in the result interpretation. Specifically, the differentially expressed proteins refer to the ones which their expression levels changed after receiving the intervention (at week 12) in comparison with the baseline profile (at week 0). The differential expressions of proteins are classified as up-expression (\uparrow) and down-expression (\downarrow). Definitions of the upexpressed and down-expressed proteins in this work are described below.

Up-expressed proteins (i) Proteins with fold change ≥ 1.50 or

(ii) Proteins that uniquely present in the aftertreatment sample

Down-expressed proteins (i) Proteins with fold change ≤ 0.67 or

(ii) Proteins that uniquely present in sample the before-treatment sample

Fourth, UniProt database (<u>www.uniprot.org</u>) searching against gene ontology (GO), including molecular function, biological process, and cellular component, was performed in December 2020 to obtain biological information of the differentially expressed proteins (n = 523 entities). The GO enrichment analysis was subsequently conducted using the following searching keywords to specifically focus on the proteins that closely linked to pathophysiology and pathogenesis of insulin resistance and type 2 diabetes.

- Glucose/carbohydrate
- Lipid/fat/cholesterol/triglycerides
- Immune
- Inflammation
- Tumor necrosis factor
- NF-κB
- Microparticle
- Ceramides/diacylglycerol
- Surface protein

- Insulin
- Apoptosis/apoptotic bodies
- Complement system
- Acute phase reactant
- Cytokine/interleukin/adipokine
- Unfolded/misfolded protein
- Exosome
- Endothelial dysfunction
- Collagen/hyaluronan/laminin/
 fibronectin/integrin

Extracellular matrix remodeling

- Extracellular matrix
- Focal adhesion
- Chemoattractant

- Intermediate filament
- Inflammasome

In this regard, 311 proteins were excluded, whereas the other 212 proteins were submitted to the further analysis. Fifth, to explore the functional relationships among the proteins of interest, the functional enrichment analysis was performed using STRING database (www.string-db.org) specific to *Homo sapiens* species. Next, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was carried out (n = 212 entities) at the level of biological pathways. Finally, the candidate KEGG pathways and the matching proteins belonging to each pathway were considered for the evaluation of molecular effects of the given intervention on plasma protein expression. The summary of procedures of proteomic analysis are shown in Figure 10.

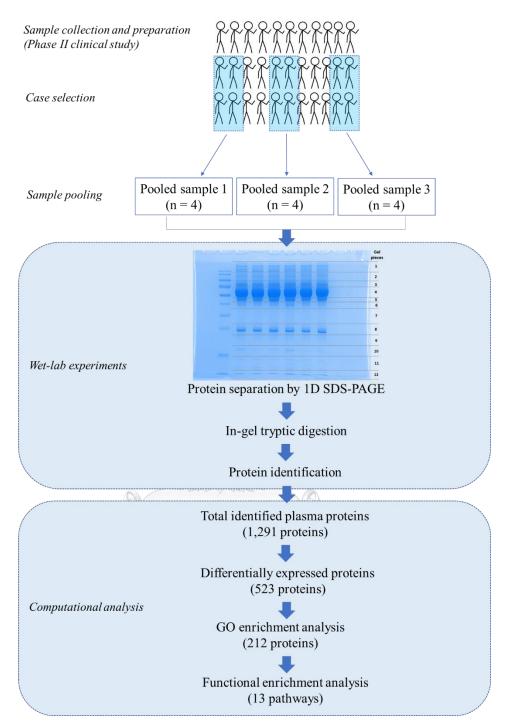


Figure 10 Procedures of proteomic analysis

CHAPTER IV RESULTS

4.1 Study I (Phase I clinical trial): To determine effect of a single administration of mulberry leaves on plasma glucose excursion in response to carbohydrate load among healthy non-diabetic persons and determining the effective dose with minimal adverse effects of mulberry DNJ

Study I was carried out from September 2016 to April 2017 at the Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand. Description of algorithm for study enrollment and data collection is shown in Figure 11. Ninety volunteers were enrolled to this study. Four persons were excluded at the screening visit due to abnormal laboratory tests, whereas another was not able to comply with the study protocol. Therefore, 85 healthy adults were recruited into randomization, and then allocated into group 1 (n = 21), group 2 (n = 21), group 3 (n = 21), and group 4 (n = 22) for analysis.

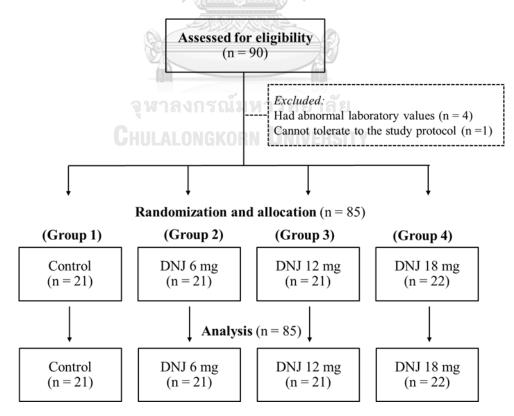


Figure 11 Algorithm for study enrollment and data collection of study I

4.1.1 Participants characteristics

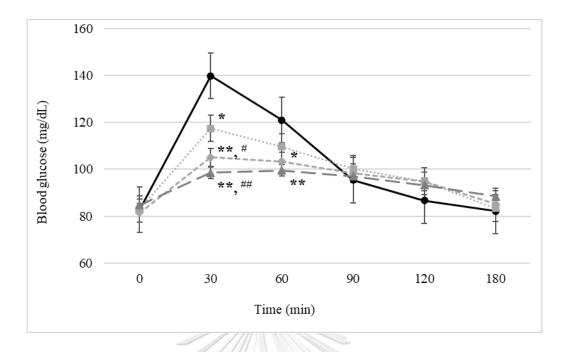
Of 85 participants, 68 persons (80.0%) were female. University students were the majority (85.9%) of study population. Overall, the mean age of the enrolled participants was 23.31 ± 6.94 years. The mean body weight and BMI were $54.29 \pm$ 6.89 kg and 20.36 ± 1.40 kg/m², respectively. Blood glucose concentration of participants were averaged at 83.06 ± 5.92 mg/dL for FPG and $5.1 \pm 0.3\%$ for A1C. In addition, the values of hepatic enzymes, BUN, and Cr were in the normal ranges, indicating the absence of hepatic and renal dysfunction in the included participants. There was no difference in demographic data and clinical outcomes at baseline among the four groups as shown in Table 11.

Table 11 Daschille characteristics of participatitis of study 1 ($M = 0.0$)	nie to entreparte to e	$(co - v) \mathbf{i} \mathbf{k}$			
	Group 1	Group 2	Group 3	Group 4	D1
	(Control)	(DNJ 6 mg)	(DNJ 12 mg)	(DNJ 18 mg)	r values
Number of participants	21	21	21	22	
Demographic data					
Age (year)	21.81 ± 5.72	25.81 ± 9.29	22.33 ± 5.57	23.27 ± 6.33	0.250
	(18 - 45)	(18 - 48)	(18 - 41)	(18 - 42)	
Female	17 (81.0)	17 (81.0)	17 (81.0)	17 (77.3)	0.987
Occupation	โล 1.1.0		la l		0.086
 University students 	20 (95.2)	15 (71.4)	19 (90.5)	19 (86.4)	
 Government officers 	(0) 0 GK	3 (14.3)	(0) (0)	0 (0)	
 Private employees 	1 (4.8)	3 (14.3)	2 (9.5)	3 (13.6)	
Current smoking	1 (4.8)	1 (4.8)	0 (0)	0 (0)	0.553
Current drinking alcohol	2 (9.5)	5 (23.8)	8 (38.1)	3 (13.6)	0.105
Concomitant diseases					0.764
- Allergic rhinitis	3 (14.3)	2 (9.5)	3 (14.3)	2 (9.1)	
- Hypertension	0 (0)	0 (0)	0 (0)	1 (4.5)	

Table 11 Baseline characteristics of narrivinants of study $I\left(N=85
ight)$

105

	Group 1	Group 2	Group 3	Group 4	D l oc
	(Control)	(DNJ 6 mg)	(DNJ 12 mg)	(DNJ 18 mg)	r vulues
Clinical outcomes					
Weight (kg)	54.37 ± 5.40	54.55 ± 5.80	53.76 ± 8.78	54.45 ± 7.48	0.983
	(47 - 66)	(45 - 65)	(43 - 78)	(41 - 69)	
BMI (kg/m ²)	20.34 ± 1.41	20.57 ± 1.28	20.01 ± 1.47	20.52 ± 1.46	0.578
	(17.42 - 23.56)	(18.57 – 22.64)	(18.37 - 22.34)	(18.22 - 23.44)	
SBP (mmHg)	104.71 ± 9.97	107.19 ± 10.93	104.95 ± 12.40	105.77 ± 12.06	0.890
	(89 - 131)	(92-128)	(86 - 127)	(83 - 133)	
DBP (mmHg)	68.57 ± 4.74	67.67 ± 10.11	68.29 ± 8.30	66.86 ± 10.86	0.925
	(61 - 78)	(48 - 86)	(55 - 84)	(41 - 84)	
HR (bpm)	74.71 ± 10.33	74.95 ± 12.99	78.67 ± 12.02	75.45 ± 9.41	0.642
	(26 - 67)	(58-101)	(53 - 100)	(61 - 95)	
FPG (mg/dL)	82.71 ± 5.36	83.00 ± 6.99	81.43 ± 5.55	85.00 ± 5.51	0.261
	(74 - 99)	(72 - 100)	(63 - 88)	(75 - 101)	
A1C (%)	5.0 ± 0.3	5.0 ± 0.4	5.1 ± 0.3	5.1 ± 0.3	0.54I
	(4.3 - 5.4)	(4.3 - 5.7)	(4.6 - 5.6)	(4.5 - 5.7)	


Table 11 Baseline characteristics of participants of study I ($N = 85$) (cont.)	s of participants of study	I (N = 85) (cont.)			
	Group 1	Group 2	Group 3	Group 4	n1
	(Control)	(DNJ 6 mg)	(DNJ 12 mg)	(DNJ 18 mg)	r values
Clinical outcomes					
AST (U/L)	22.52 ± 6.99	21.52 ± 6.02	20.48 ± 6.59	22.18 ± 5.60	0.732
	(15 - 37)	(12 - 36)	(13 - 36)	(13 - 35)	
ALT (U/L)	11.95 ± 4.18	12.76 ± 5.70	15.14 ± 9.17	13.09 ± 5.58	0.425
	(5-21)	(5 - 26)	(6 - 39)	(6 - 30)	
BUN (mg/dL)	10.76 ± 2.17	10.81 ± 2.40	11.38 ± 2.92	11.05 ± 2.89	0.864
	(7 - 15)	(7 - 18)	(7 - 19)	(6 - 17)	
Cr (mg/dL)	0.76 ± 0.13	0.75 ± 0.12	0.74 ± 0.17	0.73 ± 0.14	0.909
	(0.6 - 1.0)	(0.6 - 1.0)	(0.5 - 1.1)	(0.5 - 1.0)	
Data are reported as number ($\%$) and mean \pm S.D. with range (min – max) for categorical and continuous variables, respectively	(i) and mean \pm S.D. with	range (min – max) for	categorical and contin	nuous variables, respe	ctively
P values for between-group comparison analyzed by Chi-square (or Fisher's Exact test) and one-way ANOVA for categorical and	omparison analyzed by	Chi-square (or Fishe	r's Exact test) and on	e-way ANOVA for ca	ttegorical and
continuous variables, respectively	ely Al BV				
BMI: body mass index; kg: kilogram; kg/m ² : kilogram per square meter; SBP: systolic blood pressure; DBP: diastolic blood pressure;	ogram; kg/m ² : kilogram	per square meter; SB	P: systolic blood press	ure; DBP: diastolic bl	lood pressure;
mmHg: millimeter of mercury; HR: heart rate; bpm: beat per minute; FPG: fasting plasma glucose; mg/dL: milligram per deciliter;	; HR: heart rate; bpm: b	eat per minute; FPG:	fasting plasma gluco	se; mg/dL: milligram	per deciliter;

A1C: glycated hemoglobin; AST: aspartate aminotransferase; ALT: alanine aminotransferase; U/L: unit per liter: BUN: blood urea nitrogen; Cr: creatinine

4.1.2 Efficacy of mulberry leaves in lowering postprandial hyperglycemia in response to carbohydrate load

Table 12 shows the mean concentrations of PPG at individual time points and AUC $_{0-180 \text{ min}}$ of glucose after receiving the test beverages in the four groups of participants. As seen in the control group, ingestion of 50-g sucrose resulted in an elevation of blood glucose and the level of PPG sharply increased in the early period (p < 0.001 at 30 min, p < 0.001 at 60 min, and p = 0.003 at 90 min *vs.* FPG). Time observed the peak level of blood glucose was at 30 min. After that, the concentration of PPG continuously declined and returned to the baseline level within 120 min (p = 0.287 *vs.* FPG). There was no episode of hypoglycemia throughout 180 min of the experimental period. These findings represent blood glucose excursion after carbohydrate load without mulberry leaves administration in healthy non-diabetic adults.

Co-administration of sucrose and mulberry leaves caused the declines in PPG at specific time points. The significant differences in PPG levels among the groups were found at 30 min (p < 0.001) and 60 min (p < 0.001) as analyzed by one-way ANOVA. In addition, post-hoc analysis found effects of the different doses of mulberry DNJ on postprandial glucose excursion as demonstrated in Figure 12. When compared with the control group, all of the three doses of DNJ effectively suppressed the levels of PPG-30 (p < 0.05 for DNJ 6 mg, p < 0.001 for DNJ 12 mg, and p < 0.001 for DNJ 18 mg). Moreover, at the same time point, the glucose-lowering effects of DNJ 12 mg and DNJ 18 mg also differed from DNJ 6 mg (p < 0.05 and p < 0.001, respectively).

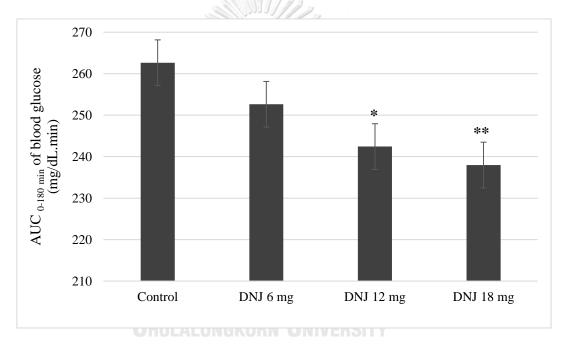

Figure 12 Postprandial glucose excursion over 180 min following co-administration of 50-g sucrose and the different doses of mulberry DNJ: control (•), DNJ 6 mg (\blacksquare), DNJ 12 mg (•), and DNJ 18 mg (\blacktriangle). (* p < 0.05, ** p < 0.001 *vs*. control and [#] p < 0.05, ^{##} p < 0.001 *vs*. DNJ 6 mg, analyzed by one-way ANOVA and followed with Bonferroni post-hoc test)

Table 12 The mean cou	ncentrations of PPG at in-	dividual time points and	Table 12 The mean concentrations of PPG at individual time points and AUC 0-180 min of glucose after receiving the test beverages	after receiving the test be	everages
0.4200000	Group 1	Group 2	Group 3	Group 4	n
Outcomes	(Control)	(DNJ 6 mg)	(DNJ 12 mg)	(DNJ 18 mg)	r values
FPG (mg/dL)	80.25 ± 6.44	82.09 ± 4.19	85.20 ± 6.38	83.11 ± 4.42	0.335
	(79 - 100)	(75 – 95)	(72 - 101)	(78 - 95)	
PPG-30 (mg/dL)	139.76 ± 15.36	117.43 ± 14.93	105.05 ± 13.00	98.50 ± 8.93	< 0.001
	(99 - 157)	(99 - 165)	(82 - 130)	(83 - 116)	
PPG-60 (mg/dL)	120.95 ± 20.65	109.48 ± 18.06	103.33 ± 14.38	99.00 ± 12.00	< 0.001
	(89 - 178)	(90 - 174)	(84 - 146)	(79 - 125)	
PPG-90 (mg/dL)	95.43 ± 15.24	100.24 ± 11.19	98.33 ± 11.22	97.00 ± 8.35	0.593
	(77 - 139)	(83 – 131)	(83 – 134)	(83 - 117)	
PPG-120 (mg/dL)	86.67 ± 16.83	94.90 ± 8.21	94.81 ± 9.36	93.50 ± 9.88	0.072
	(66 - 139)	(82 - 111)	(78 - 121)	(75 - 119)	
PPG-180 (mg/dL)	82.24 ± 9.08	83.38 ± 6.77	85.24 ± 10.49	88.41 ± 8.77	0.47I
	(70 - 100)	(72 – 96)	(61 - 106)	(76 - 104)	
AUC 0-180 min	262.64 ± 20.85	252.62 ± 20.21	242.43 ± 19.77	237.94 ± 15.78	< 0.001
(mg/dL.min)	(232.25 - 303.00)	(230.50 - 329.25)	(212.25 - 305.00)	(215.00 - 280.75)	
Data are reported as me	Data are reported as mean \pm S.D. with range (min – max)	in – max)			
P values for between-group comparison anal	roup comparison analyze	lyzed by one-way ANOVA			
FPG: fasting plasma gl	FPG: fasting plasma glucose; PPG; postprandial plasma glucose; AUC: area under the curve	plasma glucose; AUC:	area under the curve		

There were the significant suppressive effects on PPG-60 by DNJ 12 mg (p < 0.05) and DNJ 18 mg (p < 0.001) in comparison with the control group. The results suggested that mulberry leaves effectively reduced PPG at 30 min and 60 min after carbohydrate ingestion in the dose-dependent fashion. Meanwhile, no effect of the three doses of mulberry DNJ was observed on PPG-90, PPG-120, and PPG-180.

In addition to the suppressive effect of mulberry leaves on PPG at individual time points, mulberry leaves containing DNJ 12 mg and DNJ 18 mg significantly decreased the AUC $_{0-180 \text{ min}}$ of blood glucose (p < 0.05 and p < 0.001, respectively) when compared with control as shown in Figure 13.

Figure 13 The AUC _{0-180 min} of blood glucose following co-administration of 50-g sucrose and the different doses of mulberry DNJ (* p < 0.05, ** p < 0.001 *vs.* control)

4.1.3 Adverse events of a single administration of mulberry leaves containing 6, 12, and 18 mg of DNJ

Regarding the assessment by Naranjo's algorithm, probable adverse events of a single administration of mulberry leaves containing the three doses of DNJ are summarized in Table 13. There were significant differences in the numbers of participants experiencing bloating and flatulence among the groups (p = 0.002).

Furthermore, persons who received mulberry leaves containing DNJ 18 mg were more likely to develop bloating and flatulence when compared with those who ingested mulberry leaves containing DNJ 12 mg (p = 0.064). On the other hand, no difference in frequencies of loose stool (p = 1.000) and nausea (p = 0.304) caused by the study intervention among the four groups was observed in this study. Nonetheless, participants well tolerated to the events. The symptoms gradually resolved with no need for any treatment within few days. In addition, no serious adverse effect was reported during the experiment and seven days thereafter.

		Numbers of pa	rticipants (%)	
Adverse events	Group 1 (Control)	Group 2 (DNJ 6 mg)	Group 3 (DNJ 12 mg)	Group 4 (DNJ 18 mg)
Bloating and flatulence	0 (0)	0 (0)	1 (4.8)	7 (31.8)
Loose stool	0 (0)	0 (0)	0 (0)	1 (4.5)
Nausea	1 (4.8)	0 (0)	0 (0)	2 (9.1)

 Table 13 Adverse events of the different doses of mulberry leaves

Data are reported as numbers (%)

4.1.4 The effective dose with minimal adverse effects of mulberry DNJ

The effective dose of mulberry DNJ with minimal adverse effects was determined in study I. As described in the section 4.1.2, the strongest effective dose suppressing postprandial hyperglycemia in response to carbohydrate load was 18 mg and followed by 12 mg of DNJ. There were small differences in the significance levels between the two effective doses. In the meantime, in terms of safety, administration of DNJ 18 mg caused the high incidence of bloating and flatulence and the rate tended to be higher than DNJ 12 mg (p = 0.064). This however indicated the clinical meaning of the findings. Also, it could be possible to observe the statistical difference between the groups when the large sample size is included to the further study. As a result, DNJ 12 mg was considered the effective dose with minimal adverse effects of mulberry DNJ and was used in the study II.

4.2 Study II (Phase II clinical trial): To determine efficacy and safety of a long-term supplementation of mulberry leaves on glycemic control in persons who had impaired glucose metabolism including obese persons with prediabetes and patients with early-stage type 2 diabetes

The study was conducted from February 2018 to February 2019 at the Department of Medicine, Phramongkutklao Hospital, Bangkok, Thailand. The first participant was recruited on February 23, 2018. The last participant was followed up and the study completed on February 14, 2019.

Algorithm for study enrollment and data collection of study II is described in Figure 14. In the screening and recruitment period, 143 outpatients who had regular appointments at the Department of Family Medicine were informed the purposes and the methods of this study. Sixty persons declined to participate and 24 persons failed to meet the inclusion criteria. Therefore, a total of 59 persons were subsequently recruited into the run-in period and randomly allocated into the two groups: treatment group (n = 29) and control group (n = 30).

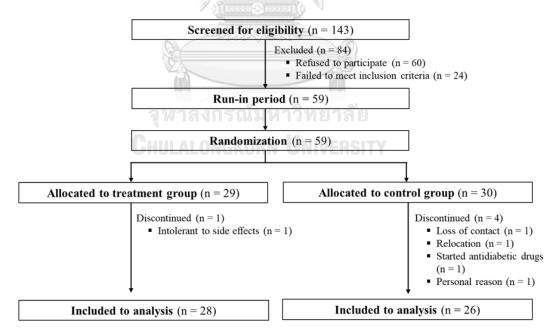


Figure 14 Algorithm for study enrollment and data collection of study II

One person in the treatment group terminated research participation because he was not able to tolerate to side effects of mulberry leaves, including bloating and frequent belching and fart. Four participants in the control group withdrawn from the study according to loss of contact, relocation, changing treatment regimen for diabetes, and personal reason. Finally, 28 and 26 participants in the treatment group and the control group, respectively, were included to the per-protocol analysis.

4.2.1 Participants characteristics

Table 14 summarizes numbers of the study participants in each group regarding the categories of impaired in glucose metabolism. Most of participants (92.6%) were categorized as prediabetes including 26 persons (92.9%) in the treatment group and 24 persons (92.3%) in the control group. Meanwhile, two persons (7.1% in the treatment group and 7.7% in the control group) were newly diagnosed patients with type 2 diabetes.

Categories	Treatment group (n = 28)	Control group (n = 26)	P values
Prediabetes	26 (92.9)	24 (92.3)	0.939
IFG	21 (75.0)	21 (80.8)	0.610
IGT	14 (50.0)	16 (61.5)	0.394
Type 2 diabetes	จพาลงา2 (7.1) หาวิท	ยาลัย 2(7.7)	0.939

Table 14 Categories of impaired in glucose metabolism

Data are reported as numbers (%)

P values for between-group comparison analyzed by Chi-square (or Fisher's Exact test) IFG: impaired fasting glucose; IGT: impaired glucose tolerance

Thirty-nine (72.2%) of all participants were female. The mean age of participants was 52.59 ± 6.89 years. BMI was averaged at 30.81 ± 5.02 kg/m². Table 15 presents demographic data and the baseline levels of clinical outcomes of participants. Results showed that the baseline characteristics were comparable between the two groups.

	Treatment group (n = 28)	Control group (n = 26)	P values
Domographia data	(11 – 20)	(11 – 20)	
Demographic data	52 14 + 5 49	52.00 + 9.22	0 5 4 9
Age (year)	53.14 ± 5.48	52.00 ± 8.22	0.548
	(40 - 63)	(38 - 65)	0 457
Gender			0.457
Female	19 (67.9)	20 (76.9)	
Male	9 (32.1)	6 (23.1)	
Marital status			0.107
Single	8 (28.6)	7 (26.9)	
Married	12 (42.9)	17 (65.4)	
Divorce and widow	8 (28.6)	2 (7.7)	
Education			0.535
Under Bachelor's degree	16 (57.1)	17 (65.4)	
Bachelor's degree or over	12 (42.9)	9 (34.6)	
Occupation		2	0.482
Government and state	16 (57.1)	14 (53.8)	
enterprise officers	// \$ Q A	2	
Private employees	4 (14.3)	6 (23.1)	
Businesspersons	2 (7.1)	0 (0.0)	
Others	6 (21.4)	6 (23.1)	
Income			0.070
None to 10,000 Baht	3 (10.7)	6 (23.1)	
10,001 to 20,000 Baht	6 (21.4)	10 (38.5)	
20,001 to 30,000 Baht	15 (53.6)	5 (19.2)	
Over 30,000 Baht	4 (14.3)	5 (19.2)	
Medical welfare	(11.5)	0 (1).2)	0.877
Government and state	NGKO 19 (67.9)	ISITY 15 (57.7)	0.077
enterprise officer	1) (07.))	15 (57.7)	
Universal coverage (30-	2 (7.1)	2 (7.7)	
Baht) scheme	2 (7.1)	2 (1.1)	
Social security scheme	6 (21.4)	8 (30.8)	
•		. ,	
Own payment	1 (3.6)	1 (3.8)	
Health-related data	2(71)	0 (0 0)	0.401
Current smoking	2 (7.1)	0 (0.0)	0.491
Current drinking alcohol	17 (60.7)	11 (42.3)	0.186
Concomitant diseases			0 -00
Hypertension	15 (53.6)	13 (50.0)	0.793
Dyslipidemia	23 (82.1)	18 (69.2)	0.599
First-degree relatives to	14 (50.0)	16 (61.5)	0.394
diabetes			

Table 15 Baseline characteristics of participants of study II (N = 54)

	Treatment group (n = 28)	Control group (n = 26)	P values
Clinical outcomes	(11 - 20)	(II - 20)	
Anthropometric data			
Weight (kg)	78.06 ± 13.98	82.93 ± 20.79	0.314
weight (kg)	(61.0 - 115.0)	(57.8 - 165.5)	0.314
BMI (kg/m^2)	(01.0 - 115.0) 30.06 ± 4.06	(37.8 - 105.3) 31.61 ± 5.85	0.261
Bivii (kg/iii)			0.201
Waist singura forma on (and)	(27.25 - 38.18)	(25.35 - 54.02)	0.517
Waist circumference (cm)	100.52 ± 11.21	102.92 ± 15.67	0.517
T 7*4 - 1 - *	(84.0 – 131.0)	(85.0 – 165.0)	
Vital signs	107.00 11.07	120 77 . 17 20	0.470
SBP (mmHg)	127.89 ± 11.97	130.77 ± 17.29	0.478
	(101 – 148)	(94 – 161)	0.004
DBP (mmHg)	77.68 ± 10.54	77.00 ± 13.14	0.834
	(54 – 95)	(54 – 109)	
HR (bpm)	79.82 ± 9.40	77.00 ± 10.01	0.290
	(65 – 95)	(59–97)	
Blood glucose			
FPG (mg/dL)	107.04 ± 10.28	107.50 ± 9.09	0.864
J	(81 – 127)	(78 - 119)	
PPG-30 (mg/dL)	173.89 ± 17.52	172.04 ± 21.48	0.729
	(133 – 208)	(121 – 216)	
PPG-60 (mg/dL)	186.61 ± 29.95) 191.46 ± 31.96	0.567
(C)	(112 – 235)	(131 – 271)	
PPG-90 (mg/dL)	171.21 ± 33.19	177.46 ± 40.25	0.535
	(99 - 252)	(120 - 282)	
PPG-120 (mg/dL)	141.14 ± 32.97	155.12 ± 37.53	0.151
	LONG (71 – 220)	ST (96 – 264)	
AUC 0-120 min (mg/dL.min)	331.83 ± 40.15	336.08 ± 52.28	0.738
	(247 - 423)	(250 - 458)	
A1C (%)	5.8 ± 0.4	5.7 ± 0.3	0.180
	(5 - 7)	(5 - 7)	
Insulin			
FPI (µIU/mL)	13.55 ± 7.85	14.39 ± 6.02	0.668
	(3.9 - 36.8)	(6.2 - 28.5)	
HOMA-IR	3.60 ± 2.18	3.84 ± 1.72	0.667
	(1.1 - 9.5)	(1.7 - 8.1)	
	. ,	. ,	

Table 15 Baseline characteristics of participants of study II (N = 54) (cont.)

	Treatment group (n = 28)	Control group (n = 26)	P values
Lipids			
TC (mg/dL)	194.99 ± 35.53	200.66 ± 37.93	0.573
	(125.4 - 270.9)	(138.3 - 268.4)	
TG (mg/dL)	131.63 ± 45.22	145.03 ± 59.99	0.356
	(52.5 - 248.5)	(76.8 - 314.5)	
HDL-C (mg/dL)	54.89 ± 14.35	53.56 ± 9.82	0.694
	(28.0 - 86.6)	(36.9 – 69.1)	
LDL-C (mg/dL)	139.06 ± 33.80	137.46 ± 34.25	0.864
	(72.1 – 196.2)	(73.0 – 193.3)	
Hepatic and renal fund	ction		
AST (U/L)	21.93 ± 4.84	19.94 ± 5.19	0.151
	(12.7 – 33.8)	(12.7 – 33.2)	
ALT (U/L)	23.22 ± 19.24	19.24 ± 7.05	0.055
	(11.0 – 39.3)	(7.2 - 34.5)	
Cr (mg/dL)	0.81 ± 0.18	0.72 ± 0.19	0.078
	(0.53 – 1.24)	(0.48 - 1.42)	

Table 15 Baseline characteristics of participants of study II (N = 54) (cont.)

Data are reported as numbers (%) and mean \pm S.D. with range (min – max) for categorical and continuous variables, respectively

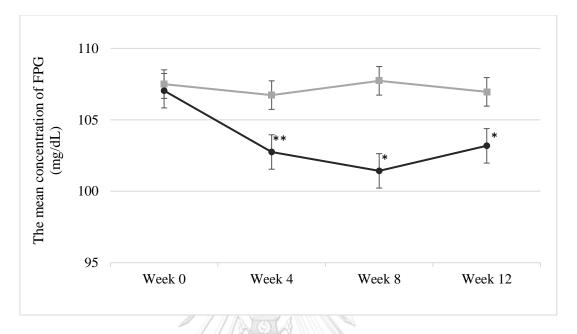
P values for between-group comparison analyzed by Chi-square (or Fisher's Exact test) and one-way ANOVA for categorical and continuous variables, respectively kg: kilogram; BMI: body mass index; kg/m²: kilogram per square meter; SBP: systolic blood pressure; DBP: diastolic blood pressure; mmHg: millimeter of mercury; HR: heart rate; bpm: beat per minute; FPG: fasting plasma glucose; mg/dL: milligram per deciliter; PPG: postprandial plasma glucose; AUC: area under the curve; A1C: glycated hemoglobin; FPI: fasting plasma insulin; μIU/mL: micro international unit per milliliter; HOMA-IR: Homeostatic Model Assessment of Insulin Resistance; TC: total cholesterol; TG: triglyceride; HDL-C: high-density lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol; AST: aspartate aminotransferase; ALT: alanine aminotransferase; U/L: unit per liter: Cr: creatinine

4.2.2 Effects of mulberry leaves on glycemic control

Effects of mulberry leaves on blood glucose and insulin resistance were determined and reported as the mean concentrations and the mean changes of glycemic outcomes at baseline and week 12 in Table 16 and Table 17, respectively.

1) PPG following 75-g OGTT

At the end of study, postprandial glucose excursion following the standard OGTT did not differ between the groups. A significant reduction in PPG-30 by -10.75 \pm 22.64 mg/dL (p = 0.018) when compared with the initial level was however observed in the treatment group at week 12. In addition, the AUC _{0-120 min} of glucose in the mulberry leaves-treated group tended to be lower than baseline by -8.81 \pm 35.90 mg/dL.min (p = 0.073).


2) A1C

The levels of A1C of the treatment group and the control group was not different at week 12. There was a significant improvement in A1C among participants in the treatment group after receiving mulberry leaves. The mean A1C significantly reduced by $-0.11 \pm 0.22\%$ (p = 0.011) in the treatment group, whereas no change in A1C was observed in the control group.

3) FPG จุฬาลงกรณ์มหาวิทยาลัย

At baseline, week 4, week 8, and week 12, the mean values of FPG were 107.04 ± 10.28 , 102.75 ± 10.01 , 101.43 ± 9.69 , and 103.18 ± 9.45 mg/dL in the treatment group and were 107.50 ± 9.09 , 106.73 ± 7.79 , 107.73 ± 8.92 , and 106.96 ± 10.31 mg/dL in the control group, respectively. There was no difference in FPG between the groups at every time points of measurements, except at week 8. The mean FPG at week 8 of the treatment group significantly lower than the control group (p = 0.016).

Figure 15 shows the significant alterations in FPG along the 12-week duration in the mulberry leaves-treated group. When compared with the baseline level, FPG of the treatment group significantly reduced by $-4.29 \pm 5.69 \text{ mg/dL}$ (p < 0.001) at week 4, $-5.61 \pm 8.47 \text{ mg/dL}$ at week 8 (p = 0.002), and $-3.86 \pm 5.99 \text{ mg/dL}$ (p = 0.002) at

week 12. On the other hand, no change in FPG was detected in the control group throughout the study.

Figure 15 The alterations in FPG of the treatment group (\bullet) and the control group (\blacksquare) throughout the 12-week study period. (* p < 0.05, ** p < 0.001 vs. the baseline level analyzed by repeated-measures ANOVA)

	T	Treatment group (n = 28)	p (n = 28)	Control group (n = 26)	n = 26)	
Outcomes	t inte points of measurement	Mean ± S.D. (Min - May)	P values#	Mean ± S.D. (Min - Max)	P values#	P values*
FPG (mg/dL)	Baseline	107.04 ± 10.28		107.50 ± 9.09		
)		(81 - 127)		(78 - 119)		
	Week 4	102.75 ± 10.01 (87 - 116)	< 0.001+	106.73 ± 7.79 (77 - 115)	0.542	0.111
	Week 8	101.43 ± 9.69	0.002+	107.73 ± 8.92	0.850	0.016
		(00 - 120)		(711 - 117)		
	Week 12	103.18 ± 9.45	0.002+	106.96 ± 10.31	0.775	0.166
		(81 - 125)		(76 - 120)		
PPG-30 (mg/dL)	Baseline	173.89 ± 17.52 (133 - 208)	A A A A	172.04 ± 21.48 (121 – 216)		
	Week 12	163.14 ± 20.63 (113 - 211)	0.018	166.96 ± 19.78 (122 - 199)	0.210	0.491

4
N = 54)
9
l week 12
X
/ee
1
nud
e S
lin
se
ba
at
SS
Ĕ
00
out
ပ ပ
Ï.
Cel
1 _X
ы 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
nanges of glycemic outco
es
thang
iha
u u
ea
Ш
he
he mean concentrations and the mean changes of glycemic outcomes at baseline and week
anc
S
0D
ati
ıtr
Cel
nc
1 CO
an
me
The mean
Ц
16
ble 16
Ы
Ta

Outcomes I lime points of		Treatment group $(n = 28)$	Control group $(n = 26)$	n = 26)	
oucoures measurement	nts or <u>Mean ± S.D.</u> ment (Min - Max)	D. <i>P values</i> [#] x)	Mean ± S.D. (Min - Max)	P values#	P values*
PPG-60 Baseline	186.61 ± 29.95	.95	191.46 ± 31.96		
(mg/dL)	(112 - 235)		(131 - 271)		
Week 12	$183.14 \pm 24.$.81 0.528	190.65 ± 34.30	0.865	0.358
	(141 - 256)		(122 - 245)		
PPG-90 Baseline	171.21 ± 33.19	.19	177.46 ± 40.25		
(mg/dL)	(99 - 252)		(120 - 282)		
Week 12	169.29 ± 29.92	.92 0.734	174.04 ± 45.20	0.482	0.648
	(115 - 226)		(102 - 263)		
PPG-120 Baseline	141.14 ± 32.97	.97	155.12 ± 37.53		
(mg/dL)	(71 - 220)		(96 - 264)		
Week 12	163.14 ± 20.63	.63 0.251	166.96 ± 19.78	0.626	0.173
	(113 - 211)		(122 - 199)		

It
Ы
ŏ
\smile
Ŧ
Ň
11
Z
\Box
c 12 (N =
Ì
\mathbf{V}
G
ð
3
ă
a
d)
ã
Ξ
incentrations and the mean changes of glycemic outcomes at baseline and week 12 (N = 54) (con
a
Ē.
Ę
G
S
ЗĒ
ų
8
Ĕ
Z
0
U)
Ξ.
R
S
ž
÷.
ຸວມ
F
0
S
50
ũ
g
÷
0
g
8
ŭ
Ц
ē
th
10
aı
~
n,
Ö
Ē
ra
Ð
5
ŭ
ũ
0
C)
n
ža
ЗĒ
n
e)
,Ĕ
L
9
H
പ
Ţ
E C

Table 16 The n	Table 16 The mean concentrations and the mean changes of glycemic outcomes at baseline and week $12 (N = 54)$ (cont.)	mean changes of glyc	emic outcomes at l	baseline and week 12 (N	= 54) (cont.)	
	Time nointe of	Treatment group (n = 28)	(n = 28)	Control group $(n = 26)$	1 = 26	
Outcomes	measurement	Mean ± S.D. (Min - Max)	P values#	Mean ± S.D. (Min - Max)	P values#	P values [*]
AUC 0-120 min	Baseline	331.83 ± 40.15		336.08 ± 52.28		
(mg/dL.min)		(247 - 423)		(250 - 458)		
	Week 12	323.02 ± 35.75	0.073	330.52 ± 55.58	0.387	0.327
		(231.8 - 404.5)		(222.5 - 431.0)		
A1C (%)	Baseline	5.8 ± 0.4		5.7 ± 0.3		
		(5 - 7)		(5 - 7)		
	Week 12	5.7 ± 0.3	0.011	5.8 ± 0.4	0.100	0.551
		(5.1 - 6.6)		(5.1 - 6.6)		
Data are repor-	Data are reported as mean \pm S.D. with range	nge (min – max)				
* P values for l	* P values for between-group comparison (vs .	(vs. control) analyzed	control) analyzed by one-way ANOVA	A/		

 $^{\#}$ P values for within-group comparison (vs. baseline) analyzed by paired t-test

⁺ P values for within-group comparison (vs. baseline) analyzed by repeated-measure ANOVA

FPG: fasting plasma glucose; PPG: postprandial plasma glucose; mg/dL: milligram per deciliter; AUC: area under the curve; A1C: glycated hemoglobin

				~		
	Timo nointe of	Treatment group (n = 28)	p (n = 28)	Control group (n = 26)	n = 26)	
Outcomes	measurement	Mean ± S.D. (Min - Max)	P values#	Mean ± S.D. (Min - Max)	P values#	P values*
FPI (µIU/mL) Baseline	Baseline	13.55 ± 7.85		14.39 ± 6.02		
		(3.9 - 36.8)		(6.2 - 28.5)		
	Week 12	12.42 ± 6.66	0.188	14.05 ± 7.32	0.643	0.399
		(2.5 - 27.6)		(4.4 - 35.7)		
HOMA-IR	Baseline	3.60 ± 2.18		3.84 ± 1.72		
		(1.1 - 9.5)		(0.7 - 7.8)		
	Week 12	3.18 ± 1.78	0.057	3.78 ± 2.18	0.781	0.278
		(1.7 - 8.1)		(1.1 - 10.0)		
Data are report	Data are reported as mean \pm S.D. with range	ange (min – max)				
* P values for t	* P values for between-group comparison (vs.		control) analyzed by one-way ANOVA	VA		

_
33
47)
\mathbf{Z}
12
Ķ
week
3
and
e a
шĕ.
G
mean concentrations and the mean FPI and HOMA-IR at baseline and
ίt
a
A-IR
Ā
HOM
Q
Ξ
nd
[a
FPI
Ц
eat
Ĕ
he
th
pu
a
SUG
tio
ra
Snt
S
on
l C
Sar
mea
The
17
able
a
Ξ

* P values for within-group comparison (vs. baseline) analyzed by paired t-test

FPI: fasting plasma insulin; µIU/mL: micro international unit per milliliter; HOMA-IR: Homeostatic Model Assessment of Insulin Resistance

4) Insulin resistance

There was a specimen hemolysis during the procedure of blood collection in one sample; thus, the sample was excluded to avoid interference on the biochemical analysis. Finally, there were 27 and 26 blood samples remained in the treatment group and the control group, respectively, for the laboratory test of FPI.

At the end of study, the values of FPI and HOMA-IR did not differ between the two groups. However, the mean HOMA-IR of the mulberry leaves-treated group tended to reduce from the initial level (p = 0.057) after the 12-week study period.

5) Changes in the categories of impaired glucose metabolism

Four persons in the treatment group and one person in the control group conversed from prediabetes to normal glucose metabolism at the end of study. No participant who diagnosed with prediabetes in the both groups developed type 2 diabetes during the study period. Table 18 shows changes in the categories of impaired glucose metabolism in the treatment group and the control group from baseline.

4.2.3 Effects of mulberry leaves on anthropometric outcomes and vital signs

Table 19 demonstrates anthropometric profiles and vital signs of participants in the treatment group and the control group at week 12 when compared with baseline. In this study, the anthropometric outcomes refer to body weight, BMI, and waist circumference. No difference in these outcomes between the two groups and no change from baseline in these outcomes were found at week 12. However, there was a trend of BMI reduction in both groups (p = 0.075 in the treatment group and p = 0.094in the control group *vs*. the baseline levels).

There was no effect of mulberry leaves administration on vital signs as seen in the level of blood pressure and heart rate in the treatment group at week 12. Similarly, no change in vital signs was found in the control group.

	Treatment group $(n = 28)$	ıp (n = 28)	Control group $(n = 26)$	p (n = 26)	D2122
Categories	Baseline	Week 12	Baseline	Week 12	r values
Normal glucose metabolism	0 (0)	4 (14.3)	0 (0)	1 (3.8)	0.385
Prediabetes	26 (92.9)	22 (78.6)	24 (92.3)	23 (88.5)	0.330
IFG	21 (75.0)	18 (64.3)	21 (80.8)	20 (76.9)	0.310
IGT	14 (50.0)	9 (32.1)	16 (61.5)	15 (57.7)	0.059
Type 2 diabetes	2 (7.1)	2 (7.1)	2 (7.7)	2 (7.7)	0.939
Data are reported as number (%) P values for between-group comparison (vs. control) at week 12 analyzed by Chi-square (or Fisher's Exact test) IFG: impaired fasting glucose; IGT: impaired glucose tolerance	rison (vs. control) at wee : impaired glucose toler:	k 12 analyzed by Chi-sq ince	aare (or Fisher's Ex	act test)	

: 54)
$\overset{=}{\mathbf{Z}}$
e metabolism
glucose
npaired
of in
gories
ne cate
t
in the
• 18 Changes in the categories of impaired glucose
∞
-
[able
<u> </u>

	T:	Treatment group $(n = 28)$	(n = 28)	Control group $(n = 26)$	n = 26)	
Outcomes	nume points of measurement	Mean ± S.D. (Min - Max)	P values#	Mean ± S.D. (Min - Max)	P values#	P values*
Weight (kg)	Baseline	78.06 ± 13.98		81.31 ± 20.79		
		(61.0 - 115.0)		(57.8 - 165.5)		
	Week 12	77.43 ± 14.30	0.075	80.92 ± 14.06	0.098	0.352
		(58.7 - 115.4)		(58.0 - 114.7)		
BMI (kg/m ²) Baseline	Baseline	30.06 ± 4.06		31.01 ± 5.85		
		(27.25 - 38.18)		(25.35 - 54.02)		
	Week 12	29.80 ± 4.07	0.075	30.82 ± 3.86	0.094	0.272
		(25.43 - 37.67)		(25.34 - 38.58)		
WC (cm)	Baseline	100.52 ± 11.21		102.92 ± 15.67		
		(84 - 131)		(85 - 165)		
	Week 12	100.77 ± 11.32	0.586	101.98 ± 11.08	0.459	0.693
		(84 - 131)		(85 - 134)		

5	C	2
C	-	1
,		

	Time mints of	Treatment group $(n = 28)$	(n = 28)	Control group $(n = 26)$	n = 26)	
Outcomes	nue pours or — measurement	Mean ± S.D. (Min - Max)	P values#	Mean ± S.D. (Min - Max)	P values#	P values*
SBP (mmHg)	Baseline	127.89 ± 11.97 (101 - 148)		130.77 ± 17.29 (94 - 161)		
	Week 12	128.64 ± 12.57 (103 - 155)	0.658	129.62 ± 14.61 (103 - 151)	0.638	0.794
DBP (mmHg)	Baseline	77.68 ± 10.54 (54 - 95)		77.00 ± 13.14 (54 - 109)		
	Week 12	77.68 ± 12.43 (50 - 106)	1.000	76.92 ± 11.71 (60 - 101)	0.963	0.819
HR (bpm)	Baseline	79.82 ± 9.40 (65 - 95)		77.00 ± 10.01 (59 - 97)		
	Week 12	77.89 ± 9.62 (57 - 97)	0.175	79.19 ± 10.39 (57 - 102)	0.311	0.635
Data are repor * P values for l	Data are reported as mean \pm S.D. with range (min – max) * P values for between-group comparison (<i>vs.</i> control) analyzed by one-way ANOVA	range (min – max) on (vs. control) analyzed	l by one-way ANO	VA		
# P values for v	# P values for within-group comparison (vs. baseline) analyzed by paired t-test	n (vs. baseline) analyzed	by paired t-test			

blood pressure; DBP: diastolic blood pressure; mmHg: millimeter of mercury; HR: heart rate; bpm: beat per minute

27	
-	

4.2.4 Effects of mulberry leaves on blood lipids

Table 20 demonstrates effects of mulberry leaves treatment on lipid profiles based on the per-protocol analysis (N = 54). After the 12-week treatment period, the mean TC of the treatment group was significantly lower than the control group by - $17.91 \pm 36.50 \text{ mg/dL}$ (p = 0.034). The value of TC also significant reduced by -13.42 \pm 32.77 mg/dL (p = 0.002) when compared with the initial level. However, no effect of mulberry leaves on TG, HDL-C, and LDL-C was found.

Furthermore, to determine the effects of mulberry leaves on blood lipids in persons who had dyslipidemia only, the case selection analysis was additionally performed. In this analysis, participants who were diagnosed with dyslipidemia, met the criteria of dyslipidemia (TC \geq 200, TG \geq 150, HDL-C \leq 60, and/or LDL-C \geq 100 mg/dL), or treated with drugs for dyslipidemia, including 25 persons in the treatment group and 20 persons in the control group, were included. However, two in the treatment group and two in the control group were subsequently excluded because treatment regimen for dyslipidemia was changed. Thus, 23 and 18 persons in the treatment group and the control group, respectively, left for the analysis.

As shown in Table 21, the treatment group had the lowered TC by -19.52 \pm 27.06 mg/dL (p = 0.024) in comparison with the control group at the end of study. No difference in TG, HDL-C, and LDL-C was observed between the two groups. Meanwhile, the results also showed the significant decreases in TC and LDL-C by -17.10 \pm 19.93 mg/dL (p < 0.001) and -10.33 \pm 22.45 mg/dL (p = 0.038) in the treatment group after the 12-week study period when compared with the baseline levels. In addition, the level of TG of the treatment group tended to reduce by -12.36 \pm 30.78 mg/dL when compared with baseline with the borderline significant level (p = 0.067).

Outcomes TC (mg/dL) Ba	Pimo nointa of	Treatment group $(n = 28)$	(n = 28)	Control group $(n = 26)$	n = 26)	
	measurement	Mean ± S.D. (Min - Max)	P values#	Mean ± S.D. (Min - Max)	P values#	P values*
	Baseline	194.99 ± 35.53		200.66 ± 37.93		
		(125.4 - 270.9)		(138.3 - 268.4)		
We	Week 12	181.58 ± 26.64	0.002	199.49 ± 33.76	0.786	0.034
		(134.0 - 276.3)		(146.9 - 263.9)		
TG (mg/dL) Ba	Baseline	131.63 ± 45.22		145.03 ± 59.99		
		(52.5 - 248.5)		(76.8 - 314.5)		
We	Week 12	123.52 ± 35.87	0.148	138.10 ± 51.38	0.583	0.193
		(67.7 - 215.3)		(66.0 - 241.8)		
HDL-C Ba	Baseline	54.89 ± 14.35		53.56 ± 9.82		
(mg/dL)		(28.0 - 86.6)		(36.9 - 69.1)		
We	Week 12	52.48 ± 10.83	0.098	54.63 ± 8.66	0.302	0.424
		(33.6 - 78.3)		(40.5 - 66.8)		
LDL-C Ba	Baseline	139.06 ± 33.80		137.46 ± 34.25		
(mg/dL)		(72.1 - 196.2)		(73.0 - 193.3)		
We	Week 12	131.66 ± 29.54	0.090	137.25 ± 29.81	0.959	0.492
		(80.1 - 207.4)		(82.5 - 199.4)		

Table 20 The mean concentrations of blood lipids at baseline and week 12 (N = 54)

[#] P values for within-group comparison (vs. conucol) analyzed by paired t-test

TC: total cholesterol; TG: triglyceride; HDL-C: high-density lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol; mg/dL: milligram per deciliter

129

	nume points of measurement Mean \pm S.D. P values ⁴ Mean \pm S.D. P values ⁴ measurement (Min - Max) P values ⁴ (Min - Max) P values ⁴ Baseline 202.45 \pm 29.94 (Min - Max) P values ⁴ Baseline 202.45 \pm 29.94 (175.3 $-268.4)$ 0.099 Week 12 (158.3 $-270.9)$ (175.3 $-268.4)$ 0.099 Week 12 185.35 \pm 21.13 $204.87 \pm$ 30.75 0.099 Week 12 (144.2 $-276.3)$ $(175.3 - 268.4)$ 0.099 Week 12 (52.5 $-248.5)$ $(0.001$ $(175.8 - 266.30)$ 0.099 Week 12 (52.5 $-248.5)$ 0.067 138.10 ± 51.38 0.390 Week 12 (52.5 $-248.5)$ 0.067 138.10 ± 51.38 0.390 Week 12 (55.5 $-248.5)$ 0.067 138.10 ± 51.38 0.390 Week 12 (55.5 $-248.5)$ 0.067 138.10 ± 51.38 0.390 Week 12 (55.6 $-86.6)$ 0.067 56.82 ± 9.73 0.553 Week 12 <		Mean \pm S.D. (Min - Max) 202.45 ± 29.94 ($158.3 - 270.9$) 185.35 ± 22.57 ($144.7 - 276.3$)	P values#	Moon + C D	:	D walnus
Baseline 202.45 ± 29.94 212.75 ± 28.53 Week 12 $(158.3 - 270.9)$ $(175.3 - 268.4)$ Week 12 185.35 ± 22.57 < 0.001 204.87 ± 30.75 0.099 Week 12 135.88 ± 41.13 $(144.2 - 276.3)$ $(150.8 - 263.9)$ 0.099 Baseline 135.88 ± 41.13 (151.24 ± 66.30) (0.099) Week 12 $(52.5 - 248.5)$ 0.067 138.10 ± 51.38 0.390 Week 12 123.52 ± 35.87 0.067 138.10 ± 51.38 0.390 Week 12 $(52.2 - 215.3)$ 0.067 138.10 ± 51.38 0.390 Week 12 $(52.2 - 215.3)$ 0.067 $(38.0 - 69.1)$ 0.390 Week 12 $(53.6 - 86.6)$ 0.094 51.64 ± 8.02 0.553 Week 12 $(38.0 - 78.3)$ $(42.6 - 69.8)$ 0.553 Week 12 $(38.0 - 78.3)$ $(42.6 - 69.8)$ 0.553 Week 12 $(38.0 - 78.3)$ $(42.6 - 69.8)$ 0.553 Week 12 $(38.0 - 78.3)$ $(38.0 - 78.3)$ $(42.6 - 69.8)$ 0.553 Week 12 $(38.0 - 78.3)$ $(38.0 - 78.3)$ $(42.6 - 69.8)$ 0.553 Week 12 $(38.0 - 78.3)$ 0.094 57.64 ± 8.02 0.553 Week 12 $(38.0 - 78.3)$ $(38.0 - 78.3)$ $(42.6 - 69.8)$ 0.553 Week 12 $(38.0 - 78.3)$ 0.038 (33.56 ± 30.00) Week 12 (38.56 ± 27.03) 0.038 (39.56 ± 27.03) 0.038 $(39.5 - 199.4)$ Week 12 (39.56 ± 27.03) 0.038 $(39.5 - 199.4)$ 0.1	202.45 ± 29.94 212.75 ± 28.53 158.3 $- 270.9$) $(175.3 - 268.4)$ 158.35 ± 22.57 < 0.001 185.55 ± 22.57 < 0.001 144.2 $- 276.3$) $(175.3 - 268.4)$ 155.88 ± 41.13 $(150.8 - 263.9)$ 155.88 ± 41.13 $(150.8 - 263.9)$ 155.88 ± 41.13 $(150.8 - 263.9)$ (55.5 $- 248.5)$ $(150.8 - 261.3)$ (55.5 $- 248.5)$ (0.067) (52.5 $- 248.5)$ (0.067) (52.5 $- 248.5)$ (0.067) (52.5 $- 248.5)$ (0.067) (52.5 $- 248.5)$ (0.390) (52.5 $- 248.5)$ (0.067) (52.5 $- 248.5)$ (0.067) (55.8 ± 9.13 (0.390) (55.2 $- 215.3)$ (0.067) (55.2 $- 215.3)$ (0.067) (56.8 ± 14.12 $(66.0 - 241.8)$ (55.6 $\pm 216.3)$ (0.390) (55.6 $\pm 216.3)$ (0.390) (56.0 $- 241.8)$ (0.390) (56.0 $- 241.8)$ (0.390) (56.0 $- 241.8)$ (0.390) (56.0 $- 241.8)$ (0.390) (55.2 $- 215.3)$ (0.094) (56.8 ± 14.12 $(56.0 - 241.8)$ (56.8 ± 14.12 $(56.0 - 241.8)$ (55.6 ± 27.03 (0.094) (57.6 ± 28.63 (0.390) (47. $- 196.2)$ (0.391) (58. ± 29.68 (0.158) (59. ± 27.03 $(0.35 - 199.4)$ (min - max) $(93.5 - 199.4)$		202.45 ± 29.94 (158.3 - 270.9) 185.35 ± 22.57 (144.7 - 776.3)		(Min - Max)	P values#	I ruiues
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$158.3 - 270.9$) $(175.3 - 268.4)$ 185.35 ± 22.57 < 0.001 $(175.3 - 268.4)$ 185.35 ± 22.57 < 0.001 $(150.8 - 263.9)$ $144.2 - 276.3$ $(150.8 - 263.9)$ $(150.8 - 263.9)$ 135.88 ± 41.13 $(150.8 - 263.9)$ $(150.8 - 263.9)$ 135.88 ± 41.13 $(150.8 - 263.9)$ $(150.8 - 263.9)$ $(52.5 - 248.5)$ $(150.8 - 314.5)$ $(76.8 - 314.5)$ $(52.5 - 248.5)$ $(0.067$ 138.10 ± 51.38 0.390 $(52.5 - 248.5)$ $(0.067$ 138.10 ± 51.38 0.390 $(52.2 - 215.3)$ 0.067 138.10 ± 51.38 0.390 $(52.2 - 215.3)$ 0.007 138.10 ± 51.38 0.390 $(52.2 - 215.3)$ 0.007 138.10 ± 51.38 0.390 $(52.2 - 215.3)$ 0.097 $(76.8 - 314.5)$ 0.553 (56.8 ± 14.12) 0.094 57.64 ± 8.02 0.553 (55.6 ± 27.03) 0.094 57.64 ± 8.02 0.553 (145.89 ± 28.63) (145.95 ± 30.00) (145.95 ± 30.00) $(84.7 - 196.2)$ (145.95 ± 29.68) 0.158 (155.56 ± 27.03) $(0.038$ (139.68 ± 29.68) (155.56 ± 27.03) $(93.5 - 199.4)$ 0.158 $(161 - 108.2)$ $(93.5 - 199.4)$ (0.158) $(161 - 108.2)$ $(93.5 - 199.4)$ 0.158	(dL)	(158.3 - 270.9) 185.35 ± 22.57 (144.7 - 776.3)		212.75 ± 28.53		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I85.35 \pm 22.57< 0.001 204.87 \pm 30.750.099144.2 $-$ 276.3)(150.8 $-$ 263.9)(150.8 $-$ 263.9)0.099135.88 \pm 41.13(151.24 \pm 66.30(35.8 \pm 41.13)(76.8 $-$ 314.5)0.390(52.5 $-$ 248.5)0.067138.10 \pm 51.380.390(52.5 $-$ 248.5)0.067138.10 \pm 51.380.390(52.2 $-$ 215.3)0.067138.10 \pm 51.380.390(52.2 $-$ 215.3)0.067138.10 \pm 51.380.390(55.6 \pm 14.12(66.0 $-$ 241.8)(56.8 \pm 9.730.390(55.6 $-$ 86.6)(38.0 $-$ 69.1)(56.0 $-$ 241.8)0.390(55.6 $-$ 86.6)(38.0 $-$ 69.1)(38.0 $-$ 69.1)0.553(35.6 $-$ 86.6)(38.0 $-$ 69.1)(42.6 $-$ 69.8)0.553(38.0 $-$ 78.3)0.09457.64 \pm 8.020.553(42.6 $-$ 69.8)(145.95 \pm 30.00(35.0 $-$ 193.3)0.553(38.7 $-$ 196.2)0.338139.68 \pm 29.680.158(8.7 $-$ 196.2)(73.0 $-$ 193.3)0.158(93.5 $-$ 199.4)(min $-$ max)(93.5 $-$ 199.4)(93.5 $-$ 199.4)	(TP)	185.35 ± 22.57		(175.3 - 268.4)		
	$144.2 - 276.3$) $(150.8 - 263.9)$ 135.88 ± 41.13 151.24 ± 66.30 135.88 ± 41.13 151.24 ± 66.30 $(52.5 - 248.5)$ $(76.8 - 314.5)$ $(52.5 - 248.5)$ $(76.8 - 314.5)$ $(52.2 - 215.3)$ 0.067 123.52 ± 35.87 0.067 123.52 ± 35.87 0.067 123.52 ± 35.87 0.067 138.10 ± 51.38 $(52.2 - 215.3)$ 56.68 ± 14.12 56.68 ± 14.12 56.68 ± 14.12 $(56.0 - 241.8)$ $(56.0 - 241.8)$ 55.68 ± 14.12 $(56.0 - 241.8)$ $(52.2 - 215.3)$ $(56.0 - 241.8)$ $(56.0 - 241.8)$ $(56.0 - 241.8)$ $(56.0 - 241.8)$ $(56.0 - 241.8)$ $(53.0 - 69.1)$ (58.2 ± 9.73) $(38.0 - 78.3)$ $(38.0 - 78.3)$ $(38.0 - 78.3)$ $(42.6 - 69.8)$ (145.89 ± 28.63) $(42.6 - 69.8)$ (145.89 ± 28.63) $(42.6 - 69.8)$ (145.89 ± 28.63) $(73.0 - 193.3)$ $(38.7 - 196.2)$ $(39.3 - 207.4)$ $(93.5 - 199.4)$	(dL)	(144.2 - 276.3)	< 0.001	204.87 ± 30.75	0.099	0.024
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(dL)			(150.8 - 263.9)		
			135.88 ± 41.13		151.24 ± 66.30		
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(52.5 - 248.5)		(76.8 - 314.5)		
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		123.52 ± 35.87	0.067	138.10 ± 51.38	0.390	0.291
by Baseline 56.68 ± 14.12 56.82 ± 9.73 56.82 ± 9.73 $(35.6 - 86.6)$ $(35.6 - 86.6)$ $(38.0 - 69.1)$ $(38.0 - 69.1)$ $(38.0 - 78.3)$ $(38.0 - 78.3)$ $(38.0 - 78.3)$ $(42.6 - 69.8)$ $(4$	56.68 ± 14.12 56.82 ± 9.73 $(35.6 - 86.6)$ $(38.0 - 69.1)$ $(35.6 - 86.6)$ $(38.0 - 69.1)$ 53.77 ± 9.97 $(38.0 - 69.1)$ 53.77 ± 9.97 $(142.6 - 69.8)$ $(38.0 - 78.3)$ $(42.6 - 69.8)$ (145.89 ± 28.63) $(42.6 - 69.8)$ (45.89 ± 28.63) (145.95 ± 30.00) $(84.7 - 196.2)$ $(73.0 - 193.3)$ (35.56 ± 27.03) 0.038 $(39.3 - 207.4)$ $(93.5 - 199.4)$ $(min - max)$ $(93.5 - 199.4)$		(52.2 - 215.3)		(66.0 - 241.8)		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(mg/dL)	56.68 ± 14.12		56.82 ± 9.73		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(35.6 - 86.6)		(38.0 - 69.1)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$(38.0 - 78.3)$ $(42.6 - 69.8)$ (145.89 ± 28.63) (145.95 ± 30.00) $(84.7 - 196.2)$ $(73.0 - 193.3)$ (35.56 ± 27.03) 0.038 (35.56 ± 27.03) 0.038 $(39.3 - 207.4)$ $(93.5 - 199.4)$ $(min - max)$ $(93.5 - 199.4)$	Week 12	53.77 ± 9.97	0.094	57.64 ± 8.02	0.553	0.187
Baseline 145.89 ± 28.63 145.95 ± 30.00) $(84.7 - 196.2)$ $(73.0 - 193.3)$)Week 12 135.56 ± 27.03 0.038 139.68 ± 29.68 $(89.3 - 207.4)$ $(93.5 - 199.4)$	$ 45.89 \pm 28.63$ $ 45.95 \pm 30.00$ $(84.7 - 196.2)$ $(73.0 - 193.3)$ $(84.7 - 196.2)$ $(73.0 - 193.3)$ $ 35.56 \pm 27.03$ 0.038 139.68 ± 29.68 $(89.3 - 207.4)$ $(93.5 - 199.4)$ $(min - max)$ $(93.5 - 199.4)$		(38.0 - 78.3)		(42.6 - 69.8)		
$(84.7 - 196.2)$ $(73.0 - 193.3)$ Week 12 135.56 ± 27.03 0.038 139.68 ± 29.68 0.158 $(89.3 - 207.4)$ $(93.5 - 199.4)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		145.89 ± 28.63		145.95 ± 30.00		
135.56 ± 27.03 0.038 139.68 ± 29.68 0.158 $(89.3 - 207.4)$ $(93.5 - 199.4)$	135.56 ± 27.03 0.038 139.68 ± 29.68 0.158 $(89.3 - 207.4)$ $(93.5 - 199.4)$ $(\min - \max)$	(mg/dL)	(84.7 - 196.2)		(73.0 - 193.3)		
	(89.3 – 207.4) (min – max)	Week 12	135.56 ± 27.03	0.038	139.68 ± 29.68	0.158	0.645
			(89.3 - 207.4)		(93.5 - 199.4)		

TC: total cholesterol; TG: triglyceride; HDL-C: high-density lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol; mg/dL:

milligram per deciliter

Table 21 The mean concentrations of blood linids in nercons with dvslinidemia at baseline and week 12 (N - 41)

130

4.2.5 Effects of mulberry leaves on hepatic and renal function

To determine undesirable effects of mulberry leaves on hepatic and renal function, the levels of AST, ALT, and Cr were measured and demonstrated in Table 22. At week 12, no difference in these outcomes between the groups was observed. Moreover, at the end of study, the mean values of AST, ALT, and Cr of the two groups were in the normal ranges similar to the baseline levels.

4.2.6 Self-reported adverse events of mulberry leaves

Table 23 shows the numbers and frequencies of participants who experienced adverse events of mulberry leaves throughout the study. Severities of the events were generally acceptable by the study participants. Nonetheless, one participant could not tolerate to bloating and frequent belching and fart that considerably interrupt his daily life. He therefore terminated research participation at week 8.

4.2.7 Compliance

Compliance to mulberry leaves ingestion of participants in the treatment group was assessed by the same basis as the pill count method. Results suggested no change in compliance throughout the study. At week 4, 8, and 12, the mean compliances were equal to 90.41 ± 8.35 , 90.99 ± 7.78 , and $91.81 \pm 6.66 \%$ (p = 0.239).

CHULALONGKORN UNIVERSITY

	Time nointe of	Treatment group $(n = 28)$	(n = 28)	Control group $(n = 26)$	n = 26)	
Outcomes	nuice pounts of — measurement	Mean ± S.D. (Min - Max)	P values#	Mean ± S.D. (Min - Max)	P values#	P values*
AST (U/L)	Baseline	21.93 ± 4.84		19.94 ± 5.19		
		(12.7 - 33.8)		(12.7 - 33.2)		
	Week 12	21.84 ± 6.17	0.927	22.27 ± 8.19	0.113	0.825
		(13.6 - 40.6)		(11.6 - 42.0)		
ALT (U/L)	Baseline	23.22 ± 19.24		19.24 ± 7.05		
		(11.0 - 39.3)		(7.2 - 34.5)		
	Week 12	25.24 ± 13.09	0.345	23.58 ± 17.49	0.114	0.692
		(11.0 - 50.9)		(9.8 - 44.0)		
Cr (mg/dL)	Baseline	0.81 ± 0.18		0.72 ± 0.19		
		(0.53 - 1.24)		(0.48 - 1.42)		
	Week 12	0.77 ± 0.23	0.149	0.70 ± 0.18	0.191	0.244
		(0.43 - 1.22)		(0.45 - 1.20)		

2	
\mathcal{C}	
Τ	

Adverse events	Numbe	ers of participants	s (%)
Auverse events	Week 4	Week 8	Week 12
Hypoglycemia	0 (0)	0 (0)	0 (0)
Abdominal pain	0 (0)	2 (7.1)	1 (3.6)
Bloating and flatulence	14 (50.0)	11 (39.3)	8 (28.6)
Loose stools	7 (25.0)	6 (21.4)	2 (7.1)
Constipation	6 (21.4)	4 (14.3)	5 (17.9)

 Table 23 Adverse events of daily administration of mulberry leaves reported by the study participants

Data are reported as numbers (%)

4.2.8 Total caloric and macronutrients intake

The mean total caloric and macronutrients intake are presented in Table 24. There was no difference between the group at baseline and at the endpoint of study. Moreover, no change in the mean total caloric and macronutrients intake at the end of study when compared with the baseline levels in the both two groups.

	Time metale of	Treatment group $(n = 28)$	(n = 28)	Control group $(n = 26)$	1 = 26)	
Outcomes	I IIIIe politics of	$\mathbf{Mean} \pm \mathbf{S.D.}$	#~~~.1~~~. C	$\mathbf{Mean} \pm \mathbf{S.D.}$	#~~~~ 1 ~~~ .	P values*
	measurement	(Min - Max)	F values"	(Min - Max)	F values"	
Total calorie	Baseline	$1,707.75 \pm 144.16$		$1,648.29 \pm 173.75$		
(kcal/day)		(1,561.6 - 2001.8)		(1,535.7 - 1920.9)		
	Week 12	$1,777.41 \pm 141.94$	0.409	$1,626.62 \pm 152.42$	0.156	0.083
		(1,479.7 - 1804.4)		(1,458.0 - 1780.2)		
Carbohydrate	Baseline	169.13 ± 56.71		163.44 ± 69.08		
(g/day)		(88.1 - 215.4)		(123.7 - 197.8)		
	Week 12	165.94 ± 52.52	0.696	156.78 ± 41.39	0.534	0.482
		(90.4 - 189.0)		(110.6 - 192.3)		
Fat	Baseline	52.33 ± 14.10		57.29 ± 16.27		
(g/day)		(33.8 - 80.2)		(39.9 - 101.5)		
	Week 12	55.98 ± 9.27	0.224	56.13 ± 8.54	0.732	0.152
		(30.5 - 90.9)		(48.1 - 104.2)		
Protein	Baseline	64.16 ± 17.66		63.86 ± 14.40		
(g/day)		(47.2 - 88.6)		(51.8 - 96.6)		
	Week 12	70.39 ± 12.19	0.325	68.34 ± 9.17	0.077	0.748
		(50.1 - 90.1)		(45.6 - 111.4)		

 $^{\#}$ P values for within-group comparison (vs. baseline) analyzed by paired t-test

Table 24 The mean total calorie and macronutrients intake per day at baseline and week (N = 54)

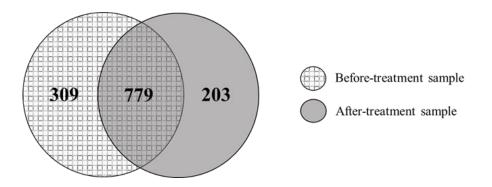
4.3 Study III (proteomic analysis): to determine effect of the long-term

supplementation of mulberry leaves on expressions of plasma proteins in persons who had impaired glucose metabolism, including obese persons with prediabetes and patients with early-stage type 2 diabetes

4.3.1 Participant characteristics

Twelve obese persons with prediabetes and patients with early-stage type 2 diabetes who participating the phase-II clinical study were considered as the selected cases for proteomic analysis. Eight (66.7%) were female participants. Table 25 presents clinical characteristics of the selected ones.

4.3.2 Plasma protein profile


Protein profiles in plasma of the selected cases at the time before (week 0) and after (week 12) receiving mulberry leaves together with diet control, was determined using LC-MS/MS coupled with the label-free proteomic analysis. A total of 1,291 plasma proteins in the triple pooled samples were identified. Figure 16 shows that 309 and 203 proteins were uniquely found in the before-treatment and the after-treatment samples, respectively, whereas 779 proteins were concomitantly observed in the both samples. When compared with the baseline profile, 523 of 1,291 proteins that expressed differentially after receiving the treatment, including 210 up-expressed proteins and 313 down-expressed proteins (Appendix H). According to biological roles, the 523 differentially expressed proteins were classified as the proteins that associated with cellular process, cell interaction and communication, structural constituents, defense system, glucose and lipid metabolism, signaling pathways, protein metabolism, ion transport, blood coagulation, and others; however, the functions of some proteins remain unknown as demonstrated in Figure 17.

At week 0	At week 12
77.74 ± 10.64	76.80 ± 10.83
(63.0 – 96.1)	(60.1 - 95.1)
30.23 ± 3.99	29.83 ± 3.81
(27.25 - 38.18)	(27.55 - 37.05)
99.88 ± 8.58	99.54 ± 8.74
(89.0 - 122.0)	(86.5 - 121.0)
108.10 ± 10.58	101.75 ± 10.15
(95 – 126)	(92 – 116)
145.25 ± 39.52	137.42 ± 38.13
(89 – 220)	(110 - 195)
6.0 ± 0.4	5.8 ± 0.5
(5.5 - 6.9)	(5.1 - 6.6)
3.35 ± 1.67	3.27 ± 1.57
(1.6 – 5.6)	(1.1 - 4.7)
181.41 ± 27.97	168.05 ± 13.88
(125.6 - 221.4)	(150.2 – 193.1)
123.88 ± 36.65	116.74 ± 30.69
(61.0 – 172.0)	(60.8 - 152.1)
54.71 ± 15.12	53.23 ± 10.39
(35.6 - 84.0)	(38.0 - 77.3)
126.06 ± 31.46	118.23 ± 16.21
(74.4 - 187.1)	(99.3 – 159.8)
	$\begin{array}{c} 77.74 \pm 10.64 \\ (63.0 - 96.1) \\ 30.23 \pm 3.99 \\ (27.25 - 38.18) \\ 99.88 \pm 8.58 \\ (89.0 - 122.0) \\ 108.10 \pm 10.58 \\ (95 - 126) \\ 145.25 \pm 39.52 \\ (89 - 220) \\ 6.0 \pm 0.4 \\ (5.5 - 6.9) \\ 3.35 \pm 1.67 \\ (1.6 - 5.6) \\ 181.41 \pm 27.97 \\ (125.6 - 221.4) \\ 123.88 \pm 36.65 \\ (61.0 - 172.0) \\ 54.71 \pm 15.12 \\ (35.6 - 84.0) \\ 126.06 \pm 31.46 \\ \end{array}$

Table 25 Baseline characteristics of participants of study III (N = 12)

Data are reported as numbers (%) and mean \pm S.D. with range (min – max) for categorical and continuous variables, respectively

kg: kilogram; BMI: body mass index; kg/m²: kilogram per square meter; FPG: fasting plasma glucose; mg/dL: milligram per deciliter; PPG: postprandial plasma glucose; AUC: area under the curve; A1C: glycated hemoglobin; FPI: fasting plasma insulin; μIU/mL: micro international unit per milliliter; HOMA-IR: Homeostatic Model Assessment of Insulin Resistance; TC: total cholesterol; TG: triglyceride; HDL-C: high-density lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol

Figure 16 The numbers of identified proteins in the pooled plasma samples before and after receiving the interventions (n = 1,291)

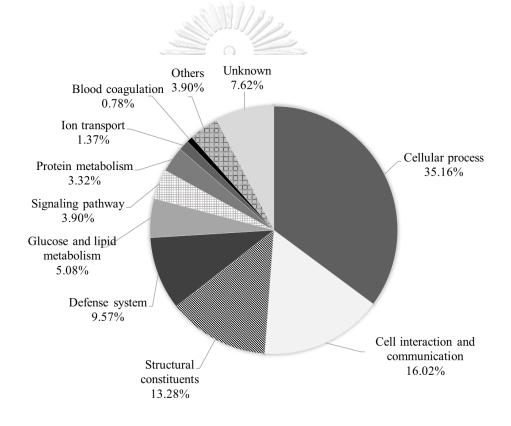
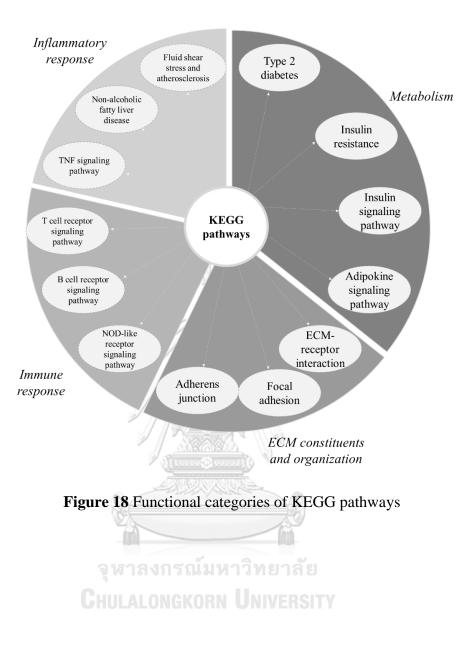



Figure 17 The differential expressed proteins categorized by biological functions (n = 523)

4.3.3 Identification of protein functions and the associated KEGG pathways

Due to the large diversity of the identified proteins in the samples, the GO enrichment analysis was performed. Of the 523 proteins, 212 proteins were considered as the proteins that closely linked to pathophysiology and pathogenesis of insulin resistance and type 2 diabetes. According to the STRING database, the protein-protein interaction networks of 212 proteins were mapped (Appendix I). The protein map revealed the highly complicated relationships among the proteins of interest. As a result, the KEGG pathway analysis and the KEGG database were used in order to better identify the potential associated pathway based on protein function. The analysis showed that the proteins were associated with various biological pathways as described in Table 26. For ease of result interpretation, based on similarities and pathway linkage, the 13 potential pathways were further grouped together into four major categories: (i) metabolic regulation, (ii) ECM constituents and organization, (iii) immune response, and (iv) inflammatory response as demonstrated in Figure 18.

KEGG pathways	Observed gene count	Encoding gene	Matching proteins
I. Type 2 diabetes	4	PIK3R2	Phosphatidylinositol 3-kinase regulatory subunit β
1		INSR	Insulin receptor
		IRS2	Insulin receptor substrate 2
		HKDCI	Hexokinase domain-containing protein 1
II. Insulin resistance	4 7 7 7	PIK3R2	Phosphatidylinositol 3-kinase regulatory subunit β
	າ AL(INSR	Insulin receptor
	งก	IRS2	Insulin receptor substrate 2
	รถ GK	NRIH3	Oxysterols receptor LXR-a
	ม์ม OR	TNFRSFIA	TNF receptor superfamily member 1A
III. Insulin signaling pathway	9	PIK3R2	Phosphatidylinositol 3-kinase regulatory subunit β
		INSR	Insulin receptor
		IRS2	Insulin receptor substrate 2
		HKDCI	Hexokinase domain-containing protein 1
		SOSI	Son of sevenless homolog 1
		SOS2	Son of sevenless homolog 2
IV. Adipocytokine signaling	4	TNFRSFIA	TNF receptor superfamily member 1A
pathway		CHUK	Inhibitor of NF- κB kinase subunit α
		IKBKG	NF-kB essential modulator
		RBP4	Retinol-binding protein 4

Table 26 KEGG pathways and the matching proteins (cont.)	the matching protein	ns (cont.)	
KEGG pathways	Observed gene count	Encoding gene	Matching proteins
V. ECM-receptor interaction	×	COL2AI COL4A3 COL6A3 COMP TRIM46 EMILIN2 ADAMTSI2 ITGB6	Collagen alpha-1(II) chain Collagen alpha-3(IV) chain Collagen alpha-3(VI) chain Collage alpha-3(VI) chain Cartilage oligomeric matrix protein Tripartite motif-containing protein Tripartite motif-containing protein Tripartite motif-containing protein A disintegrin and metalloproteinase with thrombospondin motifs 12 Integrin β-6
VI. Focal adhesion	หาวิทยาลัย NUNIVERSIT	COL2AI COL4A3 COL6A3 COL6A3 COMP ITGB6	Collagen alpha-1(II) chain Collagen alpha-3(IV) chain Collagen alpha-3(VI) chain Cartilage oligomeric matrix protein Integrin β-6
VII. Adherens junction	5	CREBBP TJPI	CREB-binding protein Tight junction protein 1

Table 26 KEGG pathways and the matching proteins (cont.)	nd the matching pro	teins (cont.)	
KEGG pathways	Observed gene count	Encoding gene	Matching proteins
VIII. NOD-like receptor	6	MEFV	Pyrin
signaling pathway		NOD2	Nucleotide-binding oligomerization domain-containing protein 2
		CHUK	Inhibitor of NF- κB kinase subunit α
		ISOS	Son of sevenless homolog 1
		SOS2	Son of sevenless homolog 2
		DNMIL	Dynamin-1-like protein
		NLRP7	NACHT, LRR and PYD domains-containing protein 7
		FCN3	Ficolin-3
		IKBKG	NF-kB essential modulator
IX. B cell receptor signaling	S	CHUK	Inhibitor of NF- κB kinase subunit α
pathway		IKBKG	NF-kB essential modulator
		PIK3R2	Phosphatidylinositol 3-kinase regulatory subunit β
		ISOS	Son of sevenless homolog 1
		SOS2	Son of sevenless homolog 2
X.T cell receptor signaling	9	CHUK	Inhibitor of NF- κB kinase subunit α
pathway		IKBKG	NF-kB essential modulator
		PIK3R2	Phosphatidylinositol 3-kinase regulatory subunit β
		ISOS	Son of sevenless homolog 1
		SOS2	Son of sevenless homolog 2
		TEC	Tyrosine-protein kinase

Table 26 KEGG pathways and the matching	d the matching proteii	proteins (cont.)	
KEGG pathways	Observed gene count	Encoding gene	Matching proteins
XI.TNF signaling pathway	6	TNFRSFIA	TNF receptor superfamily member 1A
		NOD2	Nucleotide-binding oligomerization domain-containing
			protein 2
		CHUK	Inhibitor of NF- κB kinase subunit α
		MAP2K6	Dual specificity mitogen-activated protein kinase kinase 6
		IKBKG	NF-kB essential modulator
		AGT	Angiotensinogen
		ORM2	Alpha-1-acid glycoprotein 2
		AHSG	Alpha-2-HS-glycoprotein
		HP	Haptoglobin
XII.Non-alcoholic fatty liver	C U	CHUK	Inhibitor of NF- κ B kinase subunit α
disease	ทย	MAP2K6	Dual specificity mitogen-activated protein kinase kinase 6
	In J T ER	PIK3R2	Phosphatidylinositol 3-kinase regulatory subunit β
XIII.Fluid shear stress and	4	TNFRSFIA	TNF receptor superfamily member 1A
atherosclerosis		CHUK	Inhibitor of NF- κB kinase subunit α
		MAP2K6	Dual specificity mitogen-activated protein kinase kinase 6
		PIK3R2	Phosphatidylinositol 3-kinase regulatory subunit β
ECM: extracellular matrix; Tl	NF: tumor necrosis fa	ctor; NOD: nucleotide-bi	ECM: extracellular matrix; TNF: tumor necrosis factor; NOD: nucleotide-binding oligomerization domain; NF-kB: nuclear factor- kB

4.3.4 Expression of the candidate proteins in response to mulberry leaves treatment

Lists of the candidate proteins, biological roles, and expressions in response to the study interventions were described in Table 27.

Table 27 The candidate proteins, biological roles, and expressions in response to the study interventions regarding functional categories

Category	Proteins	Biological roles	Expression
	(Alternative names)		
Metabolic	Phosphatidylinositol 3-	Protein kinase:	\checkmark
regulation	kinase regulatory subunit β	regulation of glucose metabolism and cell growth and	
		proliferation	
	Insulin receptor	Receptor of insulin	\checkmark
	Insulin receptor substrate 2	Mediator of insulin action	\uparrow
	Hexokinase domain- containing protein 1	Intermediate of glucose uptake in peripheral tissues	\checkmark
	Oxysterols receptor LXR-α (Liver X receptor-α; LXR- α)	Nuclear receptor: regulation of lipid metabolism	۲
	Retinol-binding protein 4	Adipokine	\checkmark

Chulalongkorn University

Category	Proteins	Biological roles	Expression
	(Alternative names)		
ECM	Collagen alpha-1(II) chain	ECM constituent	\checkmark
constituents and	Collagen alpha-3(IV) chain	ECM constituent	\checkmark
organization	Collagen alpha-3(VI) chain	ECM constituent	\checkmark
	Cartilage oligomeric matrix protein (Thrombospondin-5)	ECM constituent	\checkmark
	Tripartite motif-containing protein 46 (Tripartite, fibronectin type-III and C-terminal SPRY motif protein)	ECM constituent	\checkmark
	Emilin-2 (Elastin microfibril interface-located protein 2; Elastin microfibril interfacer 2)	ECM constituent	¥
	A disintegrin and metalloproteinase with thrombospondin motifs 12 (ADAMTS-12)	ECM constituent	\checkmark
	Integrin β-6	Cell surface protein	\uparrow
	Nucleotide-binding oligomerization domain- containing protein 2	Pathogen recognition protein	\checkmark
	Ficolin-3 (H-ficolin)	Pathogen recognition protein	\checkmark

Table 27 The candidate proteins, biological roles, and expressions in response to the study interventions regarding functional categories (cont.)

Category	Proteins	Biological roles	Expression
	(Alternative names)		
Immune	Pyrin	Inflammasome	\wedge
response	(Marenostrin)		
	NACHT, LRR and PYD	Inflammasome	\uparrow
	domains-containing protein		
	7		
	(Nucleotide-binding		
	oligomerization domain		
	protein 12)		
	Inhibitor of NF-kB kinase	Mediator of NF-kB	\checkmark
	subunit a	activation	
	(IKK-α; IKK-1)		
	NF-kB essential modulator	Mediator of NF-kB	\checkmark
	(NEMO; IKK-γ)	activation	
Inflammatory	TNF receptor superfamily	Receptor of TNF-α	\checkmark
response	member 1A		
	(TNF receptor 1; p55; p60)	(A) ~	
	Dual specificity mitogen-	Mediator of MAPK	\checkmark
	activated protein kinase	and JNK activation	
	kinase 6		
	(MAP kinase kinase 6;		
	MAPKK-6)	//////////////////////////////////////	
	Angiotensinogen	Positive acute phase	\checkmark
	(Angiotensin-II; Serpin A8)		
	Alpha-1-acid glycoprotein	Positive acute phase	\checkmark
	2	reactant	
	(AGP-2; Orosomucoid-2)	D 11 1	
	Alpha-2-HS-glycoprotein	Positive acute phase	\checkmark
	(Alpha-2-Z-globulin;	reactant	
	Fetuin-A)		\checkmark
	Haptoglobin	Positive acute phase	\mathbf{v}
	(Zonulin)	reactant	

Table 27 The candidate proteins, biological roles, and expressions in response to the study interventions regarding functional categories (cont.)

ECM: extracellular matrix; TNF: tumor necrosis factor; NF- κ B: nuclear factor- κ B: MAPK: mitogen-activated protein kinase; JNK: Jun N-terminal kinase: \uparrow : up-expression (*vs.* before treatment): \checkmark down-expression (*vs.* before treatment)

CHAPTER V DISCUSSION AND CONCLUSION

5.1 Mulberry leaves powder

Mulberry (*M. alba* L.) variety Sakonnakorn, one of the notable mulberry varieties distributed in the Northern and Northeastern parts of Thailand, was used as raw material of mulberry leaves product in this study. Evidences indicated that concentrations of phytochemicals in natural-derived product are considerably influenced by several factors such as plant species, planting areas, harvesting seasons, and manufacturing processes [234, 236, 294-296]. Thus, our product was prepared by standardized procedures of leaves collection, drying process, powdering, and storage in order to ensure consistency of chemical constituents in the final product.

Quantitative determination using HPLC-MS/MS showed that DNJ constituted 2.6 mg/g (0.26%) in the dried powder of mulberry leaves. The finding was consistent with prior researches. Vichasilp *et al.* [238], who examining DNJ concentration in young mulberry leaves in Thailand, found DNJ ranged 0.3 to 1.7 mg/g among 35 mulberry varieties. Song *et al.* [236] and Hao *et al.* [239] also showed that Chinese mulberry leaves contained DNJ 1.389 to 3.483 mg/g and 0.401 to 5.309 mg/g dried leaves, respectively, whereas Bajpai *et al.* [240] demonstrated that DNJ constituted 0.68 to 2.72 mg/g in the mulberry leaves samples collected from multiple areas in India. Many polyphenolic constituents: chlorogenic acid, rutin, isoquercitrin, quercetin, kaempferol, kaempferol-7-*O*-glucoside, quercetin-3-*O*-(6-malonyl)- β -D-glucopyranoside, and kaempferol 3-*O*- β -D-(6"-*O*-malonyl)-glucoside, were also found in the dried mulberry leaves are rich in active phytochemicals, including alkaloids, phenolic acid, flavonoids, and flavonol glycosides, exerting various biological properties [237, 297-299].

We realized that the mulberry leaves powder used in this study was not a purified form of DNJ. As a result, we cannot absolutely confirm that DNJ is the sole compound responsible for antihyperglycemic action. However, it could be postulated that DNJ is the predominant antihyperglycemic constituent of mulberry leaves regarding the following evidences. First, since DNJ is an α -glucosidases inhibitor, modulation of postprandial hyperglycemia is an expected clinical outcome. The results of carbohydrate loading test in animals and human [31, 32, 34, 257] were directly explained by the mechanism of action of DNJ. Second, Vichasilp *et al.* and Yatsunami *et al.* further reported that the concentration of DNJ in mulberry leaves samples were positively correlated with the magnitude of α -glucosidases inhibition with r = 0.84 (p < 0.05) [238] and 0.90 (p < 0.001) [249]. In contrast, the correlation between other phytochemicals in mulberry leaves and the α -glucosidases inhibitory activity is poor understood at present. Third, few evidences have supported glucoselowering efficacy of the other phytochemicals, particularly in human. Future investigations should be performed to clarify their clinical efficacy.

Interestingly, previous studies revealed that mulberry leaves extracts exhibited the stronger glucose-lowering effects in glucose uptake assay in Caco-2 cell and carbohydrate loading test than purified DNJ [252, 300]. A possible explanation might be from multiple effects of several compounds in the whole extracts on glycemic profiles. It is noteworthy that a combination therapy regimen provides synergistic benefits, improved desired outcomes, and lessen adverse effects. The data might support superiority of the whole mulberry leaves extract to the purified DNJ on achieving glycemic control with the lower undesirable effects.

CHULALONGKORN UNIVERSITY

5.2 Study I (Phase I clinical trial): To determine effect of a single administration of mulberry leaves on plasma glucose excursion following carbohydrate load among healthy non-diabetic persons and determining the effective dose with minimal adverse effects of mulberry DNJ

This randomized controlled study found that mulberry leaves could be effective for management of postprandial hyperglycemia. Mulberry leaves at the weight equivalent to 6 to 18 mg of DNJ dose-dependently modulated the elevated PPG-30, PPG-60, and AUC $_{0-180 \text{ min}}$ of glucose in response to the 50-g sucrose ingestion in healthy non-diabetic persons (N = 85) without serious adverse effect. In

addition, 12 mg of mulberry DNJ was considered the effective dose with minimal adverse effects in our study.

5.2.1 Efficacy of mulberry leaves in lowering postprandial hyperglycemia in response to carbohydrate load

After the 50-g sucrose ingestion, the elevated postprandial glucose, including PPG-30, PPG-60, and AUC 0-180 min of glucose, were suppressed by mulberry leaves containing 6 to 18 mg of DNJ in the dose-response relationship. The significantly suppressive action of mulberry leaves that observed during the first hour after receiving the tested beverages was in accordance with pharmacokinetic profile of DNJ. Animal studies suggested that DNJ was poorly absorbed and rapidly excreted from the body [243, 244]. The favorable effects of mulberry leaves on PPG following the sucrose loading test were consistently reported in clinical researches [32, 33, 255, 257, 258]. Besides sucrose, mulberry leaves were capable of lowering postprandial hyperglycemia regardless of carbohydrate foods, including maltose [31], maltodextrin [259], boiled white rice [34], and Japanese confections [255]. The findings indicate that antihyperglycemic efficacy of mulberry leaves is not affected by types and sources of carbohydrates.

Effect of mulberry leaves on postprandial hyperglycemia is explained by the inhibitory effect against α -glucosidase activities of mulberry DNJ. Regarding the sugar-mimicking structure of DNJ, it competitively binds to the active sites of the carbohydrate digestive enzymes. Mulberry DNJ retards hydrolysis of polysaccharides and disaccharides into monosaccharide in the upper part of small intestine and leads to the delay of glucose absorption into blood circulation [30]. Kim *et al.* [250] early demonstrated that the inhibitory effect on carbohydrate digestion against rat α -glucosidases of mulberry leaves was comparable to acarbose as measured by the IC₅₀ values (41.0 and 19.0 µg/mL for mulberry leaves extract and acarbose, respectively). Furthermore, Yatsunami *et al.* [249] showed the relevance between the presence of DNJ in mulberry leaves extract was positively correlated to the magnitude of α -glucosidases inhibition (r = 0.90, p < 0.001). This was in agreement with the study of Vichasilp *et*

al. [238], showing that the higher concentration of DNJ in mulberry leaves samples was correlated to the higher inhibitory effect on α -glucosidases (r = 0.84, p < 0.05).

Postprandial hyperglycemia is the common metabolic defect found in the early stage of metabolic impairment even the FPG level remains in the normal range [122]. Importance of management of postprandial hyperglycemia have been addressed. First, PPG is considered as another component, in addition to FPG, for achieving the optimal goal of A1C because the value of A1C is an integration of blood glucose during fasting and postprandial states in the 3-month duration [135]. Second, postprandial hyperglycemia is an independent risk factor for diabetic complications and cardiovascular events [122]. The 2-hour PPG, postprandial glucose peak, and AUC of postprandial glucose are the three strongest predictors for atherosclerotic risks when compared with FPG and A1C [125]. Asai et al. [34] and Nakamura et al. [255, 256] showed the significant suppression on glucose peak at 30 min and the AUC of blood glucose after carbohydrate load in the mulberry leaves-treated group in comparison with the control. This was in line with our findings as mentioned. We found that mulberry leaves significantly blunted the peak glucose level (PPG-30) and suppressed the AUC 0-180 min of glucose during postprandial state, suggesting that mulberry leaves administration may have potential for lowering the risks for diabetic complications and cardiovascular diseases. Third, the modulation of postprandial hyperglycemia reduces the excessive insulin secretion stimulated by glucose, which subsequently prevents insulin resistance and β -cell dysfunction.

5.2.2 Adverse events of a single administration of mulberry leaves containing 6, 12, and 18 mg of DNJ

A single administration of mulberry leaves mostly caused bloating and flatulence. The incidence was dependent upon the administered doses. Loose stools and nausea were also observed, but these side effects appeared not to be related to the doses of mulberry DNJ. Overall, the adverse events were tolerated and self-recovered. No toxicity, allergy, and serious side effect of mulberry leaves was found.

Gastrointestinal side effects are the well-known adverse effects of α -glucosidases inhibitors [134, 301]. Evidence suggested that the ideal administered

dose of α -glucosidases inhibitors is the one that allow all carbohydrates to be digested. Otherwise, the carbohydrates that escape digestion and absorption contribute to the unwanted outcomes [302]. The undigested carbohydrates remaining in the large intestine are substrates of bacterial fermentation, leading to formation of the large amount of gas and osmotic pressure in the gastrointestinal tract that cause bloating, flatulence, and loose stool [293]. In the meantime, one person in the control group complained of feeling nausea. A plausible explanation is that taking a lot of sugary beverage in the short period of time may rapidly raise osmotic pressure in the gastrointestinal system and stimulate Vagus nerve. This phenomenon promotes pyloric sphincter relaxation and accelerates stomach emptying [303].

5.2.3 The effective dose with minimal adverse effects of mulberry DNJ

In this study, mulberry leaves containing 12 mg of DNJ was considered the most optimal dose because it exhibited clinically significant effect on PPG with the minimal rates of gastrointestinal symptoms. In other words, we suggested that 12 mg of DNJ was not only the effective dose for modulating postprandial hyperglycemia, but it was also safe and well tolerated.

The suitable dose of mulberry DNJ was firstly extrapolated from an animal experiment. The results showed that 6-24 mg of mulberry DNJ could be capable of modulating postprandial hyperglycemia in human [34]. Kimura *et al.* [32] further supported that mulberry leaves containing DNJ 12 and 18 mg significantly reduced the elevated PPG during the sucrose loading test among healthy volunteers (N = 24) in comparison with placebo. Chung *et al.* [31] also found that mulberry DNJ at the dose of 9 and 18 mg were effective to attenuate hyperglycemia following maltose load in non-diabetic population (N = 50). Meanwhile, Asai *et al.* [34] supported that mulberry DNJ 6 and 9 mg lowered the level of PPG-30 after ingestion of boiled white rice in individuals with impaired glucose metabolism (N = 12).

One of the major knowledge gaps nowadays is lack of the well-defined recommended dose of mulberry DNJ. Previously, the administered dose of DNJ was reported in the limited numbers of published studies [32, 34, 35]. Moreover, the recommended dose of DNJ was normally considered on the basis of clinical efficacy

on blood glucose reduction, whereas its safety and tolerability remained questionable. Thus, consideration of the optimal dose based on safety-efficacy balance strengthens our findings to be more practical.

5.3 Study II (Phase II clinical trial): To determine efficacy and safety of a long-term supplementation of mulberry leaves on glycemic control in persons who had impaired glucose metabolism including obese persons with prediabetes and patients with early-stage type 2 diabetes

This 12-week prospective randomized controlled study found that mulberry leaves containing 12 mg of DNJ slightly improved glycemic control and lipid profiles in obese persons with prediabetes and patients with newly diagnosed type 2 diabetes (N = 54). Long-term administration of mulberry leaves caused gastrointestinal symptoms; nonetheless, no serious side effect was observed throughout the study.

5.3.1 Efficacy of daily administration of mulberry leaves on glycemic control

The present study found the small but significant improvement in glycemic control after the 12-week daily administration of mulberry leaves in obese persons with prediabetes and patients with newly diagnosed type 2 diabetes. Although no difference in any glycemic outcomes between the treatment group and the control group was observed, the mean concentrations of PPG-30 following the 75-g OGTT, FPG, and A1C of the treatment group significantly lowered than the baseline levels. In addition, none of participant in the two groups developed type 2 diabetes during the study period.

To the best of our knowledge, this is the first study investigating effects of mulberry leaves on postprandial glucose excursion following the standard OGTT. The 75-g OGTT aims at identifying impaired glucose tolerance and determining ability of glucose uptake by insulin target tissues, which are strongly related to pathophysiology of prediabetes and the early-stage of type 2 diabetes [139]. We found a significant decrease in PPG-30 of the treatment group by -10.75 mg/dL (p = 0.018) from the

baseline level at the endpoint. However, we failed to observe changes in PPG at the other timepoints of measurement. Absence of the significant improvement in glucose tolerance may result from the insufficient study duration [9]. The optimal interval for evaluating the improvement in glucose tolerance and the reversion of prediabetic state to normal condition has been not clearly defined. Nonetheless, studies were commonly conducted for over one year with annually screening by the standard OGTT, for example, 3.2 years for the Finnish Diabetes Prevention study [11], 2.8 years for the US DPP study [120], and 3.3 years for the STOP-NIDDM study [20]. In order to clarify the effects of mulberry leaves administration on glucose tolerance, further works should be performed in the longer study duration.

The 12-week administration of mulberry leaves significantly reduced A1C by -0.11% (p = 0.011) from the initial level although no difference between the groups was detected. The result represents clinical relevance between postprandial glucose excursion and long term glycemic control because PPG is a variable affecting the value of A1C [135]. The reduction in A1C of the treatment group could be at least from the modulation on postprandial hyperglycemia by mulberry DNJ as described early. Also, it might be attributed to the decreased FPG throughout the study period. In comparison with the baseline level, the magnitude of reduction in FPG ranged from -3.86 to -5.61 mg/dL and the maximum reduction was reached at week 8. Although the result showed the small reduction in FPG, it is not unexpected to observe the slight effect of mulberry leaves on FPG concentration. Due to the inhibition on α -glucosidases of DNJ, mulberry leaves administration could be more likely affect the concentration of PPG. The improvement in insulin resistance of peripheral cells in response to insulin action might be a plausible explanation for the reduction in FPG.

Our findings did not differ from the study of Asai *et al.* [34], who showed that daily supplementation of mulberry leaves (6 mg DNJ; t.i.d.) for 12 weeks lowered A1C by -0.2% (p < 0.05) from baseline in persons with mild fasting hyperglycemia (FPG 100-140 mg/dL) (N = 65). The greater magnitude of reduction could result from excellent compliance to the study intervention of the participants: 99.4 \pm 1.4% in the treatment group and 99.0 \pm 1.8% in the placebo group. Riche *et al.* [261] consistently showed the trend of A1C reduction when compared with baseline (p = 0.098) in

patients with type 2 diabetes (N = 17) who taking mulberry leaves (1,000 mg of standardized mulberry leaves extract; t.i.d.) for 12 weeks. In contrast, Kim *et al.* [35] reported that no alteration in the concentrations of A1C and FPG was observed in prediabetic individuals who taking mulberry leaves (6 mg DNJ; t.i.d.) for four weeks.

In comparison with acarbose, we observed the relatively small reduction in A1C and FPG by mulberry leaves. Previous evidence showed that acarbose decreased the levels of A1C by -0.58% (p < 0.001) and FPG by -13.1 mg/dL (p < 0.001) [304]. This may be attributed to the low baseline blood glucose of participants in our study. Blood glucose concentration is established as an important factor affecting efficacy of antihyperglycemic agents. In general, persons who had the higher baseline levels better respond to the medications than those with the lower degree of hyperglycemia [305]. In addition, the study duration appeared to be too short to detect the clinically significant reduction in A1C. Chiasson et al. [301] revealed that the maximum effect of acarbose on A1C was observed after six months of the treatment. Another plausible reason is that mulberry DNJ 12 mg was probably not sufficient to suppress the elevated PPG in response to the regular diets and the higher dose may be required for achieving the desirable effects. Although it was considered the effective dose regarding the results of study I, it should be noted that it was relied on the 50-g sucrose loading test. Regular diets generally contain complicated compositions other than digested carbohydrate such as fat, protein, and fiber that may interfere carbohydrate digestion and absorption. Furthermore, sources and quantity of the ingested carbohydrate itself are the key factors influencing postprandial glycemic responses in the different ways. For example, carbohydrate-rich meals and high glycemic index foods produce the high magnitude of postprandial hyperglycemia [14, 25].

5.3.2 Effects of daily administration of mulberry leaves on insulin resistance

This is the first study evaluating effect of mulberry leaves on insulin resistance in human using the HOMA-IR method. We observed that the HOMA-IR of the treatment group tended to decrease from baseline with the borderline significant level (p = 0.057) at the end of study. Since the reduction in HOMA-IR indicates the improvement of insulin sensitivity [140], our results suggest that daily administration of mulberry leaves may alleviate insulin resistance.

The present study failed to observe the significant effect of daily administration of mulberry leaves on insulin resistance. It could be explained by the small sample size and the short treatment duration. However, we found that effect of mulberry leaves on insulin resistance index was comparable to other herbal extracts. Choi et al. [142] demonstrated that the HOMA-IR level in obese persons with impaired glucose metabolism (N = 136) did not alter from baseline (3.5 ± 0.2 vs. $3.1 \pm$ 0.2, p = 0.16) after supplementation of aloe vera gel for 8 weeks and the mean value of HOMA-IR in the treatment group was not different from the control group at the end of study. On the other hand, a 3-year clinical trial in individuals who met the criteria of prediabetes (N = 240) of Chuengsamarn *et al.* [144] showed that curcumin extract was capable of lowering HOMA-IR (3.60 vs. 3.22, p value was not mentioned) in the treatment group. Moreover, the study reported the significant difference in HOMA-IR between the groups (p < 0.001 vs. the placebo group) at the end of study. A slight but significant improvement in insulin resistance among persons with prediabetes and patients with newly diagnosed type 2 diabetes (N = 41) was also evident by Bang et al. [306]. The authors showed that Korean red ginseng supplementation significantly reduced HOMA-IR (1.81 \pm 0.12 vs. 1.53 \pm 0.12, p < 0.05) at the end of 12-week study [306].

Benefits of mulberry leaves on insulin resistance could be a result of the decreased postprandial hyperglycemia. A prolonged high response of glucose excursion after meals aggressively provokes insulin secretion, eventually leading to impaired insulin sensitivity and β cell function. Therefore, the blunted PPG excursion may lessen stimulation of insulin release and preserve β cells. Another plausible explanation for alleviation in insulin resistance in the mulberry leaves-treated group was the reduction in BMI at week 12 (-0.26 ± 0.46 kg/m², p = 0.075). Excess body weight is involved in the development of insulin resistance in several pathways [12, 53]. Thus, the robust relationship between weight loss and insulin sensitivity was well evident [307].

In accordance with our work, preclinical studies suggested that mulberry leaves improved insulin sensitivity in insulin-target tissues via several mechanisms. The extracts modified expressions of genes and proteins involved in hepatic glucose homeostasis. Activities of gluconeogenic enzymes: G6Pase and PEPCK were suppressed [38], whereas activities of glycolysis enzymes: glucokinase, phosphofructokinase, and pyruvate kinase were promoted in a dose-dependent fashion by mulberry leaves treatment [308]. The extracts also activated PI3K/Akt and GSK- 3β signaling pathways [36] and elevated GLUT-4 translocation [39] in skeletal muscles and adipose tissues. In addition, mulberry leaves increased circulating adiponectin, which is an endogenous insulin sensitizer, in rat plasma [309]. In the meantime, mulberry leaves also reduced the level of circulating leptin, contributing to modulation of leptin resistance [309]. It was postulated that phenolic acids and flavonoids in the extracts were responsible for benefits of mulberry leaves on insulin resistance [38, 309].

By contrast, effects of mulberry leaves and the relevant mechanisms on alleviating insulin resistance were not widely elucidated in human studies. Kim *et al.* [35] investigated effects of mulberry leaves administration on postprandial insulin response in human in order to clarify whether mulberry leaves decreased the PPG concentration by stimulating insulin secretion or not. The results showed the higher AUC of postprandial plasma insulin during carbohydrate tolerance test in the control group when compared with the mulberry leaves-treated group (p < 0.05). The favorable effect was consistent with postprandial response of C-peptide. The findings indicate that mulberry leaves can decrease blood glucose with no effect on insulin secretion. Prolonged stimulation of insulin secretion aggravates β -cell exhaustion and dysfunction as described [52]. As a result, one of the desired antihyperglycemic actions is lowering blood glucose without enhancing pancreatic insulin release. This could suggest that mulberry leaves could be a desired agent for treating hyperglycemia.

5.3.3 Effects of daily administration of mulberry leaves on blood lipids

In the present study, mulberry leaves possessed the significant lowering effect on TC, but it did not affect the values of TG, HDL-C, and LDL-C. At the endpoint, the significant difference between the groups (-17.91 mg/dL; p = 0.034) and the significant change from the baseline level (-13.42 mg/dL; p = 0.002) were detected in the treatment group. It is important to note that the above results were relied on the mean values of blood lipids from all participants (N = 54) including those who had blood lipids in the normal range and those with the abnormal lipid profiles.

The case selection analysis was additionally performed to determine the effect of mulberry leaves on lipids only in persons with dyslipidemia (N = 41). Similarly, the results showed the significant difference in TC in the treatment group when compared with the control group (-19.52 mg/dL; p = 0.024) and the baseline level (-17.10 mg/dL; p < 0.001). Moreover, the significant reduction in LDL-C from the initial level (-10.33 mg/dL; p = 0.038) was found in the treatment group. Although no improvement in TG and HDL-C by mulberry leaves treatment was observed in this study, the level of TG tended to lower from baseline (-12.36 mg/dL; p = 0.067).

A similar pattern of results and degree of reductions in TC, TG, and LDL-C was obtained in the study of Aramwit *et al.* [275] that conducted in patients with early-stage dyslipidemia (N = 23). After 12 weeks of the treatment period, mulberry leaves significantly improved lipid profiles by reducing TC (-12.8 mg/dL; p < 0.05), TG (-19.1 mg/dL; p < 0.05), and LDL-C (-9.7 mg/dL; p < 0.05) from baseline. The study of Andallu *et al.* [277] also showed that the 4-week treatment of mulberry leaves significantly lowered TC (-23.4 mg/dL; p < 0.01), TG (-32.4 mg/dL; p < 0.01), and LDL-C (-23.4 mg/dL; p < 0.01) in comparison with the initial levels among patients with type 2 diabetes (N = 24). Furthermore, our findings were in agreement with Chiasson *et al.* [132] and Malaguarnera *et al.* [310], showing lipid-lowering efficacy of acarbose on TC and LDL-C. The studies proposed that the reduction in cholesterol levels resulted from the decreased lipogenic effect of insulin [310]. The relatively small reduction in blood lipids that found in this study could be explained by the severity of dyslipidemia. Individuals who have the markedly high blood lipids better respond to antihyperlipidemic agents than those with the lower baseline of

dyslipidemia [311]. In our study, the baseline lipid profiles of participants were not extremely high; therefore, the marked changes in blood lipids were not expected.

There are several pathways associated with the lipid-lowering effect of mulberry leaves. First, it was proposed that mulberry leaves inhibited the function of HMG-CoA reductase [264], leading to the inhibition of endogenous cholesterol synthesis. Second, DNJ-rich mulberry leaves extract acted as a PPAR- α agonist [262-264]. This could promote lipolysis in hepatic cells. Third, being the α -glucosidase inhibitor could be a possible explanation. Regarding the suppressive effect on PPG and insulin release, mulberry DNJ reduced blood glucose and hepatic glucose influx, leading to the reductions in TG and cholesterols [251]. Many phytochemicals, including DNJ, DNJ derivatives, and polyphenols were hypothesized to be the functional compounds responsible for lipid-lowering effect of mulberry leaves [262, 263, 265-267]. Mulberry leaves also contain soluble fiber that interfere the absorption of dietary lipids by binding with bile acid and being excreted in feces [272].

5.3.4 Effects of daily administration of mulberry leaves on anthropometric profiles

Mulberry leaves did not exhibit anti-obesity effect in the current study, which was in agreement with previous clinical trials. No evidence has indicated ability of mulberry leaves in reducing body weight in human. Interestingly, we however found the trend of BMI reduction in the treatment group (p = 0.075 vs. baseline) after the intervention period even the numbers of caloric intake were maintained. We hypothesized that there might be unknown favorable effects of mulberry leaves on fat metabolism and fat accumulation. Other obesity-related markers such as body fat mass, lean body mass index, and adipokine level should be evaluated in the future work in order to obtain insight explanations of anti-obesity effect of mulberry leaves.

In contrast to the clinical findings, mulberry leaves moderately reduced body weight in animals. After induction of obesity by high-fat diet feeding, Chang *et al.* [265] found that mice treated with mulberry leaves extract had the lower body weight and fat/body weight ratio than the control mice. Various mechanisms of anti-obesity action of mulberry leaves were proposed. Mulberry leaves significantly decreased

lipid accumulation in adipocytes as evaluated by histological examination [265, 266]. Chang *et al.* [265] and Peng *et al.* [312] consistently suggested that mulberry leaves inhibited adipogenesis, retarded adipocytes maturation, and promoted apoptosis of functional adipocytes, resulting in the reduction in mature adipocytes. In addition, it has further evident that mulberry leaves regulated activities of the key adipokines involved in energy metabolism and body weight regulation, including adiponectin and leptin [309]. Moreover, mulberry leaves modulated expressions of genes involved in adipogenesis, lipogenesis, and lipolysis [265, 266, 312]. Inconsistency between our finding and the animal researches might be from a major difficulty of conducting human studies. It is difficult to strictly control and completely avoid confounding variables that may influence anthropometric outcomes, for example, diet intake and physical activity in the real-world situation. Unlike, variables can be carefully controlled and monitored throughout the study period in the animal experiments.

5.3.5 Safety of daily administration of mulberry leaves

Daily administration of mulberry leaves was relatively safe without the occurrence of hypoglycemia and serious side effect. Biochemical analysis revealed no adverse effect on hepatic and renal function by mulberry leaves. Meanwhile, self-report adverse events were gastrointestinal symptoms: bloating, flatulence, abdominal pain, loose stools, and constipation. The most prominent events occurring in 50% of participants in the treatment group at the first four weeks of administration were bloating and flatulence. The rates however declined to 39.3% at week 8 and 28.6% at week 12, suggesting recovery of the side effects over time. Meanwhile, the incidences of loose stools and constipation were approximately 2-7% and 4-6%, respectively, during the treatment period. Although the high proportion of participants who complained of gastrointestinal side effects were observed, the actual withdrawal rate was relatively low. Only 3.45% in the treatment group prematurely discontinued participation to the study, indicating that tolerability of mulberry leaves was good.

As previously described, gastrointestinal symptoms were the most frequently reported problem of α -glucosidase inhibitors because the agents leads to the large production of gas and osmotic pressure in the digestive tract [293]. We found that the

gastrointestinal side effects from long-term mulberry leaves administration were in line with the prior studies [34, 35]. Nonetheless, when compared with acarbose, mulberry leaves appeared to cause the lower rates of gastrointestinal symptoms and study withdrawal regarding the relevant side effects. Chiasson *et al.* [301] showed that acarbose was more likely to cause gastrointestinal side effects than placebo: 73.2% *vs.* 39.0% for bloating, 43.6% *vs.* 20.3% for diarrhea, and 25.0% *vs.* 8.8% for abdominal cramp. Similarly, these were the main reasons for study withdrawal in the study of Holman *et al.* [313], which found the over 50% drop-out rate among the patients taking acarbose because of flatulence and diarrhea. A plausible explanation is that acarbose exhibited the potent inhibitory effect on both α -glucosidase and α -amylase enzymes [250]. This could result in the higher amount of undigested carbohydrates remaining in the gastrointestinal tract by acarbose. The findings indicate that mulberry leaves could be more well-tolerated than the synthetic drug.

5.3.6 Diet control

We postulated that eating patterns of study participants could not be the confounder affecting clinical outcomes because we found no change in total caloric intake and portions of macronutrients intake along the study period. However, limitations of the evaluation methods are acknowledged. First, measures of caloric and macronutrients intake by the food diary can cause recording and measurement biases. Participants were asked to estimate serving sizes of foods using the standard household measures. The method could be complicated for some participants, especially in those who are not familiar with weighing food and household tools. Second, respondents may intentionally alter or not report their actual eating patterns. These can be the results of underreport and misinterpretation in types and amount of the consumed diets.

5.4 Study III (proteomic analysis): to determine effect of the long-term supplementation of mulberry leaves on expressions of plasma proteins in persons who had impaired glucose metabolism, including obese persons with prediabetes and patients with early-stage type 2 diabetes

As far as our knowledge, this is the first work incorporating clinical study and proteomic analysis for investigating effects of mulberry leaves administration in human. The longitudinal changes in expression of plasma proteins in response to the 12-week mulberry leaves administration among the selected participants who enrolled in the study II (N = 12) was determined using LC-MS/MS coupled with the label-free proteomic technique. Type 2 diabetes is the multifactorial disease associated with multi-organ dysregulation. Regarding the advantages of proteomics, the results reveal the comprehensive view of multiple proteins that linked to the ongoing cellular modification. Plasma specimen was used. Blood is a connective tissue traveling throughout the body, suggesting that the proteins that secreted or leaking from the different tissues are present in the blood circulation. It has been addressed that the label-free strategy is suitable for quantitative determination of proteins in blood-based specimen, which is the highly dynamic biological system, because of the wide-range detectable capacity of the technique [173]. In addition, blood collection procedure is relatively minimally invasive and convenient. Accordingly, blood-based specimen was considered the optimal option of our study.

Following the 12-week treatment period, we found the differential expression of numerous proteins in the after-treatment samples when compared with the beforetreatment ones. In other words, the changes in protein expression reflected biological modification at the cellular level in response to the treatment. The results showed that the candidate proteins are functionally involved in metabolic regulation, ECM constituents and organization, immune system, and inflammatory response.

5.4.1 Proteins involved in metabolic regulation

After the 12-week supplementation of mulberry leaves, expressions of the following proteins that involved in metabolic regulation changed from baseline.

- Phosphatidylinositol 3-kinase regulatory subunit $\beta(\mathbf{\psi})$

- Insulin receptor (ψ)
- Insulin receptor substrate $2(\uparrow)$
- Hexokinase domain-containing protein 1 (ψ)
- Oxysterols receptor LXR- α (\uparrow)
- Retinol-binding protein 4 (Ψ)

Phosphatidylinositol 3-kinase regulatory subunit β (PI3K- β) is a component of PI3Ks. It is one of the downstream proteins of insulin receptor and IRS-1 and 2 and it serves as the signaling protein of PI3K/Akt signaling pathway. In response to elevated blood glucose, the binding of insulin and insulin receptor mediates signal transduction through IRS and subsequently facilitates the interaction between IRS and PI3Ks. This leads to the activation of phosphatidylinositol 3,4,5-trisphosphate (PIP3), which is the key intermediate promoting glucose transport and glycogenesis in the peripheral cells [314]. Also, hexokinase domain-containing protein 1, a protein belonging to the hexokinase family, is closely associated with glucose uptake in liver cells via GLUT-2 translocation [315]. Dysregulation of the mentioned proteins therefore contributes to hyperglycemia and the subsequent insulin resistance because of the defects in peripheral glucose utilization.

The down-expression of PI3K- β , insulin receptor, and hexokinase was observed in the samples. Our findings differ from the studies of Hamdy *et al.* [37] and Liu *et al.* [39] showed that mulberry leaves water extract promoted expression of proteins that regulate hepatic glucose metabolism, including G6Pase and PEPCK. However, the results reflect metabolic dysregulation in the study population. In other words, this suggests that mulberry leaves supplementation seemed not to have effect on peripheral glucose uptake via the modulation of the mentioned proteins.

Published data demonstrated that activity of PI3K, IRS, and hexokinases dramatically decreased in various models of insulin resistance and type 2 diabetes [315, 316]. The crucial roles of the proteins that involved in the PI3K/Akt signaling pathway were clarified in experimental studies. Suppression of PI3K activity inhibited the translocation of GLUT-4 to the cell membrane, leading to the reduction in glucose

uptake into the cells [317-319]. PI3K inhibitor, wortmannin, also blunted insulin action and caused energy imbalance and impaired lipid metabolism [319]. Consistently, transgenic PI3K- and IRS-deficient animals exhibited glucose intolerance, excessive fat accumulation in adipocytes, and loss of body weight control when compared with the wild-type controls [318, 319]. The impaired glucose tolerance following the OGTT was also observed in mice with down-expressing *HKDC1*, which is the encoding gene of hexokinase domain-containing protein 1 [315, 320]. Moreover, depletion of *HKDC1* gene appeared associated with insulin resistance since it resulted in the reduction in TG clearance [320]. On the other hand, pharmacological treatments that increased the expression of the mentioned proteins led to the improvement in insulin-resistant conditions [321, 322].

Meanwhile, oxysterols receptor LXR- α (LXR- α) is the protein regulating cholesterol, lipid, and carbohydrate metabolism in liver and adipose tissue [323]. Studies showed that the up-regulated LXR- α mediates reverse cholesterol transport by HDL particles, lowers intestinal fat absorption, and enhances TG synthesis [324, 325]. LXR- α agonists alleviated hyperglycemia and glucose intolerance in animal models since the interventions decreased gluconeogenesis and increased GLUT-4 expression [326, 327]. The activated LXR- α also enhanced insulin production and secretion from β cells [328]. By contrast, transgenic down-expression of LXR- α in mice exhibited the significantly impaired functions of HMG-CoA reductase, SREBP, and fatty acid synthase, which are the key enzymes responsible for cholesterol and fatty acid metabolism [329].

In this analysis, we found the up-expression of LXR- α , reflecting the modulation of metabolic regulation related to LXR- α activity. This brought us to assume that the reductions in plasma lipid of those in the treatment group might be associated with the modulation of LXR- α expression by mulberry leaves treatment. Also, we assumed that the up-expressed LXR- α might exert favorable effects on glycemic outcomes and insulin resistance profile. Besides metabolic regulation, evidences suggested that LXR- α modulated inflammation through many mechanisms: lowering local lipid accumulation, inhibiting unsaturated FFA formation, and suppressing gene expression of proinflammatory cytokines [323, 325]. These might

be another reflection of the reversed inflammation-induced insulin resistance in the study participants. However, Ann *et al.* [266] reported the controversial finding from ours. Ethanolic mulberry leaves extract promoted adipocyte apoptosis by the suppression of LXR- α expression [266].

Next, the down-expression of retinol-binding protein 4 (RBP-4) by mulberry leaves treatment might be also associated with the favorable outcomes of the phase-II study. RBP-4 is considered a novel adipocytokine. The protein impaired the activation of IRS-1 and PI3K/Akt signaling pathway and increased hepatic gluconeogenesis, leading to hyperglycemia [330, 331]. These findings indicated that the overexpression of RBP-4 possesses deleterious effects on glucose-insulin homeostasis [331]. Furthermore, the significant elevation of serum RBP-4 in various models of insulin resistance, glucose intolerance, and obesity [330-333]. Similarly, the concentration of circulating RBP-4 in type 2 diabetic patients was higher than that of non-diabetic controls [332], which was consistent with the gene expression level in visceral adipose tissue collected from diabetic persons [334]. RBP-4 is also positively associated with various components of metabolic syndromes such as high BMI, waistto-hip ratio, and TG level [331]. Conversely, studies revealed that suppression of RBP-4 activity by fenretinide and pioglitazone was capable of improving insulin sensitivity and reversing glucose intolerance [330, 335], which was in line with the effect of mulberry leaves in our study. For these reasons, we suggested that mulberry leaves might modify RBP-4 expression and it might be subsequently associated with the improvement in glycemic control and insulin resistance in the study population.

5.4.2 Proteins involved in ECM constituents and organization

After the treatment of mulberry leaves, we found the differential expression of eight proteins as summarized below. All of these are classified as the ECM constituents, except integrin β -6, which is the cell surface receptor of collagens.

- Collagen alpha-1(II) chain (Ψ)
- Collagen alpha-3(IV) chain (ψ)
- Collagen alpha-3(VI) chain $(\mathbf{\psi})$

- Cartilage oligometric matrix protein $(\mathbf{\psi})$
- Tripartite motif-containing protein 46 (ψ)
- Emilin-2 (Ψ)
- A disintegrin and metalloproteinase with thrombospondin motifs 12 $(\mathbf{\psi})$
- Integrin β -6 (\uparrow)

ECM remodeling is known as another result of uncontrolled hyperglycemia and excessive lipid accumulation [57]. The alterations in ECM constituents and organization, particularly in adipose tissue, liver, and skeletal muscle, are linked to insulin resistance and type 2 diabetes [58-60]. The expression of ECM proteins increases several folds in obesity and type 2 diabetes [57]. Also, several encoding genes of ECM constituents highly expressed in insulin-resistant condition when compared with the controls [60]. In contrast to the prior reports, we observed the down-expression of ECM proteins: collagen alpha-1(II) chain, collagen alpha-3(IV) chain, collagen alpha-3(VI) chain, cartilage oligomeric matrix protein, tripartite motifcontaining protein 46, emilin-2, and a disintegrin and metalloproteinase with thrombospondin motifs 12 in the samples. We assumed that this could reflect the modulating effects of mulberry leaves on ECM remodeling towards metabolic disturbance. This assumption is supported by the published evidences. The overexpressed ECM proteins were attenuated by various interventions. The gene expression of collagens significantly decreased in diabetic skeletal muscle after physical training [336]. Also, relaxin treatment was capable of reducing hepatic collagen induced by high-fat diet intake, resulting in the subsequent alleviation of hepatic insulin resistance [337].

In addition, we found the only cell surface protein, integrin β -6, in the samples. Expression of integrin proteins in relation to insulin resistance has been controversially reported among the studies. William *et al.*[338] showed that integrindeficient mice exhibited the improved glucose uptake and insulin signaling in obese mice fed with high-fat diet. However, Kang *et al.* [339] showed that genetic depletion of integrins exacerbated insulin resistance and impaired hepatic glucose output in

high-fat diet-induced insulin-resistant mice. On the other hand, the overexpression of integrins was observed in hepatocytes isolated from mice fed with high-fat diet [338]. The up-regulated integrin genes: *ITGBL1*, *ITGA4*, and *ITGA5* were also reported in various models of obesity, insulin resistance, and type 2 diabetes [66, 340]. The studies further suggested that it might be a consequence of the excessive ECM deposition in the cells [66]. According to our findings, we suggested that the up-expressed integrin β -6 might reflect the early compensation feedback in response to the decreased expression of ECM proteins.

5.4.3 Proteins involved in immune response

The analysis showed that there were four proteins that involved in immune system expressed differentially when compared with the baseline profile as shown below. The two first proteins are the members of pattern recognition proteins family, whereas the latter ones serve as inflammasome and the component of inflammasome complex, respectively.

- Nucleotide-binding oligomerization domain-containing protein 2 (ψ)
- Ficolin-3 (ψ)
- Pyrin (\uparrow)
- NACHT, LRR and PYD domains-containing protein 7 (\uparrow)

It has been proposed that the interactions of specific pathogens and pattern recognition proteins together with inflammasome, are the major triggers of immune response that closely linked to metabolic inflammation in the peripheral tissues [63]. Du *et al.* [341] found that the overexpression of nucleotide-binding oligomerization domain-containing protein 2 (NOD-2) resulted in the impaired glucose uptake and insulin signaling. Meanwhile, Schertzer *et al.* [64] demonstrated that *NOD2* knockout mice were protected from lipid accumulation and insulin resistance induced by high-fat diet feeding. The protective effect of *NOD2* depletion against tissue inflammation induced by hyperglycemia was also reported [64]. Meanwhile, ficolin-3 is one of the proteins belonging to the ficolin family and is highly specific to carbohydrate derived from bacteria and metabolic products [342]. Serum ficolin-3 concentration of persons

with prediabetic and type 2 diabetic statuses was higher than that of healthy controls [165, 343]. The expression of ficolin-3 was also in accordance with the increased values of FPG, TC, and TG [343]. Nonetheless, the study of Liu *et al.* [343] found that the up-regulated ficolin-3 was suppressed after receiving exercise intervention and its expression among those in the treatment group was significantly lower when compared with that of the non-treated one at the end of the study [343].

These findings were in agreement with ours, suggesting the favorable effects of the down-expression of NOD-2 and ficolin-3 in response to the given treatment. Moreover, ficolin-3 is the major activator of lectin-complement system [165], which is the hallmark of low-grade inflammation including insulin resistance [344]. We proposed that the decreased expression of ficolin-3 could further reflect another benefit of mulberry leaves on inflammation-induced insulin resistance. By contrast, the controversial results regarding the down-expression/depletion of the proteins were reported. Denou *et al.* [345] showed that transgenic NOD-2-deficient mice exhibited inflamed adipose tissue and liver, leading to the exacerbation of insulin resistance.

To date, little is known about the specific roles of pyrin and NACHT, LRR and PYD domains-containing protein 7 (NLRP7) in metabolic diseases. Furthermore, the certain expression of pyrin and NLRP7 in relation to insulin resistance and type 2 diabetes remains poorly understood. To the best of our knowledge, this is the first study reporting the detection of pyrin and NLRP7 in persons with impaired glucose metabolism. According to the existing data, inflammasomes are up-regulated during hyperglycemic and hyperlipidemic conditions [62, 63] and it is associated with the increased risk of insulin resistance [67]. For these reasons, we suggest that the overexpression of pyrin and NLRP7 could indicate hyperglycemic and hyperlipidemic states in the study participants and mulberry leaves treatment seemed not link to the modification of inflammasome expression.

5.4.4 Proteins involved in inflammatory response

In this work, we observed the down-expression of eight proteins that associated with inflammatory response, including IKK/NF-κB signaling pathway, JNK signaling pathway, and acute-phase reactants as follows.

- *IKK/NF-κB signaling pathway:* TNF receptor superfamily member 1A
 (ψ), inhibitor of NF-κB kinase subunit α (ψ), and NF-κB essential modulator (ψ)
- JNK signaling pathway: dual specificity mitogen-activated protein kinase kinase 6 (ψ)
- Acute-phase reactants: angiotensinogen (ψ), haptoglobin (ψ), α -1acid glycoprotein 2 (ψ), and α -2-HS-glycoprotein (ψ)

First, TNF receptor superfamily member 1A (TNF-R1) is the major receptor of TNF-α. The interaction of TNF-α and TNF-R1 mediates transcription factor of NFκB. Second and third, inhibitor of NF-κB kinase subunit α (IKK-α) and NF-κB essential modulator (NEMO/IKK- γ) are the two of the three subunits of the IKK complex, which serves as the distinct activator of NF-κB [78]. The robust association between the overexpression of IKK/NF-κB signaling pathway and peripheral insulin resistance has been well established [61, 79]. Previous cross-sectional studies observed that the up-expression of TNF-R1 in subcutaneous adipose tissue isolated from obese adults when compared with the controls [79]. Also, TNF-R1 serum level in Thai obese persons tended to be higher than that of the lean controls [93].

In addition to IKK/NF- κ B cascade, JNK signaling pathway also takes the crucial part in metabolic inflammation. The only differentially expressed protein associated with the JNK pathway we found was dual specificity mitogen-activated protein kinase kinase 6 (MAPK kinase 6). The protein is established as the key element mediating signal transduction via p38 MAPK, which is the upstream activator of the JNK inflammatory pathway [61, 76]. The up-regulated MAPK kinase 6 moderately impaired insulin signal transduction in adipocytes due to the dramatic reductions in IRS-1 and IRS-2 expressions and PI3K/Akt activity in *in vitro* model [346]. The overexpression of *MKK6*, the encoding gene of MAPK kinase 6 expression, was detected in white adipose tissue of obese adults [347]. MAPK kinase 6 is considered the promising target of various inflammatory conditions to date.

Many evidences suggested that the decreased expression of TNF-R1, IKK- α NEMO/IKK- γ , and MAPK kinase 6 ameliorates inflammation-induced insulin

resistance. Diet-induced obesity animals treated with TNF-R1 antagonist exhibited the reversion of insulin resistance as well as the decreased fat accumulation and body weight [348, 349]. The treatment also alleviated the overexpression of TNF- α [349]. Consistently, TNF-R1 knockdown mice exhibited the improved glucose intolerance and the increased insulin secretion following the intraperitoneal glucose tolerance test [350]. Deficiency of *NEMO* gene exerted the protective effect against obesity-induced insulin resistance and glucose intolerance in transgenic mice [351]. Meanwhile, *MKK6* deficient mice were protected from diet-induced obesity and insulin resistance [347]. These findings were consistent with ours, showing the down-expression of TNF-R1, IKK- α NEMO/IKK- γ , and MAPK kinase 6 after receiving the intervention. Therefore, we suggested that mulberry leaves supplementation could have favorable effects against metabolic impairments through the modulation of IKK/NF- κ B and JNK signaling responses.

Besides, we found that the expression of angiotensinogen, haptoglobin, α -1acid glycoprotein 2, and α -2-HS-glycoprotein, were lower than the baseline. All of the four proteins are classified as positive acute-phase reactants, meaning that their expression levels significantly increase during the inflammatory period. Scientific studies supported that the over-expressed angiotensinogen, haptoglobin, α -1-acid glycoprotein 2, and α -2-HS-glycoprotein were linked to metabolic dysregulation. The hyperactivated angiotensinogen suppressed IRS-1 activity and led to insulin resistance in insulin-target tissues and endothelial cells [132]. Likewise, transgenic overexpression of α -2-HS-glycoprotein gene (AHSG) resulted in adipocyte dysfunction and impaired insulin signaling [352]. Meanwhile, patients with prediabetes and type 2 diabetes exhibited the elevated expressions and levels of haptoglobin and orosomucoids in serum [85, 165, 353]. The increased orosomucoids and α-2-HS-glycoprotein blunted the capacity of glucose clearance and insulin secretion following the standard glucose tolerance test among prediabetic persons [88, 353-355]. Conversely, the decreased expression of angiotensinogen modulated insulin resistance and lowered diabetic risk [356]. Haptoglobin gene (HP) knockout mice exhibited the improved glucose intolerance, insulin secretion, insulin action, and adiponectin expression [357]. According to the consistency between these reports and

our results, this could reflect the alleviation of inflammatory reactions that underlying insulin resistance by mulberry leaves intervention.

As far as our knowledge, this is the first proteomic study investigating the effects of mulberry leaves on metabolic impairment. Hence, our novel observation could suggest the advanced benefits of mulberry leaves beyond the well-known mechanism of action, which is inhibition of α -glucosidase activity. Limitations of the present analysis have been addressed, including the absence of controls (those who assigned to control the diets alone) as well as lack of non-diabetic controls, and small sample size. Moreover, there are a wide variation in proteomic data regarding the nature of the analysis. It is important to validate these preliminary findings by complementary techniques such as western blot analysis and enzyme linked immunosorbent assay (ELISA).

In summary, proteomic analysis reveals the changes in expression of many plasma proteins in response to mulberry leaves supplementation. Interestingly, we observed the novel proteins in individuals who had metabolic impairment including NOD-2 and NLRP7. The findings further reflect the cellular modification in several biological pathways that strongly linked to pathophysiology and pathogenesis of type 2 diabetes. We suggested that mulberry leaves exerted promising effects against insulin resistance and type 2 diabetes by modulating expression of LXR- α , RBP-4, ECM remodeling, pattern recognition protein expression, and inflammatory response via the JNK and IKK/NF- κ B pathways, but the leaves seemed not to have effect on glucose utilization in peripheral tissues via PI3K/Akt signaling transduction.

5.5 Limitations

Study intervention

 The whole of mulberry leaves product was prepared by the single batch production for the overall study period and lack of product stability testing.

Study I

- Open-label trial

- Lack of identical matching placebo
- Lack of variety in carbohydrate source used in carbohydrate loading test: consideration of other carbohydrates (disaccharides and complex carbohydrates) might be more informative.

Study II

- Open-label trial
- Lack of identical matching placebo
- Insufficient study period to observe the significant improvements in glucose tolerance and insulin sensitivity
- Lack of the measurement of physical activity intensity
- No measurement of hemoglobin level at the time of the participant recruitment as well as throughout the study period: the misinterpretation of A1C might result from the abnormal hemoglobin homeostasis such as in patients with anemia.

Study III

- Within-group comparison
- Lack of control group
- Small sample size

จุฬาลงกรณมหาวิทยาลัย 5.6 Conclusion Church Church

In conclusion, we suggest that mulberry leaves have promising metabolic potentials for the management of the early-stage metabolic impairment in type 2 diabetes. First, daily supplementation of mulberry leaves containing 12 mg of DNJ effectively suppressed the elevation of PPG following the single administration of 50-g sucrose solution. Moreover, the certain treatment regimen of mulberry leaves was capable of reducing postprandial glucose peak, A1C, and FPG, and improving blood lipid profile in obese persons with prediabetes and patients with early-stage type 2 diabetes. Furthermore, it seemed to have favorable effects against insulin resistance. Second, mulberry leaves administration was relatively safe and well tolerated. There were no reports of hypoglycemia, adverse effects on renal and hepatic functions, as

well as life-threatening side effects following the mulberry leaves treatment. Last, regarding proteomic analysis, mulberry leaves might play the role in the modulation in expressions of plasma proteins that involved in metabolic regulation, ECM remodeling, immunity, and inflammatory response.

REFERENCES

- 1. Centers for Disease Control and Prevention (CDC). National diabetes statistics report, 2017: estimates of diabetes and its burden in the United States. United States: CDC, National Center for Chronic Disease Prevention and Health Promotion; 2017.
- 2. Stumvoll M, Goldstein BJ, and van Haeften TW. Type 2 diabetes: principles of pathogenesis and therapy. Lancet (London, England). 2005;365(9467):1333-46.
- 3. DeFronzo RA. Pathogenesis of type 2 diabetes mellitus. The Medical clinics of North America. 2004;88(4):787-835.
- 4. Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes research and clinical practice. 2018;138:271-81.
- 5. American Diabetes Association. Economic Costs of Diabetes in the U.S. in 2017. 10.2337/dci18-0007. 2018.
- 6. American Diabetes Association. Standards of medical care in diabetes-2018. Diabetes Care. 2018;41(1):s1-s159.
- American Association of Clinical Endocrinologists and American College of Endocrinology. Consensus statement by the american association of clinical endocrinologists and american college of endocrinology on the comprehensive type 2 diabetes management algorithm – 2018 Executive summary. Endocrine Practice. 2018;24(1):207-38.
- 8. Pratley RE. The early treatment of type 2 diabetes. The American journal of medicine. 2013;126(9 Suppl 1):S2-9.
- 9. Tabák AG, Herder C, Rathmann W, Brunner EJ, and Kivimäki M. Prediabetes: A high-risk state for developing diabetes. Lancet (London, England). 2012;379(9833):2279-90.
- 10. Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002;346(6):393-403.
- 11. Tuomilehto J, Lindstrom J, Eriksson JG, Valle TT, Hamalainen H, Ilanne-Parikka P, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344(18):1343-50.
- 12. Hardy OT, Czech MP, and Corvera S. What causes the insulin resistance underlying obesity? Current opinion in endocrinology, diabetes, and obesity. 2012;19(2):81-7.
- 13. Abdullah A, Peeters A, de Courten M, and Stoelwinder J. The magnitude of association between overweight and obesity and the risk of diabetes: a metaanalysis of prospective cohort studies. Diabetes research and clinical practice. 2010;89(3):309-19.
- 14. Steyn NP, Mann J, Bennett PH, Temple N, Zimmet P, Tuomilehto J, et al. Diet, nutrition and the prevention of type 2 diabetes. Public health nutrition. 2004;7(1a):147-65.
- 15. Feinman RD, Pogozelski WK, Astrup A, Bernstein RK, Fine EJ, Westman EC, et al. Dietary carbohydrate restriction as the first approach in diabetes management: critical review and evidence base. Nutrition (Burbank, Los Angeles County,

Calif). 2015;31(1):1-13.

- 16. Woerle HJ, Neumann C, Zschau S, Tenner S, Irsigler A, Schirra J, et al. Impact of fasting and postprandial glycemia on overall glycemic control in type 2 diabetes Importance of postprandial glycemia to achieve target HbA1c levels. Diabetes research and clinical practice. 2007;77(2):280-5.
- 17. Hu EA, Pan A, Malik V, and Sun Q. White rice consumption and risk of type 2 diabetes: meta-analysis and systematic review. BMJ (Clinical research ed). 2012;344:e1454.
- 18. Ren G, Qi J, and Zou Y. Association between intake of white rice and incident type 2 diabetes An updated meta-analysis. Diabetes research and clinical practice. 2021;172:108651.
- Chan JC, Malik V, Jia W, Kadowaki T, Yajnik CS, Yoon KH, et al. Diabetes in Asia: epidemiology, risk factors, and pathophysiology. Jama. 2009;301(20):2129-40.
- 20. Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, and Laakso M. Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet (London, England). 2002;359(9323):2072-7.
- 21. Kawamori R, Tajima N, Iwamoto Y, Kashiwagi A, Shimamoto K, and Kaku K. Voglibose for prevention of type 2 diabetes mellitus: a randomised, double-blind trial in Japanese individuals with impaired glucose tolerance. Lancet (London, England). 2009;373(9675):1607-14.
- 22. Chiasson JL, Josse RG, Hunt JA, Palmason C, Rodger NW, Ross SA, et al. The Efficacy of Acarbose in the Treatment of Patients with Non–Insulin-Dependent Diabetes Mellitus: A Multicenter, Controlled Clinical Trial. Annals of Internal Medicine. 1994;121(12):928-35.
- 23. DECODE Study Group: the European Diabetes Epidemiology Group. Glucose tolerance and cardiovascular mortality: comparison of fasting and 2-hour diagnostic criteria. Archives of internal medicine. 2001;161(3):397-405.
- 24. Esposito K, Giugliano D, Nappo F, and Marfella R. Regression of carotid atherosclerosis by control of postprandial hyperglycemia in type 2 diabetes mellitus. Circulation. 2004;110(2):214-9.
- 25. Ceriello A. Postprandial Hyperglycemia and Diabetes Complications. Diabetes. 2005;54(1):1.
- 26. Hanefeld M, Cagatay M, Petrowitsch T, Neuser D, Petzinna D, and Rupp M. Acarbose reduces the risk for myocardial infarction in type 2 diabetic patients: meta-analysis of seven long-term studies. Eur Heart J. 2004;25(1):10-6.
- 27. Gao X, Cai X, Yang W, Chen Y, Han X, and Ji L. Meta-analysis and critical review on the efficacy and safety of alpha-glucosidase inhibitors in Asian and non-Asian populations. J Diabetes Investig. 2018;9(2):321-31.
- 28. Hanefeld M. Cardiovascular benefits and safety profile of acarbose therapy in prediabetes and established type 2 diabetes. Cardiovascular diabetology. 2007;6:20.
- 29. Sanchez-Salcedo EM, Amoros A, Hernandez F, and Martinez JJ. Physicochemical properties of white (*Morus alba*) and black (*Morus nigra*) mulberry leaves, a new food supplement. J Food Nutr Res. 2017;5(4):253-61.
- 30. Gao K, Zheng C, Wang T, Zhao H, Wang J, Wang Z, et al. 1-Deoxynojirimycin: Occurrence, Extraction, Chemistry, Oral Pharmacokinetics, Biological Activities

and In Silico Target Fishing. Molecules (Basel, Switzerland). 2016;21(11).

- Chung HI, Kim J, Kim JY, and Kwon O. Acute intake of mulberry leaf aqueous extract affects postprandial glucose response after maltose loading: randomized double-blind placebo-controlled pilot study. J Funct Foods. 2013;5:1502-6.
- 32. Kimura T, Nakagawa K, Kubota H, Kojima Y, Goto Y, Yamagishi K, et al. Foodgrade mulberry powder enriched with 1-deoxynojirimycin suppresses the elevation of postprandial blood glucose in humans. J Agric Food Chem. 2007;55(14):5869-74.
- Mudra M, Ercan-Fang N, Zhong L, Furne J, and Levitt M. Influence of mulberry leaf extract on the blood glucose and breath hydrogen response to ingestion of 75 g sucrose by type 2 diabetic and control subjects. Diabetes Care. 2007;30(5):1272-4.
- 34. Asai A, Nakagawa K, Higuchi O, Kimura T, Kojima Y, Kariya J, et al. Effect of mulberry leaf extract with enriched 1-deoxynojirimycin content on postprandial glycemic control in subjects with impaired glucose metabolism. J Diabetes Investig. 2011;2(4):318-23.
- 35. Kim JY, Ok HM, Kim J, Park SW, Kwon SW, and Kwon O. Mulberry leaf extract improves postprandial glucose response in prediabetic subjects: a randomized, double-blind placebo-controlled trial. Journal of medicinal food. 2015;18(3):306-13.
- 36. Kim JY, Choi BG, Jung MJ, Wee JH, Chung KH, and Kwon O. Mulberry leaf water extract ameliorates insulin sensitivity in high fat or high sucrose diet induced overweight rats. Journal of the Korean Society for Applied Biological Chemistry. 2011;54(4):612-8.
- 37. Hamdy S. Effect of *Morus alba* linn. extract on enzymatic activities in diabetic rats. J appl sci res. 2012;8:10-6.
- Liu Q, Li X, Li C, Zheng Y, Wang F, Li H, et al. 1-Deoxynojirimycin alleviates liver injury and improves hepatic glucose metabolism in db/db mice. Molecules (Basel, Switzerland). 2016;21(3):279.
- 39. Liu Q, Li X, Li C, Zheng Y, and Peng G. 1-Deoxynojirimycin alleviates insulin resistance via activation of insulin signaling PI3K/AKT pathway in skeletal muscle of db/db mice. Molecules (Basel, Switzerland). 2015;20(12):21700-14.
- 40. Mohammadi J, Naik PR. Evaluation of hypoglycemic effect of Morus alba in an animal model. Indian journal of pharmacology. 2008;40(1):15-8.
- 41. Saenthaweesuk S, Amornnat T, Rabintossaporn P, Ingkaninan K, and Sireeratawong S. The study of hypoglycemic effects of the Morus alba L. leaf extract and histology of the pancreatic islet cells in diabetic and normal rats. Planta Medica. 2009;9(2):149-55.
- 42. Weng J, Soegondo S, Schnell O, Sheu WH-H, Grzeszczak W, Watada H, et al. Efficacy of acarbose in different geographical regions of the world: analysis of a real-life database. Diabetes/Metabolism Research and Reviews. 2015;31(2):155-67.
- 43. Zhu Q, Tong Y, Wu T, Li J, and Tong N. Comparison of the hypoglycemic effect of acarbose monotherapy in patients with type 2 diabetes mellitus consuming an Eastern or Western diet: a systematic meta-analysis. Clinical therapeutics. 2013;35(6):880-99.
- 44. Dickinson S, Colagiuri S, Faramus E, Petocz P, and Brand-Miller JC. Postprandial

hyperglycemia and insulin sensitivity differ among lean young adults of different ethnicities. The Journal of nutrition. 2002;132(9):2574-9.

- 45. Fowler MJ. Microvascular and Macrovascular Complications of Diabetes. Clin Diabetes. 2008;26(2):77-82.
- 46. Aekplakorn W, Chariyalertsak S, Kessomboon P, Assanangkornchai S, Taneepanichskul S, and Putwatana P. Prevalence of Diabetes and Relationship with Socioeconomic Status in the Thai Population: National Health Examination Survey, 2004-2014. Journal of diabetes research. 2018;2018:1654530.
- 47. Hwang J, Shon C. Relationship between socioeconomic status and type 2 diabetes: results from Korea National Health and Nutrition Examination Survey (KNHANES) 2010–2012. BMJ Open. 2014;4(8):e005710.
- 48. Gerstein HC, Santaguida P, Raina P, Morrison KM, Balion C, Hunt D, et al. Annual incidence and relative risk of diabetes in people with various categories of dysglycemia: a systematic overview and meta-analysis of prospective studies. Diabetes research and clinical practice. 2007;78(3):305-12.
- 49. International Diabetes Federation. 2015 Diabetes Atlas. Brussels; 2015.
- 50. Aekplakorn W, Chariyalertsak S, Kessomboon P, Sangthong R, Inthawong R, Putwatana P, et al. Prevalence and management of diabetes and metabolic risk factors in Thai adults: the Thai National Health Examination Survey IV, 2009. Diabetes Care. 2011;34(9):1980-5.
- 51. Kahn SE, Hull RL, and Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444(7121):840-6.
- 52. Abdul-Ghani MA, Jenkinson CP, Richardson DK, Tripathy D, and DeFronzo RA. Insulin secretion and action in subjects with impaired fasting glucose and impaired glucose tolerance: results from the Veterans Administration Genetic Epidemiology Study. Diabetes. 2006;55(5):1430-5.
- 53. Castro JP, El-Atat FA, McFarlane SI, Aneja A, and Sowers JR. Cardiometabolic syndrome: pathophysiology and treatment. Current hypertension reports. 2003;5(5):393-401.
- 54. Strieder-Barboza C, Baker NA, Flesher CG, Karmakar M, Neeley CK, Polsinelli D, et al. Advanced glycation end-products regulate extracellular matrix-adipocyte metabolic crosstalk in diabetes. Sci Rep. 2019;9(1):19748.
- 55. Coletta DK, Mandarino LJ. Mitochondrial dysfunction and insulin resistance from the outside in: extracellular matrix, the cytoskeleton, and mitochondria. Am J Physiol Endocrinol Metab. 2011;301(5):E749-E55.
- 56. Hynes RO. The extracellular matrix: not just pretty fibrils. Science. 2009;326(5957):1216-9.
- 57. Ahmad K, Lee EJ, Moon JS, Park SY, and Choi I. Multifaceted Interweaving Between Extracellular Matrix, Insulin Resistance, and Skeletal Muscle. Cells. 2018;7(10).
- 58. Pasarica M, Gowronska-Kozak B, Burk D, Remedios I, Hymel D, Gimble J, et al. Adipose tissue collagen VI in obesity. The Journal of clinical endocrinology and metabolism. 2009;94(12):5155-62.
- 59. Khan T, Muise ES, Iyengar P, Wang ZV, Chandalia M, Abate N, et al. Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI. Molecular and cellular biology. 2009;29(6):1575-91.
- 60. Berria R, Wang L, Richardson DK, Finlayson J, Belfort R, Pratipanawatr T, et al.

Increased collagen content in insulin-resistant skeletal muscle. Am J Physiol Endocrinol Metab. 2006;290(3):E560-5.

- 61. Chen L, Chen R, Wang H, and Liang F. Mechanisms Linking Inflammation to Insulin Resistance. Int J Endocrinol. 2015;2015:508409.
- 62. Stienstra R, van Diepen JA, Tack CJ, Zaki MH, van de Veerdonk FL, Perera D, et al. Inflammasome is a central player in the induction of obesity and insulin resistance. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(37):15324-9.
- 63. Leemans JC, Kors L, Anders H-J, and Florquin S. Pattern recognition receptors and the inflammasome in kidney disease. Nat Rev Nephrol. 2014;10(7):398-414.
- 64. Schertzer JD, Tamrakar AK, Magalhães JG, Pereira S, Bilan PJ, Fullerton MD, et al. NOD1 activators link innate immunity to insulin resistance. Diabetes. 2011;60(9):2206-15.
- 65. Vandanmagsar B, Youm YH, Ravussin A, Galgani JE, Stadler K, Mynatt RL, et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nature medicine. 2011;17(2):179-88.
- 66. Catalán V, Gómez-Ambrosi J, Rodríguez A, Ramírez B, Rotellar F, Valentí V, et al. Increased tenascin C and Toll-like receptor 4 levels in visceral adipose tissue as a link between inflammation and extracellular matrix remodeling in obesity. The Journal of clinical endocrinology and metabolism. 2012;97(10):E1880-9.
- 67. Guo H, Callaway JB, and Ting JPY. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nature medicine. 2015;21(7):677-87.
- 68. Nio Y, Yamauchi T, Iwabu M, Okada-Iwabu M, Funata M, Yamaguchi M, et al. Monocyte chemoattractant protein-1 (MCP-1) deficiency enhances alternatively activated M2 macrophages and ameliorates insulin resistance and fatty liver in lipoatrophic diabetic A-ZIP transgenic mice. Diabetologia. 2012;55(12):3350-8.
- 69. Nakatani Y, Kaneto H, Kawamori D, Yoshiuchi K, Hatazaki M, Matsuoka TA, et al. Involvement of endoplasmic reticulum stress in insulin resistance and diabetes. The Journal of biological chemistry. 2005;280(1):847-51.
- 70. Jiao P, Ma J, Feng B, Zhang H, Diehl JA, Chin YE, et al. FFA-induced adipocyte inflammation and insulin resistance: involvement of ER stress and IKKβ pathways. Obesity (Silver Spring, Md). 2011;19(3):483-91.
- 71. Austin RC. The unfolded protein response in health and disease. Antioxidants & redox signaling. 2009;11(9):2279-87.
- 72. Gregor MF, Yang L, Fabbrini E, Mohammed BS, Eagon JC, Hotamisligil GS, et al. Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss. Diabetes. 2009;58(3):693-700.
- 73. Marciniak C, Duhem C, Boulinguiez A, Raverdy V, Baud G, Verkindt H, et al. Differential unfolded protein response in skeletal muscle from non-diabetic glucose tolerant or intolerant patients with obesity before and after bariatric surgery. Acta Diabetologica. 2020;57(7):819-26.
- 74. Duncan BB, Schmidt MI, Pankow JS, Ballantyne CM, Couper D, Vigo A, et al. Low-Grade Systemic Inflammation and the Development of Type 2 Diabetes. Diabetes. 2003;52(7):1799.
- 75. Pal M, Wunderlich CM, Spohn G, Brönneke HS, Schmidt-Supprian M, and Wunderlich FT. Alteration of JNK-1 signaling in skeletal muscle fails to affect glucose homeostasis and obesity-associated insulin resistance in mice. PloS one.

2013;8(1):e54247.

- 76. Lanuza-Masdeu J, Arévalo MI, Vila C, Barberà A, Gomis R, and Caelles C. In vivo JNK activation in pancreatic β-cells leads to glucose intolerance caused by insulin resistance in pancreas. Diabetes. 2013;62(7):2308-17.
- 77. Arkan MC, Hevener AL, Greten FR, Maeda S, Li Z-W, Long JM, et al. IKK-β links inflammation to obesity-induced insulin resistance. Nature medicine. 2005;11(2):191-8.
- Paul A, Edwards J, Pepper C, and Mackay S. Inhibitory-κb kinase (IKK) α and nuclear factor-κb (NFκB)-inducing kinase (NIK) as anti-cancer drug targets. Cells. 2018;7(10):176.
- 79. Good M, Newell FM, Haupt LM, Whitehead JP, Hutley LJ, and Prins JB. TNF and TNF receptor expression and insulin sensitivity in human omental and subcutaneous adipose tissue--influence of BMI and adipose distribution. Diabetes & vascular disease research. 2006;3(1):26-33.
- 80. Borst SE, Bagby GJ. Neutralization of tumor necrosis factor reverses age-induced impairment of insulin responsiveness in skeletal muscle of Sprague-Dawley rats. Metabolism: clinical and experimental. 2002;51(8):1061-4.
- 81. Stanley TL, Zanni MV, Johnsen S, Rasheed S, Makimura H, Lee H, et al. TNFalpha antagonism with etanercept decreases glucose and increases the proportion of high molecular weight adiponectin in obese subjects with features of the metabolic syndrome. The Journal of clinical endocrinology and metabolism. 2011;96(1):E146-50.
- 82. Sutterwala FS, Ogura Y, Szczepanik M, Lara-Tejero M, Lichtenberger GS, Grant EP, et al. Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity. 2006;24(3):317-27.
- 83. Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med. 1999;340(6):448-54.
- 84. Khalil RH, Al-Humadi N. Types of acute phase reactants and their importance in vaccination. Biomed Rep. 2020;12(4):143-52.
- 85. Muhammad IF, Borné Y, Hedblad B, Nilsson PM, Persson M, and Engström G. Acute-phase proteins and incidence of diabetes: a population-based cohort study. Acta Diabetol. 2016;53(6):981-9.
- 86. Fiorentino TV, Hribal ML, Perticone M, Andreozzi F, Sciacqua A, Perticone F, et al. Unfavorable inflammatory profile in adults at risk of type 2 diabetes identified by hemoglobin A1c levels according to the American Diabetes Association criteria. Acta Diabetol. 2015;52(2):349-56.
- 87. Vishakha V Mahajan ICA, Shilpa S Shende. Acute phase reactants in type 2 diabetes mellitus and their correlation with the duration of diabetes mellitus. J clin diagn res. 2011;5(6):1165-8.
- 88. Fizelova M, Jauhiainen R, Kangas AJ, Soininen P, Ala-Korpela M, Kuusisto J, et al. Differential associations of inflammatory markers with insulin sensitivity and secretion: The prospective METSIM study. The Journal of clinical endocrinology and metabolism. 2017;102(9):3600-9.
- 89. Punthakee Z, Goldenberg R, and Katz P. Definition, Classification and Diagnosis of Diabetes, Prediabetes and Metabolic Syndrome. Canadian journal of diabetes. 2018;42 Suppl 1:S10-s5.
- 90. Chailurkit LO, Jongjaroenprasert W, Chanprasertyothin S, and

Ongphiphadhanakul B. Insulin and C-peptide levels, pancreatic beta cell function, and insulin resistance across glucose tolerance status in Thais. Journal of clinical laboratory analysis. 2007;21(2):85-90.

- 91. Tilg H, Moschen AR. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nature reviews Immunology. 2006;6(10):772-83.
- 92. NCD Risk Factor Collaboration. Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. The Lancet. 2016;387(10026):1377-96.
- 93. Chearskul S, Sriwijitkamol A, Kooptiwut S, Ornreabroi S, Churintaraphan M, and Samprasert N. Cardiometabolic risk in Thai adults with type 2 diabetes mellitus: obese versus non-obese. Journal of the Medical Association of Thailand = Chotmaihet thangphaet. 2015;98(6):528-34.
- 94. Chen HD, Wu DA, Hou JS, Subeq YM, Li JC, and Hsu B-G. Positive correlation of serum leptin levels with obesity and metabolic syndrome in patients with type 2 diabetes mellitus. International Journal of Clinical and Experimental Pathology. 2017;10:4852-9.
- 95. Yadav A, Jyoti P, Jain SK, and Bhattacharjee J. Correlation of adiponectin and leptin with insulin resistance: a pilot study in healthy north Indian population. Indian J Clin Biochem. 2011;26(2):193-6.
- 96. Krittanawong C, Tunhasiriwet A, Zhang H, Prokop LJ, Chirapongsathorn S, Sun T, et al. Is white rice consumption a risk for metabolic and cardiovascular outcomes? A systematic review and meta-analysis. Heart Asia. 2017;9(2):e010909-e.
- 97. Manson JE, Rimm EB, Stampfer MJ, Colditz GA, Willett WC, Krolewski AS, et al. Physical activity and incidence of non-insulin-dependent diabetes mellitus in women. Lancet (London, England). 1991;338(8770):774-8.
- 98. Manson JE, Nathan DM, Krolewski AS, Stampfer MJ, Willett WC, and Hennekens CH. A prospective study of exercise and incidence of diabetes among US male physicians. Jama. 1992;268(1):63-7.
- 99. Helmrich SP, Ragland DR, Leung RW, and Paffenbarger RS, Jr. Physical activity and reduced occurrence of non-insulin-dependent diabetes mellitus. N Engl J Med. 1991;325(3):147-52.
- 100. สมาคมโรคเบาหวานแห่งประเทศไทย. แนวทางเวชปฏิบัติสำหรับโรคเบาหวาน พ.ศ. 2557. 2557.
- 101. Aekplakorn W, Bunnag P, Woodward M, Sritara P, Cheepudomwit S, Yamwong S, et al. A risk score for predicting incident diabetes in the Thai population. Diabetes Care. 2006;29(8):1872-7.
- 102. Powers MA, Bardsley J, Cypress M, Duker P, Funnell MM, Hess Fischl A, et al. Diabetes Self-management Education and Support in Type 2 Diabetes: A Joint Position Statement of the American Diabetes Association, the American Association of Diabetes Educators, and the Academy of Nutrition and Dietetics. Diabetes Care. 2015;38(7):1372.
- 103. Evert AB, Dennison M, Gardner CD, Garvey WT, Lau KHK, MacLeod J, et al. Nutrition Therapy for Adults With Diabetes or Prediabetes: A Consensus Report. Diabetes Care. 2019;42(5):731-54.
- 104. Volek JS, Fernandez ML, Feinman RD, and Phinney SD. Dietary carbohydrate restriction induces a unique metabolic state positively affecting atherogenic dyslipidemia, fatty acid partitioning, and metabolic syndrome. Progress in Lipid

Research. 2008;47(5):307-18.

- 105. American Association of Clinical Endocrinologists and American College of Endocrinology (AACE/ACE). Clinical Practice Guidelines for Developing A Diabetes Mellitus Comprehensive Care Plan-2018. Endocr Pract. 2018;21(1).
- 106. American Diabetes Association. Standards of Medical Care in Diabetes-2018. Diabetes care. 2018;37(1).
- 107. Boulé NG, Haddad E, Kenny GP, Wells GA, and Sigal RJ. Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a meta-analysis of controlled clinical trials. Jama. 2001;286(10):1218-27.
- 108. Kennedy JW, Hirshman MF, Gervino EV, Ocel JV, Forse RA, Hoenig SJ, et al. Acute exercise induces GLUT4 translocation in skeletal muscle of normal human subjects and subjects with type 2 diabetes. Diabetes. 1999;48(5):1192-7.
- 109. Musi N, Fujii N, Hirshman MF, Ekberg I, Fröberg S, Ljungqvist O, et al. AMPactivated protein kinase (AMPK) is activated in muscle of subjects with type 2 diabetes during exercise. Diabetes. 2001;50(5):921-7.
- 110. Kahn BB, Alquier T, Carling D, and Hardie DG. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell metabolism. 2005;1(1):15-25.
- 111. Barrett JE, Plotnikoff RC, Courneya KS, and Raine KD. Physical Activity and Type 2 Diabetes. Diabetes Educ. 2007;33(1):128-43.
- 112. Ramachandran A, Snehalatha C, Mary S, Mukesh B, Bhaskar AD, Vijay V, et al. The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1). Diabetologia. 2006;49(2):289-97.
- 113. Defronzo RA, Tripathy D, Schwenke DC, Banerji M, Bray GA, Buchanan TA, et al. Prevention of diabetes with pioglitazone in ACT NOW: physiologic correlates. Diabetes. 2013;62(11):3920-6.
- 114. Pan XR, Li GW, Hu YH, Wang JX, Yang WY, An ZX, et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care. 1997;20(4):537-44.
- 115. Franssila-Kallunki A, Rissanen A, Ekstrand A, Ollus A, and Groop L. Weight loss by very-low-calorie diets: effects on substrate oxidation, energy expenditure, and insulin sensitivity in obese subjects. The American journal of clinical nutrition. 1992;56(1 Suppl):247s-8s.
- 116. Short KR, Vittone JL, Bigelow ML, Proctor DN, Rizza RA, Coenen-Schimke JM, et al. Impact of aerobic exercise training on age-related changes in insulin sensitivity and muscle oxidative capacity. Diabetes. 2003;52(8):1888-96.
- 117. Gerstein HC, Yusuf S, Bosch J, Pogue J, Sheridan P, Dinccag N, et al. Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial. Lancet (London, England). 2006;368(9541):1096-105.
- 118. Torgerson JS, Hauptman J, Boldrin MN, and Sjostrom L. XENical in the prevention of diabetes in obese subjects (XENDOS) study: a randomized study of orlistat as an adjunct to lifestyle changes for the prevention of type 2 diabetes in obese patients. Diabetes Care. 2004;27(1):155-61.
- 119. Fidler MC, Sanchez M, Raether B, Weissman NJ, Smith SR, Shanahan WR, et al. A one-year randomized trial of lorcaserin for weight loss in obese and overweight

adults: the BLOSSOM trial. The Journal of clinical endocrinology and metabolism. 2011;96(10):3067-77.

- 120. Diabetes Prevention Program Research Group. Reduction in the Incidence of Type 2 Diabetes with Lifestyle Intervention or Metformin. New England Journal of Medicine. 2002;346(6):393-403.
- 121. DeFronzo RA, Tripathy D, Schwenke DC, Banerji M, Bray GA, Buchanan TA, et al. Prevention of Diabetes With Pioglitazone in ACT NOW. Diabetes. 2013;62(11):3920.
- 122. International Diabetes Federation. Guideline for Management of Postmeal Glucose. 2007.
- 123. American Diabetes Association. Postprandial Blood Glucose. Diabetes Care. 2001;24(4):775-8.
- 124. Hanefeld M, Koehler C, Schaper F, Fuecker K, Henkel E, and Temelkova-Kurktschiev T. Postprandial plasma glucose is an independent risk factor for increased carotid intima-media thickness in non-diabetic individuals. Atherosclerosis. 1999;144(1):229-35.
- 125. Temelkova-Kurktschiev TS, Koehler C, Henkel E, Leonhardt W, Fuecker K, and Hanefeld M. Postchallenge plasma glucose and glycemic spikes are more strongly associated with atherosclerosis than fasting glucose or HbA1c level. Diabetes Care. 2000;23(12):1830-4.
- 126. Nakagami T. Hyperglycaemia and mortality from all causes and from cardiovascular disease in five populations of Asian origin. Diabetologia. 2004;47(3):385-94.
- 127. Derosa G, Maffioli P. Efficacy and safety profile evaluation of acarbose alone and in association with other antidiabetic drugs: a systematic review. Clinical therapeutics. 2012;34(6):1221-36.
- 128. Lundgren H, Bengtsson C, Blohme G, Isaksson B, Lapidus L, Lenner RA, et al. Dietary habits and incidence of noninsulin-dependent diabetes mellitus in a population study of women in Gothenburg, Sweden. The American journal of clinical nutrition. 1989;49(4):708-12.
- 129. Okabe T, Terashima H, and Sakamoto A. A comparison of gastric emptying of soluble solid meals and clear fluids matched for volume and energy content: a pilot crossover study. Anaesthesia. 2017;72(11):1344-50.
- 130. Stein SA, Lamos EM, and Davis SN. A review of the efficacy and safety of oral antidiabetic drugs. Expert opinion on drug safety. 2013;12(2):153-75.
- 131. Van de Laar FA, Lucassen PL, Akkermans RP, Van de Lisdonk EH, Rutten GE, and Van Weel C. Alpha-glucosidase inhibitors for type 2 diabetes mellitus. The Cochrane database of systematic reviews. 2005(2):Cd003639.
- 132. Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, and Laakso M. Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. Jama. 2003;290(4):486-94.
- 133. Hanefeld M, Chiasson JL, Koehler C, Henkel E, Schaper F, and Temelkova-Kurktschiev T. Acarbose slows progression of intima-media thickness of the carotid arteries in subjects with impaired glucose tolerance. Stroke. 2004;35(5):1073-8.
- 134. Holman RR, Coleman RL, Chan JCN, Chiasson JL, Feng H, Ge J, et al. Effects of

acarbose on cardiovascular and diabetes outcomes in patients with coronary heart disease and impaired glucose tolerance (ACE): a randomised, double-blind, placebo-controlled trial. The lancet Diabetes & endocrinology. 2017;5(11):877-86.

- 135. Parrinello CM, Selvin E. Beyond HbA1c and glucose: the role of nontraditional glycemic markers in diabetes diagnosis, prognosis, and management. Current diabetes reports. 2014;14(11):548-.
- 136. Wright LA-C, Hirsch IB. The Challenge of the Use of Glycemic Biomarkers in Diabetes: Reflecting on Hemoglobin A1C, 1,5-Anhydroglucitol, and the Glycated Proteins Fructosamine and Glycated Albumin. Diabetes Spectrum. 2012;25(3):141.
- 137. Danese E, Montagnana M, Nouvenne A, and Lippi G. Advantages and Pitfalls of Fructosamine and Glycated Albumin in the Diagnosis and Treatment of Diabetes. Journal of Diabetes Science and Technology. 2015;9(2):169-76.
- 138. Singh B, Saxena A. Surrogate markers of insulin resistance: A review. World journal of diabetes. 2010;1(2):36-47.
- 139. Borai A, Livingstone C, Kaddam I, and Ferns G. Selection of the appropriate method for the assessment of insulin resistance. BMC medical research methodology. 2011;11:158.
- 140. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, and Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412-9.
- 141. DeFronzo RA, Tobin JD, and Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. The American journal of physiology. 1979;237(3):E214-23.
- 142. Choi HC, Kim SJ, Son KY, Oh BJ, and Cho BL. Metabolic effects of aloe vera gel complex in obese prediabetes and early non-treated diabetic patients: randomized controlled trial. Nutrition (Burbank, Los Angeles County, Calif). 2013;29(9):1110-4.
- 143. Gaddam A, Galla C, Thummisetti S, Marikanty RK, Palanisamy UD, and Rao PV. Role of Fenugreek in the prevention of type 2 diabetes mellitus in prediabetes. Journal of Diabetes and Metabolic Disorders. 2015;14:74.
- 144. Chuengsamarn S, Rattanamongkolgul S, Luechapudiporn R, Phisalaphong C, and Jirawatnotai S. Curcumin Extract for Prevention of Type 2 Diabetes. Diabetes Care. 2012;35(11):2121-7.
- 145. Wallace TM, Levy JC, and Matthews DR. Use and abuse of HOMA modeling. Diabetes Care. 2004;27(6):1487-95.
- 146. Trikudanathan S, Raji A, Chamarthi B, Seely EW, and Simonson DC. Comparison of insulin sensitivity measures in South Asians. Metabolism: clinical and experimental. 2013;62(10):1448-54.
- 147. Do HD, Lohsoonthorn V, Jiamjarasrangsi W, Lertmaharit S, and Williams MA. Prevalence of insulin resistance and its relationship with cardiovascular disease risk factors among Thai adults over 35 years old. Diabetes research and clinical practice. 2010;89(3):303-8.
- 148. Keskin M, Kurtoglu S, Kendirci M, Atabek ME, and Yazici C. Homeostasis model assessment is more reliable than the fasting glucose/insulin ratio and

quantitative insulin sensitivity check index for assessing insulin resistance among obese children and adolescents. Pediatrics. 2005;115(4):e500-3.

- 149. Jensterle M, Weber M, Pfeifer M, Prezelj J, Pfutzner A, and Janez A. Assessment of insulin resistance in young women with polycystic ovary syndrome. International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics. 2008;102(2):137-40.
- 150. Qu H-Q, Li Q, Rentfro AR, Fisher-Hoch SP, and McCormick JB. The definition of insulin resistance using HOMA-IR for Americans of Mexican descent using machine learning. PloS one. 2011;6(6):e21041-e.
- 151. Yamada C, Mitsuhashi T, Hiratsuka N, Inabe F, Araida N, and Takahashi E. Optimal reference interval for homeostasis model assessment of insulin resistance in a Japanese population. Journal of diabetes investigation. 2011;2(5):373-6.
- 152. Lee CH, Shih AZL, Woo YC, Fong CHY, Leung OY, Janus E, et al. Optimal Cut-Offs of Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) to Identify Dysglycemia and Type 2 Diabetes Mellitus: A 15-Year Prospective Study in Chinese. PloS one. 2016;11(9):e0163424-e.
- 153. Petricoin E, Wulfkuhle J, Espina V, and Liotta LA. Clinical proteomics: Revolutionizing disease detection and patient tailoring therapy. Journal of Proteome Research. 2004;3(2):209-17.
- Azad NS, Rasool N, Annunziata CM, Minasian L, Whiteley G, and Kohn EC. Proteomics in clinical trials and practice. Mol Cell Proteomics. 2006;5(10):1819-29.
- 155. Abdulwahab RA, Alaiya A, Shinwari Z, Allaith AAA, and Giha HA. LC-MS/MS proteomic analysis revealed novel associations of 37 proteins with T2DM and notable upregulation of immunoglobulins. International journal of molecular medicine. 2019;43(5):2118-32.
- 156. Vogel C, Marcotte EM. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nature reviews Genetics. 2012;13(4):227-32.
- 157. Jenkinson CP, Göring HHH, Arya R, Blangero J, Duggirala R, and DeFronzo RA. Transcriptomics in type 2 diabetes: Bridging the gap between genotype and phenotype. Genomics Data. 2016;8:25-36.
- 158. Alaoui-Jamali MA, Xu YJ. Proteomic technology for biomarker profiling in cancer: an update. Journal of Zhejiang University Science B. 2006;7(6):411-20.
- 159. Sundsten T, Ortsater H. Proteomics in diabetes research. Molecular and cellular endocrinology. 2009;297(1-2):93-103.
- 160. Chandramouli K, Qian P-Y. Proteomics: Challenges, techniques and possibilities to overcome biological sample complexity. Hum Genomics Proteomics. 2009;2009:239204.
- 161. Edfors F, Danielsson F, Hallström BM, Käll L, Lundberg E, Pontén F, et al. Genespecific correlation of RNA and protein levels in human cells and tissues. Molecular Systems Biology. 2016;12(10):883.
- 162. Jiang M, Jia L, Jiang W, Hu X, Zhou H, Gao X, et al. Protein disregulation in red blood cell membranes of type 2 diabetic patients. Biochemical and biophysical research communications. 2003;309(1):196-200.
- 163. Sundsten T, Eberhardson M, Göransson M, and Bergsten P. The use of proteomics in identifying differentially expressed serum proteins in humans with type 2

diabetes. Proteome Sci. 2006;4:22.

- 164. Riaz S, Alam SS, and Akhtar MW. Proteomic identification of human serum biomarkers in diabetes mellitus type 2. Journal of pharmaceutical and biomedical analysis. 2010;51(5):1103-7.
- 165. Li R-X, Chen H-B, Tu K, Zhao S-L, Zhou H, Li S-J, et al. Localized-Statistical Quantification of Human Serum Proteome Associated with Type 2 Diabetes. PloS one. 2008;3(9):e3224.
- 166. Sundsten T, Ostenson CG, and Bergsten P. Serum protein patterns in newly diagnosed type 2 diabetes mellitus-influence of diabetic environment and family history of diabetes. Diabetes Metab Res Rev. 2008;24(2):148-54.
- 167. Sundsten T, Zethelius B, Berne C, and Bergsten P. Plasma proteome changes in subjects with Type 2 diabetes mellitus with a low or high early insulin response. Clinical science (London, England : 1979). 2008;114(7):499-507.
- 168. Chu L, Fu G, Meng Q, Zhou H, and Zhang M. Identification of urinary biomarkers for type 2 diabetes using bead-based proteomic approach. Diabetes research and clinical practice. 2013;101(2):187-93.
- 169. Rao PV, Reddy AP, Lu X, Dasari S, Krishnaprasad A, Biggs E, et al. Proteomic identification of salivary biomarkers of type-2 diabetes. J Proteome Res. 2009;8(1):239-45.
- 170. Murri M, Insenser M, Bernal-Lopez MR, Perez-Martinez P, Escobar-Morreale HF, and Tinahones FJ. Proteomic analysis of visceral adipose tissue in pre-obese patients with type 2 diabetes. Molecular and cellular endocrinology. 2013;376(1-2):99-106.
- 171. Hwang H, Bowen BP, Lefort N, Flynn CR, De Filippis EA, Roberts C, et al. Proteomics analysis of human skeletal muscle reveals novel abnormalities in obesity and type 2 diabetes. Diabetes. 2010;59(1):33-42.
- 172. Sleddering MA, Markvoort AJ, Dharuri HK, Jeyakar S, Snel M, Juhasz P, et al. Proteomic Analysis in Type 2 Diabetes Patients before and after a Very Low Calorie Diet Reveals Potential Disease State and Intervention Specific Biomarkers. PloS one. 2014;9(11):e112835.
- 173. Li RX, Chen HB, Tu K, Zhao SL, Zhou H, Li SJ, et al. Localized-statistical quantification of human serum proteome associated with type 2 diabetes. PloS one. 2008;3(9):e3224.
- 174. Allen RW, Schwartzman E, Baker WL, Coleman CI, and Phung OJ. Cinnamon Use in Type 2 Diabetes: An Updated Systematic Review and Meta-Analysis. Annals of Family Medicine. 2013;11(5):452-9.
- 175. Sahib AS. Anti-diabetic and antioxidant effect of cinnamon in poorly controlled type-2 diabetic Iraqi patients: A randomized, placebo-controlled clinical trial. Journal of intercultural ethnopharmacology. 2016;5(2):108-13.
- 176. Beejmohun V, Peytavy-Izard M, Mignon C, Muscente-Paque D, Deplanque X, Ripoll C, et al. Acute effect of Ceylon cinnamon extract on postprandial glycemia: alpha-amylase inhibition, starch tolerance test in rats, and randomized crossover clinical trial in healthy volunteers. BMC complementary and alternative medicine. 2014;14:351.
- 177. Sheng XZY, Gong Z, Huang C, and Zang YQ. Improved insulin resistance and lipid metabolism by cinnamon extract through activation of peroxisome proliferator-activated receptors. PPAR Res. 2008;581348.

- 178. Cao H, Polansky MM, and Anderson RA. Cinnamon extract and polyphenols affect the expression of tristetraprolin, insulin receptor, and glucose transporter 4 in mouse 3T3-L1 adipocytes. Arch Biochem Biophys. 2007;459.
- 179. Dick WR, Fletcher EA, and Shah SA. Reduction of Fasting Blood Glucose and Hemoglobin A1c Using Oral Aloe Vera: A Meta-Analysis. Journal of alternative and complementary medicine (New York, NY). 2016;22(6):450-7.
- 180. Zhang Y, Liu W, Liu D, Zhao T, and Tian H. Efficacy of Aloe Vera Supplementation on Prediabetes and Early Non-Treated Diabetic Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients. 2016;8(7).
- 181. Kim K, Kim H, Kwon J, Lee S, Kong H, Im SA, et al. Hypoglycemic and hypolipidemic effects of processed Aloe vera gel in a mouse model of noninsulin-dependent diabetes mellitus. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2009;16(9):856-63.
- 182. al-Awadi F, Fatania H, and Shamte U. The effect of a plants mixture extract on liver gluconeogenesis in streptozotocin induced diabetic rats. Diabetes research (Edinburgh, Scotland). 1991;18(4):163-8.
- 183. Shin E, Shin S, Kong H, Lee S, Do SG, Jo TH, et al. Dietary Aloe Reduces Adipogenesis via the Activation of AMPK and Suppresses Obesity-related Inflammation in Obese Mice. Immune network. 2011;11(2):107-13.
- 184. Hou LQ, Liu YH, and Zhang YY. Garlic intake lowers fasting blood glucose: meta-analysis of randomized controlled trials. Asia Pac J Clin Nutr. 2015;24(4):575-82.
- 185. Ashraf R, Khan RA, and Ashraf I. Effects of garlic on blood glucose levels and HbA1c in patients with type 2 diabetes mellitus J Med Plant Res. 2011;5(13):2922-8.
- 186. Kumar R, Chhatwal S, Arora S, Sharma S, Singh J, Singh N, et al. Antihyperglycemic, antihyperlipidemic, anti-inflammatory and adenosine deaminase- lowering effects of garlic in patients with type 2 diabetes mellitus with obesity. Diabetes, metabolic syndrome and obesity : targets and therapy. 2013;6:49-56.
- 187. Ashraf R, Khan RA, and Ashraf I. Garlic (Allium sativum) supplementation with standard antidiabetic agent provides better diabetic control in type 2 diabetes patients. Pakistan journal of pharmaceutical sciences. 2011;24(4):565-70.
- 188. Birdee GS, Yeh G. Complementary and Alternative Medicine Therapies for Diabetes: A Clinical Review. Clinical Diabetes. 2010;28(4):147.
- 189. Neelakantan N, Narayanan M, de Souza RJ, and van Dam RM. Effect of fenugreek (Trigonella foenum-graecum L.) intake on glycemia: a meta-analysis of clinical trials. Nutrition journal. 2014;13:7.
- 190. Hannan JM, Ali L, Rokeya B, Khaleque J, Akhter M, Flatt PR, et al. Soluble dietary fibre fraction of Trigonella foenum-graecum (fenugreek) seed improves glucose homeostasis in animal models of type 1 and type 2 diabetes by delaying carbohydrate digestion and absorption, and enhancing insulin action. The British journal of nutrition. 2007;97(3):514-21.
- 191. Zhou J, Chan L, and Zhou S. Trigonelline: a plant alkaloid with therapeutic potential for diabetes and central nervous system disease. Current medicinal chemistry. 2012;19(21):3523-31.

- 192. Gui Q-f, Xu Z-r, Xu K-y, and Yang Y-m. The Efficacy of Ginseng-Related Therapies in Type 2 Diabetes Mellitus: An Updated Systematic Review and Metaanalysis. Medicine. 2016;95(6):e2584.
- 193. Shishtar E, Sievenpiper JL, Djedovic V, Cozma AI, Ha V, Jayalath VH, et al. The Effect of Ginseng (The Genus Panax) on Glycemic Control: A Systematic Review and Meta-Analysis of Randomized Controlled Clinical Trials. PloS one. 2014;9(9):e107391.
- 194. Yuan H-D, Kim JT, Kim SH, and Chung SH. Ginseng and Diabetes: The Evidences from In Vitro, Animal and Human Studies. Journal of Ginseng Research. 2012;36(1):27-39.
- 195. Yang J, Mao QX, Xu HX, Ma X, and Zeng CY. Tea consumption and risk of type 2 diabetes mellitus: a systematic review and meta-analysis update. BMJ Open. 2014;4(7):e005632.
- 196. Liu K, Zhou R, Wang B, Chen K, Shi LY, Zhu JD, et al. Effect of green tea on glucose control and insulin sensitivity: a meta-analysis of 17 randomized controlled trials. The American journal of clinical nutrition. 2013;98(2):340-8.
- 197. Velayutham P, Babu A, and Liu D. Green Tea Catechins and Cardiovascular Health: An Update. Current medicinal chemistry. 2008;15(18):1840-50.
- 198. Ortsater H, Grankvist N, Wolfram S, Kuehn N, and Sjoholm A. Diet supplementation with green tea extract epigallocatechin gallate prevents progression to glucose intolerance in db/db mice. Nutrition & metabolism. 2012;9:11.
- 199. Huseini HF, Larijani B, Heshmat R, Fakhrzadeh H, Radjabipour B, Toliat T, et al. The efficacy of Silybum marianum (L.) Gaertn. (silymarin) in the treatment of type II diabetes: a randomized, double-blind, placebo-controlled, clinical trial. Phytotherapy research : PTR. 2006;20(12):1036-9.
- 200. Voroneanu L, Nistor I, Dumea R, Apetrii M, and Covic A. Silymarin in Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Journal of diabetes research. 2016;2016:5147468.
- 201. Rahman IU, Khan RU, Rahman KU, and Bashir M. Lower hypoglycemic but higher antiatherogenic effects of bitter melon than glibenclamide in type 2 diabetic patients. Nutrition journal. 2015;14:13.
- 202. Fuangchan A, Sonthisombat P, Seubnukarn T, Chanouan R, Chotchaisuwat P, Sirigulsatien V, et al. Hypoglycemic effect of bitter melon compared with metformin in newly diagnosed type 2 diabetes patients. Journal of Ethnopharmacology. 2011;134(2):422-8.
- 203. Cummings E, Hundal HS, Wackerhage H, Hope M, Belle M, Adeghate E, et al. Momordica charantia fruit juice stimulates glucose and amino acid uptakes in L6 myotubes. Molecular and Cellular Biochemistry. 2004;261(1):99-104.
- 204. Uebanso T, Arai H, Taketani Y, Fukaya M, Yamamoto H, Mizuno A, et al. Extracts of <i>Momordica charantia</i> Suppress Postprandial Hyperglycemia in Rats. Journal of Nutritional Science and Vitaminology. 2007;53(6):482-8.
- 205. Shibib BA, Khan LA, and Rahman R. Hypoglycaemic activity of Coccinia indica and Momordica charantia in diabetic rats: depression of the hepatic gluconeogenic enzymes glucose-6-phosphatase and fructose-1,6-bisphosphatase and elevation of both liver and red-cell shunt enzyme glucose-6-phosphate dehydrogenase. The Biochemical journal. 1993;292 (Pt 1):267-70.

- 206. Sandhya S, Yogita S, and Ramesh B. Role of bittergourd fruit juice in stz-induced diabetic state in vivo and in vitro. Journal of Ethnopharmacology. 2000;73(1–2):71-9.
- 207. Kuriyan R, Rajendran R, Bantwal G, and Kurpad AV. Effect of supplementation of Coccinia cordifolia extract on newly detected diabetic patients. Diabetes Care. 2008;31(2):216-20.
- 208. Azad Khan AK, Akhtar S, and Mahtab H. Treatment of diabetes mellitus with Coccinia indica. Br Med J. 1980;260:1044.
- 209. Kamble SM, Kamlakar PL, Vaidya S, and Bambole VD. Influence of Coccinia indica on certain enzymes in glycolytic and lipolytic pathway in human diabetes. Indian J Med Sci. 1998;52.
- 210. Wickenberg J, Ingemansson SL, and Hlebowicz J. Effects of Curcuma longa (turmeric) on postprandial plasma glucose and insulin in healthy subjects. Nutrition journal. 2010;9(1):43.
- 211. Yang H, Xu W, Zhou Z, Liu J, Li X, Chen L, et al. Curcumin attenuates urinary excretion of albumin in type II diabetic patients with enhancing nuclear factor erythroid-derived 2-like 2 (Nrf2) system and repressing inflammatory signaling efficacies. Experimental and clinical endocrinology & diabetes : official journal, German Society of Endocrinology [and] German Diabetes Association. 2015;123(6):360-7.
- 212. Jang EM, Choi MS, Jung UJ, Kim MJ, Kim HJ, Jeon SM, et al. Beneficial effects of curcumin on hyperlipidemia and insulin resistance in high-fat-fed hamsters. Metabolism: clinical and experimental. 2008;57(11):1576-83.
- 213. Weisberg SP, Leibel R, and Tortoriello DV. Dietary curcumin significantly improves obesity-associated inflammation and diabetes in mouse models of diabesity. Endocrinology. 2008;149(7):3549-58.
- 214. Jain SK, Rains J, Croad J, Larson B, and Jones K. Curcumin supplementation lowers TNF-alpha, IL-6, IL-8, and MCP-1 secretion in high glucose-treated cultured monocytes and blood levels of TNF-alpha, IL-6, MCP-1, glucose, and glycosylated hemoglobin in diabetic rats. Antioxidants & redox signaling. 2009;11(2):241-9.
- 215. Shimizu K, Ozeki M, Tanaka K, Itoh K, Nakajyo S, Urakawa N, et al. Suppression of glucose absorption by extracts from the leaves of Gymnema inodorum. The Journal of veterinary medical science. 1997;59(9):753-7.
- 216. Sugihara Y, Nojima H, Matsuda H, Murakami T, Yoshikawa M, and Kimura I. Antihyperglycemic effects of gymnemic acid IV, a compound derived from Gymnema sylvestre leaves in streptozotocin-diabetic mice. Journal of Asian natural products research. 2000;2(4):321-7.
- 217. Chiabchalard A, Tencomnao T, and Santiyanont R. Effect of *Gymnema inodorum* on postprandial peak plasma glucose levels in healthy human. African Journal of Biotechnology. 2010;9(7):1079-85.
- 218. Choi J, Lee KT, Ka H, Jung WT, Jung HJ, and Park HJ. Constituents of the essential oil of the Cinnamomum cassia stem bark and the biological properties. Archives of pharmacal research. 2001;24(5):418-23.
- 219. Onderoglu S, Sozer S, Erbil KM, Ortac R, and Lermioglu F. The evaluation of long-term effects of cinnamon bark and olive leaf on toxicity induced by streptozotocin administration to rats. The Journal of pharmacy and pharmacology.

1999;51(11):1305-12.

- 220. Ulbricht C, Seamon E, Windsor RC, Armbruester N, Bryan JK, Costa D, et al. An evidence-based systematic review of cinnamon (Cinnamomum spp.) by the Natural Standard Research Collaboration. Journal of dietary supplements. 2011;8(4):378-454.
- 221. Boudreau MD, Beland FA. An evaluation of the biological and toxicological properties of Aloe barbadensis (miller), Aloe vera. Journal of environmental science and health Part C, Environmental carcinogenesis & ecotoxicology reviews. 2006;24(1):103-54.
- 222. Williamson E, Driver S, and Baxter K. Stockley's Herbal Medicine Interaction: A Guide to the Interactions of Herbal Medicines. Second. United Kingdom: pharmaceutical Press; 2013.
- 223. DerMarderosian E, Beutler JA. The Review of Natural Products. 8th: Clinical Drug Information, LLC; 2014.
- 224. Yoon JW, Kang SM, Vassy JL, Shin H, Lee YH, Ahn HY, et al. Efficacy and safety of ginsam, a vinegar extract from Panax ginseng, in type 2 diabetic patients: Results of a double-blind, placebo-controlled study. Journal of Diabetes Investigation. 2012;3(3):309-17.
- 225. Sánchez MD. Mulberry: an exceptional forage available almost worldwide. World Anim Rev. 2000;93(1):1-21.
- 226. Sánchez MD. Mulberry for animal production Rome: Animal Production and Health Division; 2004 [cited 2017 Apr 25]. Available from: http://www.fao.org/docrep/005/X9895E/x9895e02.htm.
- 227. Asano N, Tomioka E, Kizu H, and Matsui K. Sugars with nitrogen in the ring isolated from the leaves of *Morus bombycis*. Carbohydrate research. 1994;253:235-45.
- 228. Sreekumar S, Nair GS, Appaswamy P, Vijayraghavan K, and Thiagarajan V. Now, mulberry on your dining table. Indian Silk. 1994;33:45.
- 229. Srivastava S, Kapoor R, Thathola A, and Srivastava RP. Nutritional quality of leaves of some genotypes of mulberry (*Morus alba*). International Journal of Food Sciences and Nutrition. 2006;57(5/6):305-13.
- 230. Asano N, Nash RJ, Molyneux RJ, and Fleet GWJ. Sugar-mimic glycosidase inhibitors: natural occurrence, biological activity and prospects for therapeutic application. Tetrahedron: Asymmetry. 2000;11(8):1645-80.
- 231. Ji T, Li J, Su SL, Zhu ZH, Guo S, Qian DW, et al. Identification and determination of the polyhydroxylated alkaloids compounds with alphaglucosidase inhibitor activity in mulberry leaves of different origins. Molecules (Basel, Switzerland). 2016;21(2).
- 232. Iqbal S, Younas U, Sirajuddin, Chan KW, Sarfraz RA, and Uddin K. Proximate composition and antioxidant potential of leaves from three varieties of Mulberry (*Morus* sp.): a comparative study. International journal of molecular sciences. 2012;13(6):6651-64.
- 233. Katsube T, Imawaka N, Kawano Y, Yamazaki Y, Shiwaku K, and Yamane Y. Antioxidant flavonol glycosides in mulberry (*Morus alba* L.) leaves isolated based on LDL antioxidant activity. Food Chem. 2006;97(1):25-31.
- 234. Lee WJ, Choi SW. Quantitative changes of polyphenolic compounds in mulberry (*Morus alba* L.) leaves in relation to varieties, harvest period, and heat processing.

Prev Nutr Food Sci. 2012;17(4):280-5.

- 235. Memon AA, Memon N, Luthria DL, Bhanger MI, and Pitafi AA. Phenolic acids profiling and antioxidant potential of mulberry (*Morus laevigata* W., *Morus nigra* L., *Morus alba* L.) leaves and fruits grown in Pakistan. Polish Journal of Food and Nutrition Sciences. 2010;60(1):25-32.
- 236. Song W, Wang HJ, Bucheli P, Zhang PF, Wei DZ, and Lu YH. Phytochemical profiles of different mulberry (*Morus* sp.) species from China. J Agric Food Chem. 2009;57(19):9133-40.
- 237. Asano N, Yamashita T, Yasuda K, Ikeda K, Kizu H, Kameda Y, et al. Polyhydroxylated alkaloids isolated from mulberry trees (*Morus alba* L.) and silkworms (*Bombyx mori* L.). J Agric Food Chem. 2001;49(9):4208-13.
- 238. Vichasilp C, Nakagawa K, Sookwong P, Higuchi O, Luemunkong S, and Miyazawa T. Development of high 1-deoxynojirimycin (DNJ) content mulberry tea and use of response surface methodology to optimize tea-making conditions for highest DNJ extraction. LWT Food Sci Technol. 2012;45(2):226-32.
- 239. Hao J-Y, Wan Y, Yao X-H, Zhao W-G, Hu R-Z, Chen C, et al. Effect of different planting areas on the chemical compositions and hypoglycemic and antioxidant activities of mulberry leaf extracts in Southern China. PloS one. 2018;13(6):e0198072.
- 240. Baipaj S, Rao A. Quantitative determination of 1-Deoxynojirimycin in different Mulberry Varieties of India. J Pharm Phytochem. 2014;3(3):17-22.
- 241. Nuengchamnong N, Ingkaninan K, Kaewruang W, Wongareonwanakij S, and Hongthongdaeng B. Quantitative determination of 1-deoxynojirimycin in mulberry leaves using liquid chromatography-tandem mass spectrometry. Journal of pharmaceutical and biomedical analysis. 2007;44(4):853-8.
- 242. Kim JY, Kwon HJ, Jung JY, Kwon HY, Baek JG, Kim YS, et al. Comparison of absorption of 1-deoxynojirimycin from mulberry water extract in rats. J Agric Food Chem. 2010;58(11):6666-71.
- 243. Nakagawa K, Kubota H, Kimura T, Yamashita S, Tsuzuki T, Oikawa S, et al. Occurrence of orally administered mulberry 1-deoxynojirimycin in rat plasma. J Agric Food Chem. 2007;55(22):8928-33.
- 244. Yang S, Mi J, Liu Z, Wang B, Xia X, Wang R, et al. Pharmacokinetics, Tissue Distribution, and Elimination of Three Active Alkaloids in Rats after Oral Administration of the Effective Fraction of Alkaloids from Ramulus Mori, an Innovative Hypoglycemic Agent. Molecules (Basel, Switzerland). 2017;22(10):1616.
- 245. Yang S, Wang B, Xia X, Li X, Wang R, Sheng L, et al. Simultaneous quantification of three active alkaloids from a traditional Chinese medicine Ramulus Mori (Sangzhi) in rat plasma using liquid chromatography–tandem mass spectrometry. Journal of pharmaceutical and biomedical analysis. 2015;109:177-83.
- 246. Miyazawa T, Nakagawa K, Kudo M, Muraishi K, and Someya K. Direct intestinal absorption of red fruit anthocyanins, cyanidin-3-glucoside and cyanidin-3,5-diglucoside, into rats and humans. J Agric Food Chem. 1999;47(3):1083-91.
- 247. Nakagawa K, Miyazawa T. Chemiluminescence-high-performance liquid chromatographic determination of tea catechin, (-)-epigallocatechin 3-gallate, at picomole levels in rat and human plasma. Analytical biochemistry.

1997;248(1):41-9.

- 248. Miyahara C, Miyazawa M, Satoh S, Sakai A, and Mizusaki S. Inhibitory effects of mulberry leaf extract on postprandial hyperglycemia in normal rats. J Nutr Sci Vitaminol (Tokyo). 2004;50(3):161-4.
- 249. Yatsunami K, Ichida M, and Onodera S. The relationship between 1deoxynojirimycin content and alpha-glucosidase inhibitory activity in leaves of 276 mulberry cultivars (*Morus* spp.) in Kyoto, Japan. Journal of natural medicines. 2008;62(1):63-6.
- 250. Kim GN, Kwon YI, and Jang HD. Mulberry leaf extract reduces postprandial hyperglycemia with few side effects by inhibiting alpha-glucosidase in normal rats. Journal of medicinal food. 2011;14(7-8):712-7.
- 251. Oku T, Yamada M, Nakamura M, Sadamori N, and Nakamura S. Inhibitory effects of extractives from leaves of *Morus alba* on human and rat small intestinal disaccharidase activity. The British journal of nutrition. 2006;95(5):933-8.
- 252. Hansawasdi C, Kawabata J. Alpha-glucosidase inhibitory effect of mulberry (Morus alba) leaves on Caco-2. Fitoterapia. 2006;77(7-8):568-73.
- 253. Park JM, Bong HY, Jeong HI, Kim YK, Kim JY, and Kwon O. Postprandial hypoglycemic effect of mulberry leaf in Goto-Kakizaki rats and counterpart control Wistar rats. Nutrition research and practice. 2009;3(4):272-8.
- 254. Naowaboot J, Pannangpetch P, Kukongviriyapan V, Kongyingyoes B, and Kukongviriyapan U. Antihyperglycemic, antioxidant and antiglycation activities of mulberry leaf extract in streptozotocin-induced chronic diabetic rats. Plant foods for human nutrition (Dordrecht, Netherlands). 2009;64(2):116-21.
- 255. Nakamura M, Nakamura S, and Oku T. Suppressive response of confections containing the extractive from leaves of Morus Alba on postprandial blood glucose and insulin in healthy human subjects. Nutrition & metabolism. 2009;6:29.
- 256. Nakamura S, Hashiguchi M, Yamaguchi Y, and Oku T. Hypoglycemic Effects of Morus alba Leaf Extract on Postprandial Glucose and Insulin Levels in Patients with Type 2 Diabetes Treated with Sulfonylurea Hypoglycemic Agents. J Diabetes Metab. 2011;2(9):1-5.
- 257. Banu S, Jabir NR, Manjunath NC, Khan MS, Ashraf GM, Kamal MA, et al. Reduction of post-prandial hyperglycemia by mulberry tea in type-2 diabetes patients. Saudi journal of biological sciences. 2015;22(1):32-6.
- 258. Bumrungpert A, Sukriket P, and Lookhanumarnjao S. The Effect of Mulberry Leaf Tea on Postprandial Glycemic Control and Insulin Sensitivity: A Randomized, Placebo-Controlled Crossover Study2016.
- 259. Lown M, Fuller R, Lightowler H, Fraser A, Gallagher A, Stuart B, et al. Mulberry extract to modulate blood glucose responses in normoglycaemic adults (MULBERRY): study protocol for a randomised controlled trial. Trials. 2015;16:486.
- 260. Banchobphutsa Y. The Efficacy of *Morus Alba* Leaf Tea in Patents with Dyslipidemia: Mae Fah Luang University; 2012.
- 261. Riche DM, Riche KD, East HE, Barrett EK, and May WL. Impact of mulberry leaf extract on type 2 diabetes (Mul-DM): A randomized, placebo-controlled pilot study. Complementary therapies in medicine. 2017;32:105-8.
- 262. Tsuduki T, Nakamura Y, Honma T, Nakagawa K, Kimura T, Ikeda I, et al. Intake

of 1-deoxynojirimycin suppresses lipid accumulation through activation of the beta-oxidation system in rat liver. J Agric Food Chem. 2009;57(22):11024-9.

- 263. Kobayashi Y, Miyazawa M, Araki M, Kamei A, and Abe K. Effects of *Morus alba* L.(mulberry) leaf extract in hypercholesterolemic mice on suppression of cholesterol synthesis. J Pharmacogn Nat Prod. 2015;1:113.
- 264. Kobayashi Y, Miyazawa M, Kamei A, Abe K, and Kojima T. Ameliorative effects of mulberry (Morus alba L.) leaves on hyperlipidemia in rats fed a high-fat diet: induction of fatty acid oxidation, inhibition of lipogenesis, and suppression of oxidative stress. Bioscience, biotechnology, and biochemistry. 2010;74(12):2385-95.
- 265. Chang YC, Yang MY, Chen SC, and Wang CJ. Mulberry leaf polyphenol extract improves obesity by inducing adipocyte apoptosis and inhibiting preadipocyte differentiation and hepatic lipogenesis. Journal of Functional Foods. 2016;21:249-62.
- 266. Ann JY, Eo H, and Lim Y. Mulberry leaves (*Morus alba* L.) ameliorate obesityinduced hepatic lipogenesis, fibrosis, and oxidative stress in high-fat diet-fed mice. Genes & nutrition. 2015;10(6):46.
- 267. Sun X, Yamasaki M, Katsube T, and Shiwaku K. Effects of quercetin derivatives from mulberry leaves: Improved gene expression related hepatic lipid and glucose metabolism in short-term high-fat fed mice. Nutrition research and practice. 2015;9(2):137-43.
- 268. Yang SJ, Park NY, and Lim Y. Anti-adipogenic effect of mulberry leaf ethanol extract in 3T3-L1 adipocytes. Nutrition research and practice. 2014;8(6):613-7.
- 269. Tond SB, Fallah S, Salemi Z, and Seifi M. Influence of mulberry leaf extract on serum adiponectin, visfatin and lipid profile levels in type 2 diabetic rats. Braz Arch Biol Technol, 2016;53:1-8.
- 270. Peng CH, Lin HT, Chung DJ, Huang CN, and Wang CJ. Mulberry Leaf Extracts prevent obesity-induced NAFLD with regulating adipocytokines, inflammation and oxidative stress. Journal of food and drug analysis. 2018;26(2):778-87.
- 271. Li Q, Liu F, Liu J, Liao S, and Zou Y. Mulberry Leaf Polyphenols and Fiber Induce Synergistic Antiobesity and Display a Modulation Effect on Gut Microbiota and Metabolites. Nutrients. 2019;11(5).
- 272. Brown L, Rosner B, Willett WW, and Sacks FM. Cholesterol-lowering effects of dietary fiber: a meta-analysis. The American journal of clinical nutrition. 1999;69(1):30-42.
- 273. Peng C-H, Liu L-K, Chuang C-M, Chyau C-C, Huang C-N, and Wang C-J. Mulberry Water Extracts Possess an Anti-obesity Effect and Ability To Inhibit Hepatic Lipogenesis and Promote Lipolysis. Journal of Agricultural and Food Chemistry. 2011;59(6):2663-71.
- 274. Wilson RD, Islam MS. Effects of white mulberry (Morus alba) leaf tea investigated in a type 2 diabetes model of rats. Acta poloniae pharmaceutica. 2015;72(1):153-60.
- 275. Aramwit P, Petcharat K, and Supasyndh O. Efficacy of mulberry leaf tablets in patients with mild dyslipidemia. Phytotherapy research : PTR. 2011;25(3):365-9.
- 276. Kojima Y, Kimura T, Nakagawa K, Asai A, Hasumi K, Oikawa S, et al. Effects of mulberry leaf extract rich in 1-deoxynojirimycin on blood lipid profiles in humans. Journal of clinical biochemistry and nutrition. 2010;47(2):155-61.

- 277. Andallu B, Suryakantham V, Lakshmi Srikanthi B, and Reddy GK. Effect of mulberry (Morus indica L.) therapy on plasma and erythrocyte membrane lipids in patients with type 2 diabetes. Clinica chimica acta; international journal of clinical chemistry. 2001;314(1-2):47-53.
- 278. Yang NC, Jhou KY, and Tseng CY. Antihypertensive effect of mulberry leaf aqueous extract containing γ -aminobutyric acid in spontaneously hypertensive rats. Food Chemistry. 2012;132(4):1796-801.
- 279. Naowaboot J, Pannangpetch P, Kukongviriyapan V, Kukongviriyapan U, Nakmareong S, and Itharat A. Mulberry leaf extract restores arterial pressure in streptozotocin-induced chronic diabetic rats. Nutrition research (New York, NY). 2009;29(8):602-8.
- 280. Nade VS, Kawale LA, Bhangale SP, and Wale YB. Cardioprotective and antihypertensive potential of *Morus alba* L. in isoproterenol-induced myocardial infarction and renal artery ligation-induced hypertension. J Nat Remedies. 2013;13(1):54-67.
- 281. Arabshahi-Delouee S, Urooj A. Antioxidant properties of various solvent extracts of mulberry (*Morus indica* L.) leaves. Food Chem. 2007;102(4):1233-40.
- 282. Andallu B, Kumar AV, and Varadacharyulu NC. Oxidative stress in streptozocindiabetic rats: Amelioration by mulberry (*Morus Indica* L.) leaves. Chinese journal of integrative medicine. 2012.
- 283. Andallu B, Varadacharyulu NC. Antioxidant role of mulberry (*Morus indica* L. cv. Anantha) leaves in streptozotocin-diabetic rats. Clinica Chimica Acta. 2003;338(1–2):3-10.
- 284. Park E, Lee SM, Lee JE, and Kim JH. Anti-inflammatory activity of mulberry leaf extract through inhibition of NF-κB. J Funct Foods. 2013;5(1):178-86.
- 285. Chao PY, Lin KH, Chiu CC, Yang YY, Huang MY, and Yang CM. Inhibitive effects of mulberry leaf-related extracts on cell adhesion and inflammatory response in human aortic endothelial cells. Evid Based Complementary Altern Med. 2013;2013:14.
- 286. Aramwit P, Supasyndh O, Siritienthong T, and Bang N. Mulberry Leaf Reduces Oxidation and C-Reactive Protein Level in Patients with Mild Dyslipidemia. BioMed Research International. 2013;2013:7.
- 287. Yang MY, Huang CN, Chan KC, Yang YS, Peng CH, and Wang CJ. Mulberry leaf polyphenols possess antiatherogenesis effect via inhibiting LDL oxidation and foam cell formation. J Agric Food Chem. 2011;59(5):1985-95.
- 288. Chan KC, Ho HH, Peng CH, Lan KP, Lin MC, Chen HM, et al. Polyphenol-rich extract from mulberry leaf inhibits vascular smooth muscle cell proliferation involving upregulation of p53 and inhibition of cyclin-dependent kinase. J Agric Food Chem. 2010;58:2536-42
- 289. Chan KC, Ho HH, Huang CN, Lin MC, Chen HM, and Wang CJ. Mulberry leaf extract inhibits vascular smooth muscle cell migration involving a block of small GTPase and Akt/NF-kappaB signals. J Agric Food Chem. 2009;57(19):9147-53.
- 290. Sharma SB, Tanwar RS, Rini AC, Singh UR, Gupta S, and Shukla SK. Protective effect of *Morus rubra* L. leaf extract on diet-induced atherosclerosis in diabetic rats. Indian journal of biochemistry & biophysics. 2010;47(1):26-31.
- 291. Chan KC, Yang MY, Lin MC, Lee YJ, Chang WC, and Wang CJ. Mulberry leaf extract inhibits the development of atherosclerosis in cholesterol-fed rabbits and in

cultured aortic vascular smooth muscle cells. J Agric Food Chem. 2013;61(11):2780-8.

- 292. Arumugam S, Thandavarayan RA, Veeraveedu PT, Ma M, Giridharan VV, Arozal W, et al. Modulation of endoplasmic reticulum stress and cardiomyocyte apoptosis by mulberry leaf diet in experimental autoimmune myocarditis rats. Journal of clinical biochemistry and nutrition. 2012;50(2):139-44.
- 293. Li M, Huang X, Ye H, Chen Y, Yu J, Yang J, et al. Randomized, Double-Blinded, Double-Dummy, Active-Controlled, and Multiple-Dose Clinical Study Comparing the Efficacy and Safety of Mulberry Twig (Ramulus Mori, Sangzhi) Alkaloid Tablet and Acarbose in Individuals with Type 2 Diabetes Mellitus. Evidencebased complementary and alternative medicine : eCAM. 2016;2016:7121356.
- 294. Lou DS, Zou FM, Yan H, and Gui ZZ. Factors influencing the biosynthesis of 1deoxynojirimycin in *Morus alba* L. Afr J Agric Res. 2011;6(13):2998-3006.
- 295. Katsube T, Tsurunaga Y, Sugiyama M, Furuno T, and Yamasaki Y. Effect of airdrying temperature on antioxidant capacity and stability of polyphenolic compounds in mulberry (*Morus alba* L.) leaves. Food Chem. 2009;113(4):964-9.
- 296. Kamel S, Thabet HA, and Algadi EA. Influence of drying process on the functional properties of some plants. Chem Mater Res. 2013;3:1-8.
- 297. Thabti I, Elfalleh W, Hannachi H, Ferchichi A, and Campos MDG. Identification and quantification of phenolic acids and flavonol glycosides in Tunisian Morus species by HPLC-DAD and HPLC-MS. J Funct Foods. 2012;4(1):367-74.
- 298. Flaczyk E, Kobus-Cisowska J, Przeor M, Korczak J, Remiszewski M, Korbas E, et al. Chemical characterization and antioxidative properties of Polish variety of *Morus alba* L. leaf aqueous extracts from the laboratory and pilot-scale processes. Agric Sci. 2013;4:141-7.
- 299. Przygonski K, Wojtowicz E. The optimization of extraction process of white mulberry leaves and the characteristic bioactive properties its powder extract. Herba Pol. 2019;65:12-9.
- 300. Kwon HJ, Chung JY, Kim JY, and Kwon O. Comparison of 1-deoxynojirimycin and aqueous mulberry leaf extract with emphasis on postprandial hypoglycemic effects: in vivo and in vitro studies. J Agric Food Chem. 2011;59(7):3014-9.
- 301. Chiasson JL, Josse RG, Hunt JA, Palmason C, Rodger NW, Ross SA, et al. The efficacy of acarbose in the treatment of patients with non-insulin-dependent diabetes mellitus. A multicenter controlled clinical trial. Ann Intern Med. 1994;121(12):928-35.
- 302. Bischoff H. Pharmacology of alpha-glucosidase inhibition. European journal of clinical investigation. 1994;24 Suppl 3:3-10.
- 303. Liu L, Zhao M, Yu X, and Zang W. Pharmacological Modulation of Vagal Nerve Activity in Cardiovascular Diseases. Neurosci Bull. 2019;35(1):156-66.
- 304. กรมควบคุมโรค. สถิติข้อมูลโรคไม่ติดต่อเรื้อรัง 2559 [Available from: <u>http://thaincd.com/information-statistic/non-communicable-disease-data.php</u>.
- 305. Bloomgarden ZT, Dodis R, Viscoli CM, Holmboe ES, and Inzucchi SE. Lower baseline glycemia reduces apparent oral agent glucose-lowering efficacy: a meta-regression analysis. Diabetes Care. 2006;29(9):2137-9.
- 306. Bang H, Kwak JH, Ahn HY, Shin DY, and Lee JH. Korean red ginseng improves glucose control in subjects with impaired fasting glucose, impaired glucose tolerance, or newly diagnosed type 2 diabetes mellitus. Journal of medicinal food.

2014;17(1):128-34.

- 307. Hossain P, Kawar B, and El Nahas M. Obesity and diabetes in the developing world--a growing challenge. N Engl J Med. 2007;356(3):213-5.
- 308. Li YG, Ji DF, Zhong S, Lin TB, Lv ZQ, Hu GY, et al. 1-deoxynojirimycin inhibits glucose absorption and accelerates glucose metabolism in streptozotocin-induced diabetic mice. Scientific Reports. 2013;3:1377.
- 309. Peng C-H, Lin H-T, Chung D-J, Huang C-N, and Wang C-J. Mulberry Leaf Extracts prevent obesity-induced NAFLD with regulating adipocytokines, inflammation and oxidative stress. Journal of food and drug analysis. 2018;26(2):778-87.
- 310. Malaguarnera M, Giugno I, Ruello P, Rizzo M, Motta M, and Mazzoleni G. Acarbose is an effective adjunct to dietary therapy in the treatment of hypertriglyceridaemias. Br J Clin Pharmacol. 1999;48(4):605-9.
- 311. Cardoso R, Blumenthal RS, Kopecky S, Lopez-Jimenez F, and Martin SS. How Low to Go With Lipid-Lowering Therapies in a Cost-effective and Prudent Manner. Mayo Clinic Proceedings. 2019;94(4):660-9.
- 312. Peng C-H, Liu L-K, Chuang C-M, Chyau C-C, Huang C-N, and Wang C-J. Mulberry Water Extracts Possess an Anti-obesity Effect and Ability To Inhibit Hepatic Lipogenesis and Promote Lipolysis. Journal of agricultural and food chemistry. 2011;59:2663-71.
- 313. Holman RR, Cull CA, and Turner RC. A randomized double-blind trial of acarbose in type 2 diabetes shows improved glycemic control over 3 years (U.K. Prospective Diabetes Study 44). Diabetes Care. 1999;22(6):960-4.
- 314. Maffei A, Lembo G, and Carnevale D. PI3Kinases in Diabetes Mellitus and Its Related Complications. International journal of molecular sciences. 2018;19(12):4098.
- 315. Ludvik AE, Pusec CM, Priyadarshini M, Angueira AR, Guo C, Lo A, et al. HKDC1 Is a Novel Hexokinase Involved in Whole-Body Glucose Use. Endocrinology. 2016;157(9):3452-61.
- 316. Hale PJ, López-Yunez AM, and Chen JY. Genome-wide meta-analysis of genetic susceptible genes for Type 2 Diabetes. BMC systems biology. 2012;6 Suppl 3(Suppl 3):S16.
- 317. Okada T, Kawano Y, Sakakibara T, Hazeki O, and Ui M. Essential role of phosphatidylinositol 3-kinase in insulin-induced glucose transport and antilipolysis in rat adipocytes. Studies with a selective inhibitor wortmannin. The Journal of biological chemistry. 1994;269(5):3568-73.
- 318. Brachmann SM, Ueki K, Engelman JA, Kahn RC, and Cantley LC. Phosphoinositide 3-kinase catalytic subunit deletion and regulatory subunit deletion have opposite effects on insulin sensitivity in mice. Molecular and cellular biology. 2005;25(5):1596-607.
- 319. Niswender KD, Morrison CD, Clegg DJ, Olson R, Baskin DG, Myers MG, et al. Insulin Activation of Phosphatidylinositol 3-Kinase in the Hypothalamic Arcuate Nucleus. Diabetes. 2003;52(2):227.
- 320. Zapater JL, Khan W, and Layden BT. MON-642 Genetic Knockout of Intestinal Hexokinase Domain-Containing Protein 1 Affects Whole-Body Glycemic Control and Triglyceride Metabolism. Journal of the Endocrine Society. 2020;4(Supplement_1).

- 321. Song C, Liu D, Yang S, Cheng L, Xing E, and Chen Z. Sericin enhances the insulin-PI3K/AKT signaling pathway in the liver of a type 2 diabetes rat model. Exp Ther Med. 2018;16(4):3345-52.
- 322. Xu Z, Jia K, Wang H, Gao F, Zhao S, Li F, et al. METTL14-regulated PI3K/Akt signaling pathway via PTEN affects HDAC5-mediated epithelial–mesenchymal transition of renal tubular cells in diabetic kidney disease. Cell Death & Disease. 2021;12(1):32.
- 323. Steffensen KR, Gustafsson J-Å. Putative Metabolic Effects of the Liver X Receptor (LXR). Diabetes. 2004;53(suppl 1):S36.
- 324. Tobin KAR, Ulven SM, Schuster GU, Steineger HH, Andresen SM, Gustafsson J-Å, et al. Liver X Receptors as Insulin-mediating Factors in Fatty Acid and Cholesterol Biosynthesis*. Journal of Biological Chemistry. 2002;277(12):10691-7.
- 325. Schulman IG. Liver X receptors link lipid metabolism and inflammation. FEBS Letters. 2017;591(19):2978-91.
- 326. Cao G, Liang Y, Broderick CL, Oldham BA, Beyer TP, Schmidt RJ, et al. Antidiabetic Action of a Liver X Receptor Agonist Mediated By Inhibition of Hepatic Gluconeogenesis*. Journal of Biological Chemistry. 2003;278(2):1131-6.
- 327. Laffitte BA, Chao LC, Li J, Walczak R, Hummasti S, Joseph SB, et al. Activation of liver X receptor improves glucose tolerance through coordinate regulation of glucose metabolism in liver and adipose tissue. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(9):5419-24.
- 328. Efanov AM, Sewing S, Bokvist K, and Gromada J. Liver X Receptor Activation Stimulates Insulin Secretion via Modulation of Glucose and Lipid Metabolism in Pancreatic Beta-Cells. Diabetes. 2004;53(suppl 3):S75.
- 329. Peet DJ, Turley SD, Ma W, Janowski BA, Lobaccaro JM, Hammer RE, et al. Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha. Cell. 1998;93(5):693-704.
- 330. Yang Q, Graham T, Mody N, Preitner F, Peroni O, Zabolotny J, et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature. 2005;436:356-62.
- 331. Graham TE, Yang Q, Blüher M, Hammarstedt A, Ciaraldi TP, Henry RR, et al. Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. N Engl J Med. 2006;354(24):2552-63.
- 332. Cho YM, Youn B-S, Lee H, Lee N, Min S-S, Kwak SH, et al. Plasma Retinol-Binding Protein-4 Concentrations Are Elevated in Human Subjects With Impaired Glucose Tolerance and Type 2 Diabetes. Diabetes Care. 2006;29(11):2457.
- 333. Takebayashi K, Suetsugu M, Wakabayashi S, Aso Y, and Inukai T. Retinol Binding Protein-4 Levels and Clinical Features of Type 2 Diabetes Patients. The Journal of Clinical Endocrinology & Metabolism. 2007;92(7):2712-9.
- 334. Kovacs P, Geyer M, Berndt J, Klöting N, Graham TE, Böttcher Y, et al. Effects of Genetic Variation in the Human Retinol Binding Protein-4 Gene (RBP4) on Insulin Resistance and Fat Depot–Specific mRNA Expression. Diabetes. 2007;56(12):3095.
- 335. Yao-Borengasser A, Varma V, Bodles AM, Rasouli N, Phanavanh B, Lee M-J, et al. Retinol Binding Protein 4 Expression in Humans: Relationship to Insulin Resistance, Inflammation, and Response to Pioglitazone. The Journal of Clinical

Endocrinology & Metabolism. 2007;92(7):2590-7.

- 336. Lehti TM, Silvennoinen M, Kivelä R, Kainulainen H, and Komulainen J. Effects of streptozotocin-induced diabetes and physical training on gene expression of extracellular matrix proteins in mouse skeletal muscle. 2006;290(5):E900-E7.
- 337. Bonner JS, Lantier L, Hocking KM, Kang L, Owolabi M, James FD, et al. Relaxin treatment reverses insulin resistance in mice fed a high-fat diet. Diabetes. 2013;62(9):3251-60.
- 338. Williams AS, Kang L, Zheng J, Grueter C, Bracy DP, James FD, et al. Integrin α 1-null mice exhibit improved fatty liver when fed a high fat diet despite severe hepatic insulin resistance. The Journal of biological chemistry. 2015;290(10):6546-57.
- 339. Kang L, Ayala JE, Lee-Young RS, Zhang Z, James FD, Neufer PD, et al. Dietinduced muscle insulin resistance is associated with extracellular matrix remodeling and interaction with integrin alpha2beta1 in mice. Diabetes. 2011;60(2):416-26.
- 340. Richardson DK, Kashyap S, Bajaj M, Cusi K, Mandarino SJ, Finlayson J, et al. Lipid infusion decreases the expression of nuclear encoded mitochondrial genes and increases the expression of extracellular matrix genes in human skeletal muscle. The Journal of biological chemistry. 2005;280(11):10290-7.
- 341. Du P, Fan B, Han H, Zhen J, Shang J, Wang X, et al. NOD2 promotes renal injury by exacerbating inflammation and podocyte insulin resistance in diabetic nephropathy. Kidney international. 2013;84(2):265-76.
- 342. Chen H, Lu J, Chen X, Yu H, Zhang L, Bao Y, et al. Low serum levels of the innate immune component ficolin-3 is associated with insulin resistance and predicts the development of type 2 diabetes. Journal of Molecular Cell Biology. 2012;4(4):256-7.
- 343. Liu X, Wang G. The Effect of High-Intensity Interval Training on Physical Parameters, Metabolomic Indexes and Serum Ficolin-3 Levels in Patients with Prediabetes and Type 2 Diabetes. Experimental and clinical endocrinology & diabetes : official journal, German Society of Endocrinology [and] German Diabetes Association. 2020.
- 344. Engström G, Hedblad B, Eriksson KF, Janzon L, and Lindgärde F. Complement C3 is a risk factor for the development of diabetes: a population-based cohort study. Diabetes. 2005;54(2):570-5.
- 345. Denou E, Lolmède K, Garidou L, Pomie C, Chabo C, Lau TC, et al. Defective NOD2 peptidoglycan sensing promotes diet-induced inflammation, dysbiosis, and insulin resistance. 2015;7(3):259-74.
- 346. Fujishiro M, Gotoh Y, Katagiri H, Sakoda H, Ogihara T, Anai M, et al. Three mitogen-activated protein kinases inhibit insulin signaling by different mechanisms in 3T3-L1 adipocytes. Molecular endocrinology (Baltimore, Md). 2003;17(3):487-97.
- 347. Matesanz N, Bernardo E, Acín-Pérez R, Manieri E, Pérez-Sieira S, Hernández-Cosido L, et al. MKK6 controls T3-mediated browning of white adipose tissue. Nature Communications. 2017;8(1):856.
- 348. Zhou B, Li H, Liu J, Xu L, Guo Q, Sun H, et al. Progranulin induces adipose insulin resistance and autophagic imbalance via TNFR1 in mice. Journal of molecular endocrinology. 2015;55(3):231-43.

- 349. Liang H, Yin B, Zhang H, Zhang S, Zeng Q, Wang J, et al. Blockade of Tumor Necrosis Factor (TNF) Receptor Type 1-Mediated TNF-α Signaling Protected Wistar Rats from Diet-Induced Obesity and Insulin Resistance. Endocrinology. 2008;149(6):2943-51.
- 350. Chen S, Wei W, Chen M, Qin X, Qiu L, Zhang L, et al. TNF Signaling Impacts Glucagon-Like Peptide-1 Expression and Secretion. Journal of molecular endocrinology. 2018;61(4):153-61.
- 351. Wunderlich FT, Luedde T, Singer S, Schmidt-Supprian M, Baumgartl J, Schirmacher P, et al. Hepatic NF-kappa B essential modulator deficiency prevents obesity-induced insulin resistance but synergizes with high-fat feeding in tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(4):1297-302.
- 352. Lin X, Braymer HD, Bray GA, and York DA. Differential expression of insulin receptor tyrosine kinase inhibitor (fetuin) gene in a model of diet-induced obesity. Life sciences. 1998;63(2):145-53.
- 353. Tsuboi A, Minato S, Yano M, Takeuchi M, Kitaoka K, Kurata M, et al. Association of serum orosomucoid with 30-min plasma glucose and glucose excursion during oral glucose tolerance tests in non-obese young Japanese women. BMJ Open Diabetes Res Care. 2018;6(1):e000508-e.
- 354. Tsuboi A, Kitaoka K, Yano M, Takeuchi M, Minato-Inokawa S, Honda M, et al. Higher circulating orosomucoid, an acute-phase protein, and reduced glucoseinduced insulin secretion in middle-aged Japanese people with prediabetes. BMJ Open Diabetes Research & amp; amp; Care. 2020;8(2):e001392.
- 355. Song A, Xu M, Bi Y, Xu Y, Huang Y, Li M, et al. Serum fetuin-A associates with type 2 diabetes and insulin resistance in Chinese adults. PloS one. 2011;6(4):e19228-e.
- 356. Olivares-Reyes JA, Arellano-Plancarte A, and Castillo-Hernandez JR. Angiotensin II and the development of insulin resistance: Implications for diabetes. Molecular and cellular endocrinology. 2009;302(2):128-39.
- 357. Lisi S, Gamucci O, Vottari T, Scabia G, Funicello M, Marchi M, et al. Obesityassociated hepatosteatosis and impairment of glucose homeostasis are attenuated by haptoglobin deficiency. Diabetes. 2011;60(10):2496-505.

Appendix A

Certificate of ethic approval (Study I)

The Research Ethics Review Committee for Research Involving Human Research Participants, Health Sciences Group, Chulalongkorn University Jamjuree 1 Building, 2nd Floor, Phyathai Rd., Patumwan district, Bangkok 10330, Thailand, Tel/Fax: 0-2218-3202 E-mail: eccu@chula.ac.th

COA No. 160/2016

Certificate of Approval

Study Title No. 121.1/59 • EFFECT OF MULBERRY LEAF ON BLOOD GLUCOSE CONTROL IN HEALTHY VOLUNTEERS

Principal Investigator PROF. PORNANONG ARAMWIT, Pharm.D., Ph.D.

Place of Proposed Study/Institution :

Faculty of Pharmaceutical Sciences, Chulalongkorn University

The Research Ethics Review Committee for Research Involving Human Research Participants, Health Sciences Group, Chulalongkorn University, Thailand, has approved constituted in accordance with the International Conference on Harmonization - Good Clinical Practice (ICH-GCP).

Signature: .

	1000	$\nabla = \nabla$	1
Signature	1000	Valancipradi	1
Signature.		· · · · · · · · · · · · · · · · · · ·	

(Associate Professor Prida Tasanapradit, M.D.) Chairman

Date of Approval :15 September 2016 Approval Expire date : 14 September 2017

(Assistant Professor Nuntaree Chaichanawongsaroj, Ph.D.)

Secretary

Nuntarie Chardromowoysand

The approval documents including

- 1) Research proposal
- 2) Patient/Participant-Information Sheet and Informed Consent Form
- Protocol No. 121 . 1 / 59 3) Researcher 15 SEP 2016 bate of Approval... Approval Expire Date. 14 SEP 2017 Questionnaire 4)

The approved investigator must comply with the following conditions:

The research/project activities must end on the approval expired date of the Research Ethics Review Committee for Research Involving Human Research Participants, Health Sciences Group, Chulalongkorn University (RECCU). In case the research/project is unable to complete within that date, the project extension can be applied one month prior to the RECCU approval expired date. 2

Strictly conduct the research/project activities as written in the proposal.

3. Using only the documents that bearing the RECCU's seal of approval with the subjects/volunteers (including subject information sheet, consent form, invitation letter for project/research participation (if available). Report to the RECCU for any serious adverse events within 5 working days 4

Report to the RECCU for any change of the research/project activities prior to conduct the activities. 5

Final report (AF 03-12) and abstract is required for a one year (or less) research/project and report within 6. 30 days after the completion of the research/project. For thesis, abstract is required and report within 30 days after the completion of the research/project.

7. Annual progress report is needed for a two- year (or more) research/project and submit the progress report before the expire date of certificate. After the completion of the research/project processes as No. 6.

Appendix B Clinical record forms (Study I)

แบบบันทึกข้อมูลทั่วไป

คำชี้แจง

แบบบันทึกนี้เป็นแบบบันทึกข้อมูลทั่วไปของผู้เข้าร่วมวิจัย เพื่อประเมินคุณสมบัติของท่าน ในการคัดเข้าในโครงการวิจัย รวมถึงเพื่อใช้ประกอบการประเมินประสิทธิภาพและความปลอดภัย ของผงใบหม่อนที่ใช้ในการศึกษาครั้งนี้ **จึงขอความร่วมมือทุกท่าน**กรอกแบบบันทึกโดยเลือกหรือ เติมข้อความในช่องว่างที่เว้นไว้ ให้ตรงกับความเป็นจริงของตัวท่าน

- 2. เพศ ()ชาย ()หญิง
- โรคประจำตัว (หมายถึง โรคที่เป็นอยู่ในอดีตจนถึงปัจจุบัน เช่น เบาหวาน ความคัน โลหิตสูง โรคหัวใจ โรคไต ภูมิแพ้ หอบหืด มะเร็ง ฯลฯ)

() ไม่มี จุฬาลงกรณ์มหาวิทยาลัย

- () มี โปรคระบุโรค.....
- ยา สมุนไพร อาหารเสริมท<u>ี่ใช้ประจำ</u>ในปัจจุบัน (ที่ได้รับทั้งจากโรงพยาบาล คลินิกแพทย์ ร้านยา หรือหาซื้อเองตามแหล่งอื่น)

() ไม่มี

() ไม่มี

- () มี โปรคระบุชื่อ.....
- ยา สมุนไพร อาหารเสริม ที่นอกเหนือจากยาประจำ <u>รับประทานเป็นครั้งคราว</u>เพื่อบรรเทา อาการใด ๆ <u>*ในช่วง 2 สัปดาห์ที่ผ่านมา*</u>

() มี โปรดระบุชื่อ
7. ประวัติการแพ้ยา/สมุนไพร/อาหารเสริม/สารเคมี
() โม่มี
() มี โปรดระบุชื่อ
อาการ
8. การสูบบุหรื่
() ไม่เคยสูบ () เคยสูบ แต่เลิกแล้วปี () ปัจจุบันสูบมวน/วัน
9. การดื่มแอลกอฮอล์
() ไม่เคยดื่ม () เคยดื่ม แต่เลิกแล้วปี () ปัจจุบันดื่มแก้ว/วัน
10. การออกกำลังกาย
() ไม่เคยออกกำลังกาย
() ออกกำลังกายบ้างเป็นครั้งคราว ชนิดกีฬา
จำนวนครั้ง/เคือน ระยะเวลาชั่วโมง/วัน
() ออกกำลังกายเป็นประจำ ชนิดกีฬา
จำนวนครั้ง/เคือน ระยะเวลาชั่วโมง/วัน
CHULALONGKORN UNIVERSITY

ขอบคุณที่ให้ความร่วมมือ

Appendix B

Clinical record forms (Study I)

	ID Date///		
Anthr	Anthropometric profiles and vital signs		
Weight (kg)			
Height (cm)			
BMI (kg/m ²)			
SBP (mmHg)			
DBP (mmHg)			
HR (bpm)			
	Blood tests		
FPG (mg/dL)			
HbA1C (%)			
BUN (mmol/L)	ADA		
SCr (mg/dL)			
AST (U/L)			
ALT (U/L)	AND REAL OF		
ALK (U/L)	25		
	Capillary blood glucose		
PPG-0 (mg/dL)	ลงกรณ์มหาวิทยาลัย		
Time for taking test beverage			
PPG-30 (mg/dL)	(Time)		
PPG-60 (mg/dL)	(Time)		
PPG-90 (mg/dL)	(Time)		
PPG-120 (mg/dL)	(Time)		
PPG-180 (mg/dL)	(Time)		

Appendix B

Clinical record forms (Study I)

แบบบันทึกการเกิดอาการไม่พึงประสงค์จากการรับประทานผงใบหม่อน

1 a v a o a	ໍ ບຸ ນລະ
<u>ส่วนที่ 1</u> วันที่ทำการศึกษา	(สำหรับผิวจัย)
<u></u>	(

เวลา	อาการไม่พึงประสงค์ที่พบ	การดำเนินการ / การรักษา
	. Said a a	
	A BURNAL A	
	E S	
	จุฬาลงกรณ์มหาวิทยาลัย	

ผลการประเมินการเกิดอาการไม่พึงประสงค์

() เกิดจากผงใบหม่อน	() ไม่ได้เกิดจากผงใบหม่อน	() ไม่แน่ใจ
หมายเหตุ		

(.....)

แพทย์ผู้ประเมิน / ผู้วิจัย

<u>ส่วนที่ 2</u> การติดตามอาการไม่พึงประสงค์ 7 วันหลังวันที่ทำการศึกษา (สำหรับผู้เข้าร่วมวิจัย) คำชี้แจง

แบบบันทึกนี้ใช้สำหรับรายงานการเกิดอาการไม่พึงประสงค์จากการรับประทานผงใบหม่อน ในช่วง 7 วันหลังวันที่ทำการศึกษา เพื่อประเมินความปลอดภัยของผงใบหม่อนที่ใช้ในการศึกษาครั้ง นี้ หากท่านพบอาการผิดปกติซึ่งสงสัยว่าอาจเกิดจากการรับประทานผงใบหม่อน โปรดกรอกแบบ บันทึกโดยเลือกหรือเติมข้อความในช่องว่างที่เว้นไว้ให้

อาการใม่พึงประสงค์ที่พบ	วัน/เดือน/ ปี	ເວລາ
() น้ำมูกใหล คัดจมูก จาม		
รายละเอียคเพิ่มเติม (ถ้ำมี)		
 () ผื่นที่ผิวหนัง รายละเอียดเพิ่มเติม (ถ้ามี) 		
ง เอยรายองผเพทาเงาา (ม เท)		
() ปวดเกร็งท้อง		
รายละเอียดเพิ่มเติม (ถ้ำมี)		
() ท้องอื่ด จุฬาลงกรณ์มหาวิทยาลัย		
รายละเอียคเพิ่มเติม (ถ้ามี)ONGKORN UNIVERSITY		
() อื่น ๆ โปรดระบุ		
รายละเอียดเพิ่มเติม (ถ้ำมี)		

โปรดส่งคืนผู้วิจัยเมื่อครบ 7 วันหลังที่ทำการศึกษา ขอบคุณที่ให้ความร่วมมือ

Appendix B

Naranjo's algorithm

อาการไม่พึงประสงค์.....

	คำถาม	ใช่	ไม่ใช่	ไม่ทราบ	คะแนน
1.	เคยมีสรุปหรือรายงานการปฏิกิริยานี้มาแล้วหรือไม่	+1	0	0	
2.	อาการไม่พึงประสงค์นี้เกิดขึ้นภายหลังจากได้รับยาที่กิด ว่าเป็นสาเหตุหรือไม่	+2	-1	0	
3.	อาการไม่พึงประสงค์นี้ดีขึ้นเมื่อหยุดยาดังกล่าว หรือเมื่อ ให้ยาต้านที่จำเพาะเจาะจง (specific antagonist) หรือไม่	+1	0	0	
4.	อาการไม่พึงประสงค์ดังกล่าวเกิดขึ้นเมื่อเริ่มให้ยาใหม่ หรือไม่	+2	-1	0	
5.	ปฏิกิริยาที่เกิดขึ้นสามารถเกิดจากสาเหตุอื่น (นอกเหนือจากยา) ของผู้ป่วยได้หรือไม่	L-	+2	0	
6.	ปฏิกิริยาคังกล่าวเกิดขึ้นอีก เมื่อให้ยาหลอกหรือไม่	-1	+1	0	
7.	สามารถตรวจวัดปริมาณยาได้ในเลือด (หรือของเหลว อื่น) ในปริมาณความเข้มข้นที่เป็นพิษหรือไม่	+1	0	0	
8.	ปฏิกิริยารุนแรงเกิดขึ้น เมื่อเพิ่มขนาดยาหรือลดความ รุนแรงลงเมื่อลดขนาดยาหรือไม่	1	0	0	
9.	ผู้ป่วยเกยมีปฏิกิริยาเหมือนหรือกล้ายกลึงกันนี้มาก่อน ในการได้รับยากรั้งก่อน ๆ หรือไม่	+1	0	0	
10.	อาการไม่พึงประสงค์นี้ ได้รับการขึ้นขันโดยหลักฐานที่ เป็นรูปธรรม (objective evidence) หรือไม่	ายาลัย +1 IVERS	0	0	
	ຽວນ				

ระดับคะแนน

คะแนนมากกว่าหรือเท่ากับ 9 คะแนนเท่ากับ 5-8 คะแนนเท่ากับ 1-4 คะแนนน้อยกว่าหรือเท่ากับ 0

Definite ใช่แน่ Probable ใช่ Possible อาจจะใช่ Doubtful น่าสงสัย

Appendix C

Chemical analysis of phytochemicals in mulberry leaves powder

A. Quantitative determination of DNJ

(1) Liquid chroma	tographic condition		
Analytical	Inertsil NH2, 75 x 2.1-mm, 3-µm		
column:			
Guard column:	Inertsil NH2, 10 x 2.1-mm, 3-µm		
Mobile phase:	Mixture of 5 mM ammonium formate and 0.1% formic		
	acid in acetonitrile, gradient		
Autosampler	15°C		
temperature:			
Column oven	40°C		
temperature:			
Flow rate:	0.4 mL/min		
Injection volume:	1 μL		
Run time:	8 min		
(2) Mass spectrom	etric condition		
MS mode:	Positive electrospray ionization (ESI+) mode		
	Multiple reaction monitoring (MRM), m/z 164.05 \rightarrow		
	110.15		

Result of analysis:

Phytochemicals	Catagorias	Concentration	
(Chemical formula)	Categories	(mg/g in dried leaves)	
DNJ (C ₆ H ₁₃ NO ₄)	Alkaloids	2.60 ± 0.78	

B. Quantitative determination of phytochemicals

(1) Liquid chromatographic condition

Analytical	Zorbax RRHD Eclipse Plus C18 column from Agilent	
column:	$(100 \times 2.1 \text{ mm, particle size: } 1.8 \ \mu\text{m})$	
Mobile phase:	Acetonitrile (B) and 0.01% formic acid in water (A)	
Column oven	45°C	
temperature:		
Flow rate:	0.4 mL/min	
Injection volume:	2 µL	
Gradient profile:	0/5, 3/5, 7/40, 11/80, 11.5/100, 13.5/100, 14/5, 16/5	
	min/B%	
(2) Time-of-flight mass spectrometer condition		
MS mode:	Positive ion electrospray ionization (full scan mode at	
	50-800 m/z; spectra rate at 4 Hz)	
MS parameters:	Nitrogen nebulizer gas pressure, 3 bar; drying gas flow	
	rate, 12 L/min; End plate offset, 500 V; capillary	
	voltage, +4500 V; dry temperature, 200 °C; funnel 1 RF	
	and funnel 2 RF, 300 Vpp; CID energy, O eV; hexaploe	
	RF, 50 Vpp; quadrople ion energy, 5 eV and low mass	
	filtering at 50 m/z	
Collision cell	Collision energy, 3 eV; collision RF, 500 Vpp; transfer	
parameters:	time 50 μ S and pre pulse storage at 6 μ s	
Data analysis:	Bruker software (Daltonics, Bremen, Germany)	
	IULALUNGRUKN UNIVERSIIY	

Result of analysis:

Phytochemicals (Chemical formula)	Categories	Concentration (mg/g in dried leaves)
Chlorogenic acid	Phenolic acid	1.59 ± 0.06
$(C_{16}H_{18}O_9)$		1107 - 0100
Quercetin (C ₁₅ H ₁₀ O ₇)	Flavonoids	NQ
Kaempferol (C ₁₅ H ₁₀ O ₆)	Flavonoids	NQ
Rutin (C ₂₇ H ₃₀ O ₁₆)	Flavonol	0.82 ± 0.05
$(C_2/11_3)(O_{16})$	glycosides	0.02 ± 0.03

Isoquercitrin (C ₂₁ H ₂₀ O ₁₂)	Flavonol glycosides	0.58 ± 0.05
Kaempferol 7-glucoside	Flavonol	NQ
$(C_{21}H_{20}O_{11})$	glycosides	
Kaempferol 3- <i>O</i> -β-D-(6"- <i>O</i> -	Flavonol	NQ
malonyl)-glucoside	glycosides	
$(C_{24}H_{22}O_{14})$		
Quercetin 3-(6"-malonyl-	Flavonol	NQ
glucoside) (C ₂₄ H ₂₂ O ₁₅)	glycosides	

Data are expressed as mean \pm S.D.

NQ: cannot be quantified

CHULALONGKORN UNIVERSITY

Appendix D

Clinical outcomes (Study I)

.

_{nim 081-0} JUA (nim.Jb\gm)		283.25	303.00	290.75	243.50	250.00	277.00	244.25	250.00	284.00	241.75	233.00	249.75	254.00	264.25	232.25	269.25	287.75	260.50
PPG 180 (mg/dL)	100	88	91	78	83	70	85	88	66	88	79	79	LL	72	82	72	91	89	70
PPG 120 (mg/dL)	94	139	108	70	86	68	88	82	88	79	74	90	95	77	93	66	75	100	99
(Jb\gm) 09 HQ	76	105	139	114	82	89	87	89	78	106	79	89	LT	86	94	80	112	66	89
PPG 60 (mg/dL)	89	111	131	178	101	118	130	92	76	143	129	110	104	113	114	109	129	134	132
(Jb/gm) 0E J99	110	126	141	143	135	153	157	139	145	153	120	66	143	154	145	135	139	157	155
PPG 0 (mg/dL)	83	83	83	75	83	74	66	85	85	86	84	77	84	84	83	<i>LT</i>	76	82	88
(Jb/gm) VUA	8	10	14	10	10	H	11	4	15	12	13	12	6	10	6	8	14	11	13
(Jb/gm) rJ	0.8	0.69	0.74	0.96	0.88	0.77	0.97	0.6	1.01	0.78	0.7	0.8	0.6	0.76	0.73	0.63	0.62	0.56	0.84
(J/U) TJA	6	11	10	12	18	13	8	14	21	12	5	7	19	12	6	10	11	10	18
(J/U) TSA	16	18	21	20	30	36	18	24	36	20	16	16	17	25	15	22	23	16	37
(%) JIV	5.3	5	4.3	4.8	5.1	4.9	5.3	5.3	5.2	5.2	5.1	5	4.9	5.1	5	5.3	5.1	5	4.6
FPG (mg/dL)	83	83	83	75	83	74	66	85	85	86	84	77	84	84	83	77	76	82	88
(mqd) AH	75	65	97	60	72	62	74	79	80	72	72	68	81	60	62	88	85	92	70
(gHmm) A&O	76	78	76	99	61	68	67	68	69	65	67	65	<i>LT</i>	73	69	69	99	65	67
(gHmm) 982	107	107	131	106	103	102	122	89	115	104	102	100	120	102	103	104	97	97	96
(⁴ m/g¥) IMB	20.82	19.50	19.72	19.27	21.77	21.48	19.59	20.44	21.55	20.20	20.31	23.56	21.16	18.83	19.81	20.89	19.20	18.83	20.07
(mɔ) trigisH	164	163	156	172	166	160	175	167	175	165	160	150	167	158	162	150	163	158	170
(gal) tdgi9W	56	51.8	48	57	60	55	60	57	99	55	52	53	59	47	52	47	51	47	58
quorg bangizzA	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Articipants ID	9	4	12	13	19	52	55	28	32	35	41	46	8 4	22	57	63	65	70	73

_{nim 081-0} JUA (nim.Jb\gm)		282.50	246.50	255.25	236.75	268.25	254.00	239.50	247.50	259.50	329.25	251.50	253.00	248.25	249.00	256.75	230.75	230.50	252.00	258.25	261.00	239.50	238.00
PPG 180 (mg/dL)	73	73	91	80	80	77	76	89	93	90	72	86	96	85	84	73	62	76	85	92	80	82	85
PPG 120 (mg/dL)	83	66	102	83	96	91	93	95	85	100	111	93	102	91	107	107	102	82	60	87	76	86	93
(TP/Bm) 06 94d	108	105	94	115	89	101	104	89	89	113	131	98	108	66	92	106	91	97	107	109	83	93	97
PPG 60 (mg/dL)	138	138	92	108	66	128	106	101	117	106	174	96	101	109	97	109	60	66	117	125	120	98	107
(Jb/gm) 0E Ə99	142	144	115	125	106	130	117	108	113	118	165	133	105	114	122	116	103	106	106	109	138	118	66
(Jb\gm) 0 ƏAA	81	85	89	62	87	96	100	83	89	74	83	80	84	82	76	78	72	78	83	81	88	86	75
(Jb\gm) VU8	6	10	7	6	11	10	6	10	12	6	П	10	12	8	10	10	6	12	13	13	18	14	10
(Ль\дт) тЭ	0.65	0.85	0.71	0.72	0.66	0.59	0.82	0.71	0.95	0.65	0.83	0.94	0.75	0.7	0.64	0.67	0.62	0.7	0.72	0.76	1.01	0.7	0.89
ALT (U/L)	14	8	8	26	15	6	10	6	19	8	22	19	7	11	6	12	12	5	18	8	20	11	10
(J/U) TSA	27	20	15	25	28	29	19	16	28	23	30	36	16	21	12	18	23	15	19	21	22	18	18
(%) JIA	4.8	5.4	5	5.5	5	5.2	5.3	4.6	5.1	4.8	5.4	5.5	5.3	5.2	4.8	5.2	4.6	5.1	4.3	4.3	5.7	5	4.8
(Jb\gm) 283	81	85	89	61	87	96	100	83	89	74	83	80	84	82	76	78	72	78	83	81	88	86	75
(mqd) AH	80	75	93	71	80	70	88	99	79	58	101	68	84	60	61	62	<i>LL</i>	81	68	60	92	63	92
(gHmm) A&O	64	64	70	<i>LL</i>	60	67	50	69	68	48	86	6 <i>L</i>	83	53	68	70	72	77	60	61	73	62	68
(gHmm) A82	95	76	112	120	96	110	98	106	128	92	128	108	117	102	107	109	103	111	101	98	112	76	96
(² m/ga) IMB	22.77	17.42	19.81	22.64	19.23	22.27	19.49	20.43	20.75	22.21	22.49	21.38	19.53	21.26	19.95	18.57	22.03	20.31	21.37	20.03	18.72	20.45	18.97
Height (cm)	165	166	162	155	158	160	168	158	177	163	170	173	160	168	163	156	158	160	156	158	176	164	154
(gal) thgioW	62	48	52	54.4	48	57	55	51	65	59	65	64	50	60	53	45.2	55	52	52	50	58	55	45
quorg bangizzA	1	1	7	7	7	2	7	7	2	7	7	7	7	7	7	7	7	7	7	7	7	7	7
U stnsqivits ID	76	2	3	S	6	16	18	21	27	29	¥	36	39	42	47	49	2	58	62	2	8	75	81

_{nim 081-0} DUA (nim.Jb\gm)		223.25	243.00	233.75	237.25	251.50	238.25	233.00	228.25	265.00	239.00	236.00	246.50	222.75	234.25	264.25	224.00	245.75	255.00	253.00	305.00	237.25	227.75
(Jb/gm) 081 ƏAA	78	80	88	82	90	94	61	90	79	85	66	98	75	85	80	106	80	69	76	86	88	95	86
PPG 120 (mg/dL)	81	95	103	88	89	96	78	98	92	66	89	98	104	88	89	107	92	91	100	93	121	100	60
(Jb/gm) 00 dPG	89	104	92	67	66	98	96	95	89	103	89	100	103	87	94	107	83	87	107	112	134	96	95
(Jb/gm) 09 DAG	85	94	100	101	98	103	120	88	84	119	96	96	92	103	107	115	91	111	108	113	146	89	91
PPG 30 (mg/dL)	91	82	105	66	102	116	110	100	111	123	114	85	114	83	66	103	105	130	107	103	124	76	95
(Jb\gm) 0 Ə99	62	63	84	83	83	86	84	80	82	87	81	88	85	8	62	87	74	76	62	84	82	90	83
(Jb\gm) VU8	6	15	~	13	6	10	12	13	12	H	II	19	15	6	11	7	15	11	12	8	6	10	10
(Jb/gm) 1)	0.8	1.05	0.68	0.69	0.81	0.7	1.11	1.13	0.52	0.61	0.57	0.75	0.8	0.74	0.59	0.71	0.69	0.64	0.65	0.58	0.62	1.01	1
(U/L) T.IA	30	13	26	6	8	6	26	39	7	13	14	11	10	13	11	10	30	10	9	13	10	10	11
(J/U) TSA	29	20	13	18	18	26	32	36	22	17	17	14	14	17	17	15	32	17	18	20	18	22	27
(%) JIA	4.6	4.7	5	5.2	5.4	4.7	5.3	5.6	5.4	5.4	4.6	5.4	5.3	5.3	5.2	4.7	4.9	5.2	5.6	5.1	5.1	5	4.6
(Jb/gm) 283	<i>6L</i>	63	8	83	83	86	84	80	82	87	81	88	85	8	62	87	74	76	6 <i>L</i>	84	82	60	83
(mqd) AH	91	80	82	<i>L</i> 6	70	78	72	72	70	88	88	93	53	100	67	75	61	74	87	70	84	75	95
(gHmm) A&O	60	61	63	78	63	64	82	74	65	84	71	62	61	69	57	55	61	68	73	71	75	62	60
(gHmm) A82	90	101	104	108	76	91	119	123	105	127	95	111	110	98	86	98	89	96	117	115	124	93	111
(² m/ga) الالا	18.75	20.90	20.32	22.03	18.83	20.57	19.36	22.34	18.37	21.51	18.75	19.07	22.31	18.59	18.59	19.47	18.55	22.04	18.61	19.38	21.94	21.87	20.16
(mɔ) thgi9H	160	168	163	158	158	165	167	177	153	167	160	157	187	164	164	157	154	165	152	170	164	167	185
(gal) thgioW	48	59	54	55	47	56	54	70	43	60	48	47	78	50	50	48	4	60	43	56	59	61	69
quorg bangizzA	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	4	4
UI stracticipants ID	7	7	11	15	23	26	30	33	38	45	51	23	56	61	99	69	72	77	78	80	82	1	~

(nim.Jb\gm)	267.00	215.00	234.50	220.25	235.50	248.00	245.75	238.50	241.00	280.75	253.25	230.25	219.00	232.75	219.75	252.50	237.75	231.25	241.00	226.00
AUC 0-180 min																				
(Jb/gm) 081 299	96	60	79	94	66	106	93	78	104	106	86	79	80	85	83	81	85	85	100	89
PPG 120 (mg/dL)	102	87	66	87	89	101	87	75	96	119	106	86	81	86	89	94	102	98	100	83
DDC 00 (mg/qL)	117	88	92	96	102	67	95	93	98	106	103	108	66	98	83	110	89	84	96	89
PPG 60 (mg/dL)	114	62	95	85	66	66	114	125	95	125	95	95	90	103	98	110	100	94	96	87
PPG 30 (mg/dL)	112	89	89	88	60	102	108	105	66	108	116	60	83	95	89	107	103	100	96	106
PPG 0 (mg/dL)	82	84	91	75	83	88	82	80	84	101	87	84	90	82	78	87	78	88	88	85
(Jb/gm) VU8	12	15	6	7	6	17	11	II	10	8	Π	16	14	12	12	15	10	9	6	6
(Jb/gm) JO	0.82	0.62	0.94	0.72	0.65	0.85	0.72	0.77	0.62	0.59	0.64	0.75	0.62	0.75	0.48	0.81	0.7	0.59	0.67	0.77
(U/L) TJA	20	10	10	19	15	6	4	14	11	18	8	L	10	20	10	13	16	10	9	30
(J/U) TSA	32	13	26	35	25	18	17	20	19	18	21	30	21	18	18	18	24	22	16	28
(%) JIA	5.2	5.4	5.2	5.1	5.1	5.7	5	5.3	5	5.6	5.2	4.9	5.2	5	5.2	5.2	5.4	5.2	4.5	5
(Jb/gm) 287	82	84	91	75	83	88	82	80	84	101	87	84	60	82	78	87	78	88	88	85
(mqd) AH	72	69	68	69	79	65	87	64	86	70	79	88	62	74	73	61	73	86	80	85
(gHmm) 980	56	55	72	51	55	67	84	41	64	67	<i>LL</i>	75	99	LL	68	64	81	78	74	77
(gHmm) 982	89	100	108	104	92	127	101	83	108	102	133	110	67	120	97	118	108	114	106	106
(² m/ga) IMB	22.22	19.47	19.96	21.05	20.24	23.44	20.78	19.22	18.22	19.22	23.11	20.32	18.67	21.97	20.55	18.76	20.57	21.16	21.78	18.59
(mɔ) thgiəH	150	165	169	166	154	160	152	153	150	153	150	163	162	168	168	189	175	167	150	164
(ga) thgieW	50	53	57	58	48	60	48	45	41	45	52	54	49	62	58	67	63	59	49	50
quorg bangizsA	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
A stricipants ID	10	14	17	20	24	31	37	40	43	4	50	52	59	09	67	71	74	62	83	85

Appendix E

Certificate of ethic approval (Study II)

RL 01 2560

คณะอนุกรรมการพิจารณาโครงการวิจัย กรมแพทย์ทหารบก

317/5 ถนนราชวิถี เขตราชเทวี กรุงเทพฯ 10400

พี่ IRBRTA	รหัสโครงการ: Q038h/60
ชื่อโครงการวิจัย :	ประสิทธิศักย์และความปลอดภัยของใบหม่อนในการควบคุมระดับน้ำตาลในเลือดในผู้ที่มีภาวะ
	อ้วนและผู้ป่วยเบาหวานชนิดที่ 2
	[EFFICACY AND SAFETY OF MULBERRY LEAVES ON GLYCEMIC CONTROL IN
	PATIENTS WITH OBESITY AND PATIENTS WITH TYPE 2 DIABETES]
เลขที่โครงการวิจัย :	
ชื่อผู้วิจัยหลัก:	เกล้ขกรหญิง อัญชนิต ไทยพิทักษ์วงศ์
สังกัดหน่วยงาน :	คณะเภสัชศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย
สถานที่ทำการวิจัย:	แผนกผู้ป่วยนอก โรงพยาบาลพระมงกุฎเกล้า
เอกสารรับรอง :	
(1) แบบรายงานการส่งใ	์ครงร่างการวิจัยเพื่อพิจารณาครั้งแรก ฉบับที่ 1 ลงวันที่ 29 ธันวาคม 2560
(2) โครงร่างการวิจัย ฉบ	บับที่ 2 ลงวันที่ 6 กุมภาพันธ์ 2561
(3) เอกสารขึ้แจงข้อมล	แก่ผู้เข้าร่วมโครงการวิจัย และหนังสือแสดงเจตบายินยอบเข้าร่วมการวิจัย. จนับที่ 2 ลงวันที่ 6

- (3) เอกสารชิแจงข้อมูล า่ผู้เข้าร่วมโครงการวิจัย และหนังสือแสดงเจตนาอินยอมเข้าร่วมการวิจัย จบับที่ 2 กุมภาพันธ์ 2561
- (4) แบบบันทึกข้อมูล ฉบับที่ 2 ลงวันที่ 6 กุมภาพันธ์ 2561
- (5) ประวัติผู้วิจัย เภสัชกรหญิง อัญชนิต ไทยพิทักษ์วงศ์ ฉบับที่ 2 ลงวันที่ 6 กุมภาพันธ์ 2561
- (6) ประวัติที่ปรึกษา เภสัชกรหญิง พรอนงค์ อร่ามวิทย์ ฉบับที่ 2 ลงวันที่ 6 กุมภาพันธ์ 2561

(7) ประวัติที่ปรึกษา พ.อ.อุปถัมภ์ ศุภสินธุ์ ฉบับที่ 2 ลงวันที่ 6 กุมภาพันธ์ 2561

ขอรับรองว่าโครงการดังกล่าวข้างดันได้ผ่านการพิจารณารับรองจากคณะอนุกรรมการพิจารณาโครงการวิจัย กรม แพทย์ทหารบกว่าสอดคล้องกับแนวทางจริยธรรมสากล ได้แก่ ปฏิญญาเชลซิงกี รายงานเบลมองค์แนวทางจริยธรรมสากลสำหรับ การวิจัยในมนุษย์ของสภาองค์การสากลด้านวิทยาศาสตร์การแพทย์ (CIOMS) และแนวทางการปฏิบัติการวิจัยที่ดี (ICH GCP)

วันที่รับรองด้านจริยธรรมของโครงร่างการวิจัย: วันสิ้นสุดการรับรอง: ความถี่ของการส่งรายงานความก้าวหน้าของการวิจัย: 12 กุมภาพันธ์ 2561 11 กุมภาพันธ์ 2562 1 ปี

110 พันเอกหญิง

(แสงแข ซำนาญวนกิจ) ประธานคณะอนุกรรมการพิจารณาโครงการวิจัย กรมแพทย์ทหารบก

สำนักงานคณะอนุกรรมการพิจารณาโครงการวิจัย พบ.

Appendix F

Clinical record forms (Study II) แบบบันทึกข้อมูลทั่วไป

คำชี้แจง

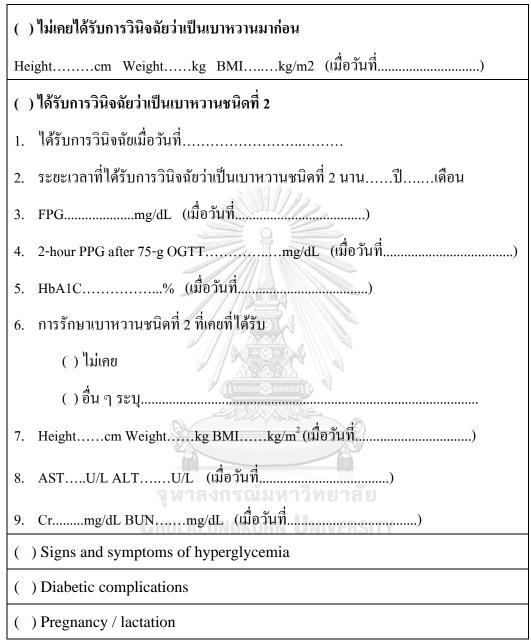
แบบบันทึกนี้เป็นแบบบันทึกข้อมูลทั่วไปของผู้เข้าร่วมวิจัย เพื่อประเมินคุณสมบัติของท่าน ในการคัดเข้าในโครงการวิจัยเรื่อง <mark>ประสิทธิศักย์และความปลอดภัยของใบหม่อนในการควบคุมระดับ</mark> ้น้ำตาลในเลือดในผู้ที่มีภาวะอ้วนและผู้ป่วยเบาหวานชนิดที่ 2 รวมถึงเพื่อใช้ประกอบการประเมิน ประสิทธิภาพและความปลอดภัยของใบหม่อนที่ใช้ในการวิจัยครั้งนี้เบื้องต้น จึงขอความร่วมมือทก ท่านกรอกแบบบันทึกโดยเลือกหรือเติมข้อความในช่องว่างที่เว้นไว้ให้ตรงกับความเป็นจริงของตัว ท่านเฉพาะในส่วนที่ 1 ของแบบบันทึกนี้

ส่วนที่ 1

11. เพศ () ชาย () หญิง

12. อายุ.....ปี วัน/เดือน/พ.ศ.เกิด....../...

- 13. โรคประจำตัว ที่นอกเหนือจากโรคเบาหวาน (หมายถึง โรคที่เป็นอยู่ในอดีตจนถึงปัจจุบัน เช่น ความคัน โลหิตสูง ใขมันสูง โรคหัวใจ โรคกระเพาะอาหาร โรคไต ภูมิแพ้ หอบหืด มะเร็ง ฯลฯ) () ไม่มี
- 14. ประวัติการผ่าตัดทางเดินอาหาร
- - () ไม่เคย


() เคย โปรคระบรายละเอียด.....

- 15. ยา สมุนไพร อาหารเสริมที่<u>ใช้ประจำ</u>ในปัจจุบัน *(ที่ได้รับทั้งจากโรงพยาบาล คลินิกแพทย์ ร้าน* ยา หรือหาซื้อเองตามแหล่งอื่น)
 - ไม่มี
 - () มี โปรคระบชื่อ.....
- 16. ยา สมุนไพร อาหารเสริม ที่นอกเหนือจากยาประจำ <u>รับประทานเป็นครั้งคราว</u>เพื่อบรรเทา อาการใด ๆ **ในช่วง 1 เดือนที่ผ่านมา**

() ไม่มี
() มี โปรดระบุชื่อ
17. ประวัติการแพ้ยา/สมุนไพร/อาหารเสริม/สารเคมี
() ไม่มี
() มี โปรคระบุชื่อ
อาการ
18. การสูบบุหรี่
() ไม่เกยสูบ
() เคยสูบ แต่เลิกแล้วเป็นระยะเวลา(โปรคระบุจำนวนเคือน หรือ ปี)
() ปัจจุบันสูบมวนต่อวัน
19. การดื่มแอลกอฮอล์ เช่น เหล้า เบียร์ ไวน์ เหล้าขาว ยาดอง
() ไม่เคยดื่ม
() เคยดื่ม แต่เลิกแล้วเป็นระยะเวลา(โปรคระบุจำนวนเดือน หรือ ปี)
() ปัจจุบันดื่มแก้ว (โปรคระบุความถี่ ได้แก่ ต่อวัน สัปดาห์ เดือน หรือ ปี)
20. การออกกำลังกาย
() ไม่เคยออกกำลังกาย
() ออกกำลังกายบ้างเป็นครั้งคราว ชนิดกีฬา
จำนวนครั้ง/เดือน ระยะเวลาชั่วโมง/วัน
() ออกกำลังกายเป็นประจำ ชนิดกีฬา
จำนวนวัน/สัปดาห์ ระยะเวลาชั่วโมง/วัน

ขอบคุณที่ให้ความร่วมมือ

<u>ส่วนที่ 2</u> (สำหรับผู้วิจัย เพื่อการกัดกรองผู้เข้าร่วมงานวิจัย)

Appendix F

Clinical record forms (Study II)

ผลการตรวจร่างกายและผลตรวจทางห้องปฏิบัติการ

		Experime	ntal period	l
Outcomes	Week	Week	Week	Week
	0	4	8	12
Date				
Height (cm)				
Weight (kg)	1122			
BMI (kg/m ²)				
Waist circumference (cm)				
SBP (mmHg)				
DBP (mmHg)				
HR (bpm)				
FPG (mg/dL)				
PPG-30 (mg/dL)				
PPG-60 (mg/dL)		S)		
PPG-90 (mg/dL)		-		
PPG-120 (or 2-hour PPG) (mg/dL)	หาวิทยา	ลัย		
A1C (%)				
FPI (µIU/mL)				
HOMA-IR				
TC (mg/dL)				
TG (mg/dL)				
HDL-C (mg/dL)				
LDL-C (mg/dL)				
AST (U/L)				
ALT (U/L)				
Cr (mg/dL)				

Appendix F

Clinical record forms (Study II) แบบบันทึกการบริโภคอาหาร

คำชี้แจง

วิธีการบันทึก

 จดบันทึกอาหารทุกชนิด ซึ่งรวมถึงขนมและเครื่องดื่มที่รับประทานทั้งในมื้อหลักและ มื้อของว่างในวันใดวันหนึ่งในช่วง 1 สัปดาห์ก่อนวันนัดกรั้งต่อไป ทั้งนี<u>้ไม่แนะน</u>ำให้ทำในวัน พิเศษ เช่น วันที่ไปงานแต่งงาน จัดงานเลี้ยงวันเกิด หรือวันที่ไม่สบาย เป็นต้น

- ควรบันทึกทันทีที่บริโภคในแต่ละครั้งเพื่อป้องกันการลืม
- บันทึกส่วนประกอบอาหารต่าง ๆ อย่างละเอียด ดังนี้
 - ก. ชนิด เช่น ไข่เป็ด ไข่ไก่ ก้วยเตี๋ยวเส้นใหญ่ บะหมื่
 - วิธีการปรุง เช่น ดิบ ต้ม นึ่ง ทอด
 - ค. ยี่ห้อ เช่น มันฝรั่งทอดกรอบเลย์ บะหมี่กึ่งสำเร็จรูปตราไวไว
 - รสชาติ เช่น นมสดพลาสเจอไรซ์รสจืด โยเกิร์ตรสผลไม้รวม
 - จ. ถักษณะพิเศษ เช่น โค้กซีโร่
 - จนาด เช่น ตับหมูงนาด กว้าง ยาว หนา
 - ช. เครื่องปรุงรส

 ระบุปริมาณส่วนประกอบอาหารต่าง ๆ อย่างละเอียด เช่น ถ้วย ช้อนชา ช้อนโต๊ะ ทัพพี ชิ้น ห่อ ขวด

5) โปรดส่งลืนแบบบันทึกนี้ให้กับนักกำหนดอาหารในนัดครั้งต่อไป (วันที่......)

ตัวอย่างการบันทึกการบริโภคอาหาร

วันที่บันทึก.....1.....เดือน.....ตุลาคม.....พ.ศ....2560.... () วันจันทร์-ศุกร์ (√) วันเสาร์-อาทิตย์

มื้ออาหาร/เวลา	ชนิดอาหารที่รับประทานและ ส่วนประกอบ	ปริมาณ (เช่น ถ้วย, ชิ้น, ช้อนชา, ฯลฯ)
เช้า	ข้าวต้มหมูสับ	
เวลา8.00น.	- ข้าวขาว	- 2 ทัพพี ไม่รวมน้ำ
	- หมูสับ	- 5 ชิ้น
	- ตับหมูหั่นบาง	- 3 ชิ้น
	- น้ำตาลทราย	- 2 ช้อนชา
	- น้ำปลา	- 1 ช้อนชา
	- น้ำส้มสายชู	- 2 ช้อนชา
	น้ำเต้าหู้ หวานน้อย ใส่เม็ดแมงลัก	1 ถุง
	- เม็ดแมงลัก	- 1 ช้อนโต๊ะ
	- น้ำตาลทรายแดง	- 1 ช้อนชา
ของว่างช่วงเช้า	ส้มเขียวหวาน	2 ผล
เวลา10.30น.		0
เที่ยง	ข้าวกล้อง	2 ทัพพี
เวลา12.30น.	ปลาดุกผัดเผ็ด	и 1 ет
	- ปลาดุก	- 4 ชิ้น
	- มะเขือกรอบ (แบ่ง 4 ส่วน/ลูก)	- 2 ชิ้น
	 ถั่วฝึกยาว (ยาวประมาณครึ่งนิ้ว) 	- 4-5 ชิ้น
	ไข่เจียว	1 ฟอง
	โอเลี้ยง (ชาต้นพะยอม)	1 แก้ว
เย็น	เกาเหลาลูกชิ้นหมูน้ำใส	
เวลา18.30น.	- ลูกชิ้นหมู	- 4 ลูก
	- หมูสับ	- 2 ช้อนโต๊ะ
	- ถั่วงอก	 1 ทัพพี
	- ผักบุ้ง	- 1 ทัพพี

วันที่บันทึก......เดือน.....พ.ศ...พ.ศ..... () วันจันทร์-ศุกร์ () วันเสาร์-อาทิตย์

มื้ออาหาร/ เวลา	ชนิดอาหารที่รับประทานและส่วนประกอบ	ปริมาณ (เช่น ถ้วย, ชิ้น, ช้อนชา, ฯลฯ)
	จุฬาลงกรณ์มหาวิทยาลั Chulalongkorn Univers	ខ ITY

Appendix F

Clinical record forms (Study II)

แบบบันทึกความร่วมมือในการปฏิบัติตามแผนการวิจัย

<u>ส่วนที่ 1</u> ความร่วมมือในการควบคุมอาหาร

	Experimental period									
	Week 0	Week 4	Week 8	Week 12						
Date										
Total energy intake (kcal)										
Total fat intake (%)										
Total carbohydrate intake (%)	7/1									
Total protein intake (%)										

<u>ส่วนที่ 2</u> ความร่วมมือในการรับประทานผงใบหม่อน (เฉพาะกลุ่มทดลอง)

	Experimental period									
	Week 0	Week 4	Week 8	Week 12						
Date										
จำนวนซองที่ได้รับจากนัคกรั้งก่อน	รณ์มหาวิ	ทยาลัย								
จำนวนซองที่เหลือในนัคครั้งนี้	gkorn Un	IVERSITY								
% Compliance										

Appendix F

Clinical record forms (Study II)

แบบสอบถามการเกิดอาการไม่พึงประสงค์จากการรับประทานใบหม่อน

คำชี้แจง แบบบันทึกนี้ใช้สำหรับรายงานการเกิดอาการ ไม่พึงประสงค์จากการรับประทานผงใบ หม่อน เพื่อประเมินความปลอดภัยของผงใบหม่อนที่ใช้ในการศึกษาครั้งนี้ ขอให้ท่านระบุอาการ ไม่ พึงประสงค์ที่เกิดขึ้น พร้อมทั้งประเมินระดับความรุนแรงจากน้อยไปมาก โดยการให้คะแนนตั้งแต่ 0 ถึง 5

	1122		ระดับคว	ามรุนแร	9	
อาการไม่พึงประสงค์ที่พบ	ไม่มี	น้อย	น้อย	ปาน	ນ າຄ	มาก
		มาก		กลาง		ที่สุด
อาการจากภาวะน้ำตาลในเลือดต่ำ เช่น หัว						
ใจเต้นเริ่ว เวียนศีรษะ สายตาพร่า มือสั่น เหงื่อ	8					
ออกมาก หิวบ่อย อ่อนเพลีย คล้ายจะหน้ามืด	(0)	(1)	(2)	(3)	(4)	(5)
เป็นลม						
รายละเอียคเพิ่มเติม (ถ้ำมี)		B				
ปวดเกร็งท้อง				(2)	(4)	(5)
รายละเอียดเพิ่มเติม (ถ้ำมี)	(0)	าสย	(2)	(3)	(4)	(5)
ท้องอืด มีแก๊สในท้องมาก	UNIV	EKSII				
รายละเอียคเพิ่มเติม (ถ้ำมี)	(0)	(1)	(2)	(3)	(4)	(5)
ຄ່າຍເหລວ	(0)					
รายละเอียคเพิ่มเติม (ถ้ำมี)	(0)	(1)	(2)	(3)	(4)	(5)
ท้องผูก						
รายละเอียคเพิ่มเติม (ถ้ำมี)	(0)	(1)	(2)	(3)	(4)	(5)
อื่น ๆ รายละเอียคเพิ่มเติม	(0)	(1)	(2)	(3)	(4)	(5)

ขอบคุณที่ให้ความร่วมมือ

Appendix G

Clinical outcomes (Study II)

(i) Anthropometric profile and vital signs

Participants ID	Assigned group	Weight (kg)-0	Weight (kg)-12	BMI (kg/m²)-0	BMI (kg/m²)-12	WC (cm)-0	WC (cm)-12	SBP (mmHg)-0	SBP (mmHg)-12	DBP (mmHg)-0	DBP (mmHg)-12	HR (bpm)-0	HR (bpm)-12
1	1	96.1	95.1	37.54	37.15	103	103	138	131	80	77	76	72
4	1	87.95	88	36.14	36.16	110	110	139	131	83	85	85	82
6	1	64.5	65.2	26.85	27.14	84	84	141	128	91	88	89	82
7	1	63	60.1	28.00	26.71	89	86.5	128	132	87	85	94	85
8	1	62.4	60.65	27.37	26.60	85	84.5	129	129	87	95	68	57
11	1	68.1	67.35	29.09	28.77	92	92	l17	126	66	71	65	65
14	1	79.85	79.9	34.56	34.58	103	103.5	122	139	92	91	73	72
16	1	93.5	90.75	38.18	37.05	122	121	130	139	88	91	65	72
17	1	61	58.7	25.39	24.43	91	89	109	109	64	67	82	90
18	1	63.2	62.3	25.32	24.96		89	101	103	55	56	73	73
22	1	68.8	68.35	27.56	27.38	94	93	124	129	74	79	93	81
23	1	90	89.36	34.29	34.05	118	118.5	143	155	95	106	90	97
28	1	63.7	63.75	26.51	26.53	94	94	131	128	68	73	83	76
29	1	77	77	26.03	26.03	100	100	113	119	78	71	84	96
31	1	79	78	30.86	30.47	103.5	104	127	138	80	70	66	63
33	1	85	84.25	28.08	27.83	104	104	129	133	80	84	86	82
34	1	84.2	84	29.48	29.41	98	98	127	121	83	84	95	77
35	1	70.9	68	31.51	30.22	99	99	148	147	83	85	89	87
37	1	76.9	77.75	27.25	27.55	101.5	101.5	143	146	91	95	91	79
39	1	65	64.8	27.41	27.32	104	105	105	115	54	50	86	78
41	1	93.45	92.35	31.59	31.22	111	111	123	108	74	63	79	77
42	1	115	115.35	37.55	37.67	130.5	130.5	132	110	71	71	76	86
46	1	67.1	66.5	25.25	25.03	92	92	136	126	70	67	82	91
47	1	76.45	75	27.74	27.22	99	99	123	130	77	75	82	80
49	1	77.75	77.25	31.95	31.74	102	102	138	139	72	70	72	75
53	1	81.5	82.2	28.88	29.12	102	102.5	128	127	76	72	73	69
56	1	68.5	69.2	26.76	27.03	90	90.5	142	144	85	83	68	68
57	1	105.9	107	34.58	34.94	115	115	115	120	71	71	70	69
2	2	73.4	72.2	30.16	29.67	103	101	94	113	54	67	75	72
3	2	65.8	65.4	28.67	28.49	86	86	130	141	80	75	80	72
5	2	70.5	69.5	27.54	27.15	96	95.5	142	148	83	77	71	77
10	2	82.2	82.5	30.94	31.05	102.5	102	128	124	74	69	78	78
13	2	89.35	91.9	30.56	31.43	110	109	110	118	78	81	79	67
15	2	85	82	33.62	32.44	102	102	132	145	65	67	63	82

Participants ID	Assigned group	Weight (kg)-0	Weight (kg)-12	BMI (kg/m²)-0	ВМІІ (kg/m²)-12	WC (cm)-0	WC (cm)-12	SBP (mmHg)-0	SBP (mmHg)-12	DBP (mmHg)-0	DBP (mmHg)-12	HR (bpm)-0	HR (bpm)-12
19	2	71.2	71.9	32.07	32.39	94	94.5	123	127	71	77	76	81
20	2	90.35	90.25	36.65	36.61	114	114.5	100	110	60	63	70	70
21	2	75.9	76.5	28.92	29.15	95	96.5	145	118	90	84	63	102
24	2	83	83.7	30.49	30.74	96	94.5	140	146	79	97	79	57
25	2	85	86	34.05	34.45	106	107	113	115	62	63	73	73
26	2	85.5	86.4	32.98	33.33	105	107	158	149	87	87	63	69
27	2	72.55	73.3	28.70	28.99	101	99.5	130	116	81	74	65	78
30	2	72.15	71.8	26.83	26.70	93	93	120	122	70	71	82	79
32	2	92.3	92	34.74	34.63	109	109	139	131	82	72	81	84
36	2	57.8	58	25.35	25.44	95	95	137	145	74	80	69	77
38	2	69.3	69	25.45	25.34	92.5	93	> 141	139	91	90	84	88
40	2	67.05	67.5	26.86	27.04	91	91	\$ 128	122	66	65	97	92
43	2	107.3	105.3	38.02	37.31	111	111	122	124	66	68	78	81
44	2	80	79.55	33.30	33.11	101	100.5	134	103	86	60	84	89
45	2	89.1	89.5	27.50	27.62	112	112.5	161	139	88	88	89	85
48	2	110	111.5	38.06	38.58	122.5	123	159	149	109	101	95	95
50	2	72.55	73	26.65	26.81	99.5	99	143	140	94	95	74	76
54	2	76.6	77	31.48	31.64	96.5	96.5	102	110	57	67	59	61
55	2	165.45	114.65	54.02	37.44	165	134	140	151	90	93	91	93
58	2	66.9	67.35	28.21	28.40	85	85	129	125	65	69	84	81
							1						

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

Appendix G

Clinical outcomes (Study II)

(ii) Glycemic profile and insulin resistance

	~	~	1	0	0	_	ŝ	1	~1	0		1	÷	2	~	0
21-ЯІ-УМОН	4.63	3.02	0.71	2.00	1.60	N/A	1.63	1.11	2.02	1.80	4.64	6.11	2.84	5.36	0.77	4.20
0-ЯІ-АМОН	5.63	3.92	2.11	1.76	1.28	N/A	2.83	2.06	2.53	2.43	4.40	6.39	1.63	5.19	1.12	3.38
21-(Лт/Лц) ІЧЭ	18.4	13.9	2.7	8.1	6.3	N/A	6.4	4.9	8.7	6.5	17.9	21.9	12.0	21.3	2.5	18.1
0-(Лті/Ліц) ІЧЯ	21.5	19.6	7.7	6.6	4.5	N/A	10.7	8.8	11.0	9.1	16.5	23.1	6.6	19.3	3.9	12.2
AIC (%) JIA	5.9	5.7	5.7	5.4	5.6	5.4	5.6	5.6	5.6	5.4	5.3	5.7	5.6	5.6	5.7	5.8
0-(%) JIA	9	5.7	5.7	5.6	5.4	5.6	5.5	5.7	5.8	5.4	5.5	5.7	5.7	5.6	5.7	9
21-(nim.Jb\gm) JUA	358.50	301.75	331.00	386.00	312.75	320.75	290.50	255.25	332.50	328.75	319.00	351.00	308.50	328.25	404.50	231.75
0-(nim.Jb/gm) DUA	344.00	300.50	348.75	363.00	326.50	331.50	311.75	345.25	323.00	338.00	354.25	363.75	329.00	302.75	395.25	263.30
PPG 120 (mg/dL)-12	166	185	141	195	130	134	131	161	146	134	131	119	104	109	129	59
0-(Jb/gm) 021 DPP	148	155	162	186	121	165	122	176	145	118	89	129	156	118	197	95
21-(Jb/gm) 06 999	192	178	165	226	174	174	132	188	174	185	143	187	131	150	215	115
0-(Jb/gm) 00 DPP	181	176	191	208	171	157	166	186	162	177	167	207	179	145	232	107
PPG 60 (mg/dL)-12	199	164	201	208	166	171	178	200	187	189	184	212	193	211	256	141
0-(Jb/gm) 09 PPP	206	174	194	192	198	196	156	189	178	201	235	220	180	189	226	147
PPG 30 (mg/dL)-12	192	132	177	170	169	189	154	< 165	184	168	193	189	155	155	211	131
PPG 30 (mg/dL)-0	174	133	176	179	166	183	187	175	187	185	208	180	171	158	176	169
FPG (mg/dL)-12	102	88	107	100	103	81	103	92	94	112	105	113	96	102	125	94
8-(Jb\gm) &PA	96	82	101	60	111	84	96	93	94	102	110	106	66	101	118	118
FPG (mg/dL)-4	103	80	115	118	109	84	109	96	94	98	66	110	76	101	106	66
0-(Jb\gm) DAA	106	81	111	108	115	89	107	95	93	108	108	112	100	109	116	112
quorg bangizzA	1	1	1	T	1	1	1	1	1	1	1	1	1	1	1	1
Participants ID	-	4	9	٢	8	11	14	16	17	18	22	23	28	29	31	33

21-ЯІ-АМОН	2.84	4.74	3.90	1.37	4.89	7.84	2.67	1.41	3.92	4.64	2.45	2.72	2.11	1.73	4.51	2.59	4.36	4.12	3.40	2.00	4.36
0-ЯІ-АМОН	1.62	5.15	3.69	1.86	9.54	9.03	3.61	1.75	4.41	4.46	2.11	3.33	3.06	2.21	3.86	2.09	4.56	4.15	3.82	2.55	4.17
£Р-(.Jm//Лµ) I Ч Э	6.6	16.7	15.5	5.6	19.8	27.6	10.8	5.0	16.2	18.8	9.2	10.5	8.8	9.2	17.9	11.3	16.2	15.3	12.3	7.3	14.7
0-(Лт/Лц) ІЧЭ	5.2	16.7	13.6	7.6	36.8	28.8	13.8	6.4	17.5	17.9	8.0	12.5	11.9	11.5	14.9	8.8	15.8	16.0	14.2	9.4	14.8
AIC (%) JIA	6.6	6.5	5.1	5.6	5.9	5.7	5.8	5.7	5.9	5.9	5.8	5.9	5.4	5.8	5.6	5.6	5.8	5.4	6.2	6.3	6.4
AIC (%) JIA	6.7	6.9	9	5.9	5.9	5.7	6.2	5.7	6.2	9	5.5	5.9	5.5	5.6	5.6	5.6	5.9	5.4	6.2	9	6.1
21-(nim.Jb\gm) OUA	378.50	362.50	320.50	287.25	292.25	373.00	277.75	265.50	304.25	301.50	338.25	335.75	222.50	335.50	369.25	313.00	345.50	310.25	337.00	424.25	418.25
0-(nim.Jb\gm) JUA	344.75	422.75	246.50	318.50	389.50	347.50	285.25	247.50	345.75	325.75	349.75	327.25	298.25	313.75	315.25	318.75	365.00	306.25	334.00	457.50	398.25
БЬС 150 (шб\qг)-15	134	195	110	94	125	191	116	114	187	134	133	150	66	154	177	151	153	154	184	228	227
РРС 120 (тg/dL)-0	152	220	128	153	11	149	133	797	151	154	114	148	129	149	126	155	159	166	149	264	169
21-(Jb/gm) 06 Ə99	188	184	173	128	140	224	145	125	205	151	168	180	102	193	201	164	187	176	171	263	242
0-(Jb/gm) 06 ƏAA	188	252	66	166	138	173	133	124	160	184	177	188	140	187	159	165	200	165	175	282	224
21-(Jb/gm) 09 PPP	248	197	188	168	177	193	164	153	148	161	202	175	123	183	214	180	199	180	198	240	245
0-(Jb\gm) 09 ƏAA	204	234	112	156	156	196	160	134	219	186	214	173	178	174	202	179	204	176	182	242	229
PPG 30 (mg/dL)-12	196	172	174	182	155	179	143	142	113	164	186	180	122	180	184	160	174	133	157	176	176
0-(Jb/gm) 0£ Ə99	156	187	161	189	189	188	158	133	186	154	198	163	162	153	154	168	188	136	182	204	202
FPG (mg/dL)-12	116	115	102	66	100	115	100	114	98	100	108	105	97	76	102	93	109	109	112	111	120
8-(Jb\gm) PPI	112	113	92	91	114	98	100	96	107	66	106	111	94	82	88	93	76	101	116	103	98
FPG (mg/dL)-4	123	123	103	96	108	113	66	66	101	98	96	100	106	83	107	89	109	66	116	105	105
0-(Jb\gm) DAA	126	125	110	66	105	127	106	111	102	101	107	108	104	78	105	96	117	105	109	110	114
quorg bəngissA	H	1	1	1	1	1	1	1	T	1	1	1	7	7	7	7	7	7	7	7	7
Clasticipants ID	34	35	37	39	41	42	46	47	49	53	56	57	7	3	ß	10	13	15	19	20	21

21-ЯІ-АМОН	3.47	4.49	1.52	5.16	4.28	96.6	1.10	2.09	2.59	8.71	2.31	5.99	5.49	1.80	1.47	5.71	2.91
0-ЯІ-АМОН	2.77	4.60	2.48	4.27	4.41	6.81	1.85	2.25	2.67	7.15	4.52	8.09	5.37	1.81	1.67	5.56	2.97
21-(Лті/UIц) I Ч Я	13.5	17.5	6.7	20.1	15.6	35.7	4.4	8.0	10.3	29.4	0.0	20.2	18.7	6.7	5.6	20.1	10.8
0-(Лті/Шц) ІЧЭ	11.1	16.5	8.8	17.3	15.0	24.4	6.3	9.5	10.3	27.3	16.8	28.5	20.7	6.2	6.7	19.4	11.9
\$1-(%) DIA	5.5	5.8	9	5.7	5.1	5.6	5.7	5.5	5.5	5.5	5.3	6.6	6.3	5.8	6.1	5.8	5.7
0-(%) JIA	5.4	5.9	5.5	5.5	5.5	5.6	5.8	5.4	5.5	5.5	5.4	6.5	6.2	5.8	5.8	5.8	5.4
\$1-(nim.Jb\gm) OUA	345.00	327.25	400.25	324.75	278.50	292.75	331.00	316.00	233.00	293.00	256.25	431.00	413.50	303.75	350.75	340.50	280.75
0-(nim.Jb\gm) DUA	366.00	336.00	347.00	336.25	327.75	294.00	402.25	315.75	250.25	310.75	264.25	456.50	371.75	298.75	334.00	364.50	255.25
PPG 120 (mg/dL)-12	162	151	237	141	79	122	159	128	78	120	101	222	201	110	157	149	116
PPG 120 (mg/dL)-0	183	159	190	147	136	66	196	149	100	141	134	213	192	113	145	174	96
21-(Jb/gm) 00 DPP	150	166	248	185	131	125	167	170	×111	142	107	250	232	142	195	167	138
0-(Jb/gm) 06 DPP	207	178	198	180	158	138	207	165	131	154	120 <	262	224	134	160	178	123
21-(Jb/gm) 09 DPP	223	181	228	180	200	168	182	190	122	178	130	242	238	189	199	195	150
0-(Jb/gm) 09 DPP	207	171	186	207	196	177	246	173	146	176	131	271	203	173	197	212	140
PPG 30 (mg/dL)-12	184	180	160	162	131	175	183	155	143	146	173	199	197	167	176	187	161
PPG 30 (mg/dL)-0	176	187	158	162	174	167	194	171	121	168	156	216	168	175	188	194	149
21-(Jb\gm) ƏTA	104	104	92	104	111	113	101	106	102	120	104	120	119	109	106	115	109
8-(Jb\gm) DTI	102	107	109	114	116	111	107	93	107	111	103	124	109	112	108	110	111
4-(Jb/gm) PTI	105	111	66	100	107	116	114	100	106	106	106	115	117	114	104	109	106
0-(Jb/gm) JAA	101	113	114	100	119	113	119	96	105	106	109	115	105	118	101	116	101
quorg bangizzA	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
Clarticipants ID	24	25	26	27	30	32	36	38	40	43	4	45	48	50	54	55	58

Appendix G

Clinical outcomes (Study II)

(iii) Lipid profile and renal and hepatic function

21-(J\U) TJA	30.1	23.3	23.2	15	15.7	22.1	18.1	15.2	21.6	22.5	18.8	24.9	12.5	26.4	48.5	22.4
0-(J\U) TJA	32.1	19.1	26.5	15.5	16.1	19.9	14	27.5	19.8	23.5	24.8	21.7	11	24.4	15.5	36.1
21-(J/U) TSA	26.4	19.3	22.8	17.4	16.4	21.9	20.6	14.6	17.5	22.4	18.1	18.8	18.3	20.7	27.6	22.7
0-(J/U) TSA	29.5	17.3	24.9	26.3	19.5	20	22.2	23.7	19.8	21	20.6	18.4	15.7	19.3	16.5	30.8
Cr (Mg/dL)-12	0.74	0.71	0.86	0.8	0.84	0	0.72	0.67	0.54	0.67	0.73	0.89	0.75	1	0.93	0.92
0-(Jb\gm) 1)	0.63	0.69	0.91	0.72	0.88	0.8	0.85	0.61	0.67	0.63	0.7	0.88	0.74	1.03	0.96	0.91
LDL-C (mg/dL)-12	110.9	72	113.6	124.6	207.4	99.3	132.8	129.9	150.4	108.7	118.3	145.6	133.8	118	163.9	103
0-(Jb/gm) Э-JUJ	74.4	72.1	126.4	145.9	196.2	84.7	162.4	143.5	176.3	108.7	110.5	187.5	135	123.4	170.2	108.8
НDL-С (тв/дг)-12	46	40.7	51.2	53.9	58	77.3	78.3	46.4	52.9	65.2	60.2	47.8	55.7	47.3	42	52.8
9-(Лр/вш) Э-ЛДН	40.5	47.3	53.8	44.1	59.9	80.1	86.6	50.9	47.2	65.2	68.4	45.7	71.8	55.2	45	52.4
21-(Jb\gm) ƏT	111.2	144	128.1	150.7	126.4	89.1	52.2	149	215.3	74.2	134.6	149.8	100.3	95	176.9	60.8
0-(Jb\gm) ƏT	102.4	103.7	173.4	147.6	156.6	114.1	52.5	168.5	142.4	74.2	147.8	149.7	86.7	121.4	248.5	61
21-(Jb\gm) JT	150	125.3	168.9	182.4	246.3	161.7	208	179.7	206.6	166.5	174	190.4	175.4	174.2	218.8	150.2
0-(Jb\gm) JT	125.6	125.4	187.4	202	270.9	165.1	244.8	192	233.4	166.5	178.2	226	170.6	187.3	223.9	156.9
quorg bəngizəA	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
U starticipants ID	1	4	9	7	8	11	14	16	17	18	22	23	28	29	31	33

ALT (U/L)-12	17	29	24.8	11	32.2	25	46.8	22.1	12.6	17	73.4	35.6	14.7	23.3	21.1	14.5	22.9	27.8	23	28.1	26.9	15.9
0-(J/U) TJA	16	28.4	30.2	13.4	39.3	27.1	32.4	24.3	13.8	14	33.6	30.1	15.7	18.7	22	15	20.5	27.8	25.9	30.2	17.9	14.5
21-(J/U) TSA	21	16.2	21.9	24.3	26.7	20.6	34.5	16	13.6	18	40.6	32.5	12.8	22.2	24.4	17.3	19.4	24.6	16.1	21.7	18.9	16
0-(J/U) TSA	21.1	23.4	23.5	20.5	23.5	23.8	24.5	18.1	12.7	15.5	28.1	33.8	13.8	18.4	23.8	21.3	24.3	27	18.1	27.5	19.1	14.8
CI-(Jb/gm) 1)	1.06	0.53	0.73	0.65	0.88	0.92	1.22	1.11	0.52	0.69	0.72	0.71	0.72	0.75	0.96	0.64	1.2	0.81	0.62	0.66	0.73	0.76
0-(Jb\gm) 1)	1.12	0.53	0.87	0.72	0.94	0.89	1.24	1.14	0.61	0.67	0.68	0.75	0.7	0.75	0.95	0.65	1.42	0.71	0.6	0.74	0.75	0.79
LDL-C (mg/dL)-12	159.8	113	108.7	132.9	107.6	168.8	128.7	171.3	114.1	108.4	167	174.1	122.3	135.8	91.7	142.2	114.1	135.9	120.7	112.5	199.4	161.7
0-(Jb\gm))-J UJ	187.1	143.2	155.8	180.1	127.5	133.8	110.2	160.2	131.6	117	147	174.1	102.8	141.5	88.4	143.6	115.1	155.6	109.5	132.2	193.1	161.7
21-(Jb\gm) Э- JAH	49.4	65.4	38	61	44.3	58.4	53.9	53	46.5	48.9	46.8	28	48.8	45.5	48	69.8	63.5	65.2	47.3	54.4	65.4	46.1
0-(Jb\gm) ጋ-J UH	45.9	84	35.6	74.1	54.9	43.3	52.1	57.1	54.1	48.4	45.4	28	42	48.6	50	68	58.6	63.5	49	55.8	68.2	46.1
21-(Jb/gm) ƏT	76.1	114.6	145.6	81.7	126.9	99.1	103.4	113	113.7	152.1	147.4	219.2	73.9	235.8	112.9	109.7	168.5	134.6	134.4	136.9	109.4	190.4
0-(Jb\gm) ƏT	105.3	82.8	169.7	116.3	95.4	142.2	98.6	154.7	116.8	172	162.2	219.2	89.1	186.5	113.7	151.3	79.6	210.5	101	170.4	76.8	190.4
21-(Jb\gm) JT	193.1	180.2	160.4	191.8	169.3	222.2	154.5	188.1	161.8	168.6	186.7	229	178	199.2	139.4	222.3	190.8	211.7	170.5	176.5	263.9	225.8
0-(Jb\gm) JT	221.4	218.5	201.5	245.2	165.6	182.2	158.3	218.3	187.4	170	206.4	229	146.7	199.8	140.3	221.4	175.3	244	162.1	200.4	260	225.8
quorg bəngizsA	1	1	1	1	1	1	1	1	1	1	1	1	7	7	7	7	7	7	7	7	7	7
UI stusqivitra	34	35	37	39	41	42	46	47	49	53	56	57	7	3	S	10	13	15	19	20	21	24

21-(J\U) TJA	30.1	11.6	14.1	13.6	18.7	16.4	10	12.6	10.9	9.8	32.7	65.4	11.6	87.5	34.9	14.9
0-(J\U) TJA	28.7	18.8	14	25.4	16.5	16.6	7.2	11.5	15.5	8.5	25.6	26	9.1	34.5	18.8	15.4
21-(J\U) TSA	33.5	14.6	16.4	16.6	18.2	20.1	28	33.2	15.9	11.6	42	35.3	16.7	39	24	20.6
0-(J\U) TSA	33.2	16.1	15.2	19.4	18.6	17.9	12.7	15.4	19.7	13.2	20.2	29.6	15.7	23.2	20.5	19.7
С1-(Лb\gm) тЭ	0.45	0.54	0.59	0.95	0.6	0.7	0.65	0.62	0.47	0.63	1.02	0.82	0.67	0.68	0.46	0.57
0-(Jb\gm) 1)	0.48	0.79	0.65	0.84	0.63	0.74	0.74	0.62	0.51	0.6	1	0.71	0.69	0.66	0.54	0.57
LDL-C (mg/dL)-12	108.3	147	104.5	123.6	119.6	93.5	154.8	148.1	102.3	149.6	129.8	195.9	171.7	157.8	189	136.8
0-(Jb\gm) ጋ-J UJ	113.6	156.4	73	153.21	125	139.9	139.4	171.2	104.3	139.1	9.9T	193.3	188.2	153.6	189	111.3
HDL-С (тф/дт) Э-ЛПН	66.2	65.1	59.3	42.6	50	56.6	64.5	52.5	36.4	53.7	55.7	47.4	61.5	54.3	45.8	54.9
HDL-С (тg/dL)-0	65.2	63.7	49	45.7	38	69.1	68.4	56.1	36.9	45.8	46.5	45.5	61.6	52	45.8	53.4
21-(Jb\gm) ƏT	149.2	241.8	206	116.1	108.8	68.4	158.5	80	153.1	66	132.6	167.5	121.3	107.3	207.1	127
0-(Jb\gm) ƏT	114.5	115.7	314.5	125.2	184.2	84.7	231.5	124.7	114.2	104.7	114.5	245.1	87.8	114.7	207.1	118.4
21-(Jb\gm) JT	181.4	241.3	185.8	174.6	170.7	150.8	216	198.8	146.2	199.5	193.3	260.9	227.4	216	256.9	189.1
0-(Jb\gm) JT	175.7	226.9	179.5	199.5	181.5	204.8	224.5	232.2	147.1	188.4	138.3	268.4	239.4	207.8	256.9	170.5
quorg bəngizsA	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	2
Tarticipants ID	25	26	27	30	32	36	38	40	43	44	45	48	50	54	55	58

Appendix G

Clinical outcomes (Study II)

(iv) Adverse events

α		Hy	Hypoglycemia	a	\mathbf{Abd}	Abdominal pain	ain	Bloating, fi	Bloating, frequent belching and fart	ing and fart	\$	Watery stool	lc	ŭ	Constipation	u	Alle	Allergic reaction	ion
Participants I	quorg bəngizəA	Week 4	8 ХээМ	Week 12	₩ееk 4	8 йээЖ	Week 12	Фееk 4	8 Жеек 8	Wееk 12	Week 4	8 XəəW	Уеек 12	Week 4	8 дээМ	Меек 12	Week 4	8 XəəW	Week 12
1	1	0	0	0	0	0 []	0	0	0	0	0	0	0	0	0	0	0	0	0
4	1	0	0	0	0	0 N	0	3	2		2	2	1	3	1	1	0	0	0
9	1	0	0	0	0	0 3K	0	0	0	0	0	0	0	0	0	0	0	0	0
7	1	0	0	0	0	0 D R	1	2	1	0	2	0	0	0	0	0	0	0	0
8	1	0	0	0	0	0	0	3	2		0	H,	0	1	0	0	0	0	0
11	1	0	0	0	0	0	0 0	3	2	0	0	0	0	0	0	0	0	0	0
14	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16	1	0	0	0	0	I I	0	0	0	0	0	1	0	0	0	0	0	0	0
17	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
18	1	0	0	0	0	0	0	4	2	3	1	0	0	0	1	1	0	0	0
22	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
23	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
28	1	0	0	0	0	0	0	2	2	1	0	0	0	0	0	4	0	0	0
29	1	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0
31	1	0	0	0	0	0	0	3	0	0	3	0	0	1	0	0	0	0	0
33	1	0	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
34	1	0	0	0	0	0	0	2	1	0	2	1	1	2	1	0	0	0	0
35	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

37	1	0	0	0	0	0	0	3	1	0	0	0	0	0	0	0	0	0	0
39	1	0	0	0	0	1	0	2	3	0	0	2	0	0	0	0	0	0	0
41	1	0	0	0	0	0	0	0	0	0	4	0	0	3	2	2	0	0	0
42	1	0	0	0	0	0	0	3	1	1	0	0	0	2	0	0	0	0	0
46	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
47	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
49	1	0	0	0	0	00	0	0	0	0	0	0	0	0	0	0	0	0	0
53	1	0	0	0	0	o HU	0 1	3	0	1	0	0	0	0	0	1	0	0	0
56	1	0	0	0	0		0	3	0	1	0	0	0	0	0	0	0	0	0
57	1	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0
							กรณ์มหาวิเ												
							ทยาลัย	3											

Appendix H

Differentially expressed plasma proteins (Study III)

(i) Up-expressed proteins (n = 210)

Fold change	SD 3.04	2.32	2.46	1.30	0.58	2.00	0.78	N/A	N/A	N/A	N/A	N/A
th H	mean 2.72	3.15	2.12	1.50	1.67	2.51	1.61	N/A	N/A	N/A	N/A	N/A
Protein function	Structural constituents (intermediate filament structure)	Structural constituents (intermediate filament structure)	Structural constituents (intermediate filament structure)	Immune response	Structural constituents (intermediate filament structure)	Structural constituents (intermediate filament structure)	Immune response	Structural constituents (actin cytoskeletal structure)	Lipid metabolism	Immune response	Structural constituents (actin cytoskeletal structure)	Others (one-carbon metabolic process)
Protein family	Intermediate filament family	Intermediate filament family	Intermediate filament family	Unknown	Intermediate filament family	Intermediate filament family	Unknown	Actin family	Paraoxonase family	DOCK family	CARMIL family	Adenosylhomocysteinase family
Mass (Da)	51,561	62,378	60,025	12,582	49,822	60,067	41,287	42,019	39,731	211,948	154,689	66,721
Encoding gene	KRT14	KRT5	KRT6C	IGHV3-23	KRT27	KRT6B	IGHG3	ACTCI	INOA	DOCK2	CARMIL2	AHCYL2
Protein name	Keratin, type I cytoskeletal 14 OS=Homo sapiens GN=KRT14 PE=1 SV=4	Keratin, type II cytoskeletal 5 OS=Homo sapiens GN=KRT5 PE=1 SV=3	Keratin, type II cytoskeletal 6C OS=Homo sapiens GN=KRT6C PE=1 SV=3	Ig heavy chain V-III region TIL OS=Homo sapiens PE=1 SV=1	Keratin, type I cytoskeletal 27 OS=Homo sapiens GN=KRT27 PE=1 SV=1	Keratin, type II cytoskeletal 6B OS=Homo sapiens GN=KRT6B PE=1 SV=5	Ig gamma-3 chain C region OS=Homo sapiens GN=IGHG3 PE=1 SV=2	Actin, alpha cardiac muscle 1 OS=Homo sapiens GN=ACTC1 PE=1 SV=1	Serum paraoxonase/arylesterase 1 OS=Homo sapiens GN=PON1 PE=1 SV=2	Dedicator of cytokinesis protein 2 OS=Homo sapiens GN=DOCK2 PE=1 SV=2	Leucine-rich repeat-containing protein 16C OS=Homo sapiens GN=RLTPR PE=1 SV=2	Putative adenosylhomocysteinase 3 OS=Homo sapiens GN=AHCYL2 PE=1 SV=1
aumber	Uniprot P02533	P13647	P48668	Q7Z3Y8	P04259	P01860	P68032	P27169	Q92608	Q6F5E8	Q96HN2	Q71F56
Accession number	Swiss-Prot K1C14_HUMAN	K2C5_HUMAN	K2C6C_HUMAN	HV304_HUMAN	K1C27_HUMAN	K2C6B_HUMAN	IGHG3_HUMAN	ACTC_HUMAN	PON1_HUMAN	DOCK2_HUMAN	LR16C_HUMAN	SAHH3_HUMAN
	-	0	б	4	ŝ	9	٢	~	6	10	11	12

N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cellular process (regulation of gene transcription and translation)	Immune response (response to bacteria)	Cellular process (organ development)	Immune response	Cell interaction and communication	Cell interaction and communication (cell adhesion)	Cellular process (organ development)	Structural constituents (actin cytoskeletal structure)	Cell interaction and communication (cell adhesion)	Unknown	Cellular process (organ development)	Protein metabolism (ubiquitin- dependent protein catabolic process)	Cellular process (cell proliferation and differentiation)	Cell interaction and communication	Signaling pathway (cytokines)
Mediator complex subunit 13 family	MPEG1 family	Unknown	Unknown	NUP153 family	CAS family	Unknown	Unknown	Tenascin family, Teneurin subfamily	Unknown	Unknown	Peptidase C19 family	NHS family	Protein kinase superfamily, TRPM6 sub-subfamily	Protein kinase superfamily, JAK subfamily
242,602	78,587	142,955	12,848	153,938	87,144	91,197	124,108	307,787	144,280	147,810	146,651	133,286	231,708	133,650
MED13L	MPEGI	STIL	IGKVI-33	NUP153	CASS4	BCLIIA	SORBS2	TENM2	RTL9	UPF2	USP31	NHSL2	TRPM6	TYK2
Mediator of RNA polymerase II transcription subunit 13-like OS=Homo sapiens GN=MED13L PE=1 SV=1	Macrophage-expressed gene 1 protein OS=Homo sapiens GN=MPEG1 PE=2 SV=1	SCL-interrupting locus protein OS=Homo sapiens GN=STIL PE=1 SV=2	Ig kappa chain V-I region AU OS=Homo sapiens PE-1 SV=1	Nuclear pore complex protein Nup153 OS=Homo sapiens GN=NUP153 PE=1 SV=2	Cas scaffolding protein family member 4 OS=Homo sapiens GN=CASS4 PE=1 SV=2	B-cell lymphoma/leukemia 11A OS=Homo sapiens GN=BCL11A PE=1 SV=2	Sorbin and SH3 domain-containing protein 2 OS=Homo sapiens GN=SORBS2 PE=1 SV=3	Teneurin-2 OS=Homo sapiens GN=ODZ2 PE=1 SV=3	Retrotransposon gag domain-containing protein 1 OS=Homo sapiens GN=RGAG1 PE=1 SV=1	Regulator of nonsense transcripts 2 OS=Homo sapiens GN=UPF2 PE=1 SV=1	Ubiquitin carboxyl-terminal hydrolase 31 OS=Homo sapiens GN=USP31 PE=1 SV=2	NHS-like protein 2 OS=Homo sapiens GN=NHSL2 PE=2 SV=1	Transient receptor potential cation channel subfamily M member 6 OS=Homo sapiens GN=TRPM6 PE=1 SV=2	Non-receptor tyrosine-protein kinase TYK2 OS=Homo sapiens GN=TYK2 PE=1 SV=3
Q2M385	Q15468	P01594	P49790	69NQ75	Q9H165	094875	Q9NT68	Q8NET4	Q9НАU5	Q70CQ4	Q5HYW2	Q9BX84	P29597	Q96NH3
MDI3L_HUMAN	MPEG1_HUMAN	STIL_HUMAN	KV102_HUMAN	NU153_HUMAN	CASS4_HUMAN	BCIIA_HUMAN	SRBS2_HUMAN	TEN2_HUMAN	RGAG1_HUMAN	RENT2_HUMAN	UBP31_HUMAN	NHSL2_HUMAN	TRPM6_HUMAN	TYK2_HUMAN
13	14	15	16	17	18	19	20	21	22	23	24	25	26	27

N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cellular process (organ development)	Inflammatory response	Cellular process (organ development)	Lipid metabolism	Inflammatory response	Signaling pathway (NF-kB)	Cell interaction and communication	Structural constituents (actin cytoskeletal structure)	Ion binding and transport (metal)	Immune response	Cell interaction and communication	Cellular process (cell division)	Cellular process (organ development)	Cellular process (cell proliferation and differentiation)	Cellular process (mRNA splicing)
Unknown	Unknown	Vitamin-B12 dependent methionine synthase family	THADA family	Unknown	IAP family	TRAFAC class myosin-kinesin ATPase superfamily, Kinesin family	Unknown	Unknown	Unknown	ABC transporter superfamily, Conjugate transporter subfamily	SYCP2 family	Unknown	SPATA31 family	CWF19 family
144,756	174,552	140,527	219,607	86,444	68,372	115,068	82,060	177,949	12,673	149,527	93,599	165,193	148,706	103,787
TBCID32	IGWN	MTR	THADA	MEFV	BIRG3	KIF17	ARHGAP28	ZNF831	IGHV3-20	ABCC4	SYCP2L	IFT140	SPATA31A3	CWF19L2
Uncharacterized protein C6orf170 OS=Homo sapiens GN=C6orf170 PE=2 SV=3	NACHT and WD repeat domain-containing protein 1 OS=Homo sapiens GN=NWD1 PE=2 SV=2	Methionine synthase OS=Homo sapiens GN=MTR PE=1 SV=2	Thyroid adenoma-associated protein OS=Homo sapiens GN=THADA PE=1 SV=1	Pyrin OS=Homo sapiens GN=MEFV PE=1 SV=1	Baculoviral IAP repeat-containing protein 3 OS=Homo sapiens GN=BIRC3 PE=1 SV=2	Kinesin-like protein KIF17 OS=Homo sapiens GN=KIF17 PE=1 SV=2	Rho GTPase-activating protein 28 OS=Homo sapiens GN=ARHGAP28 PE=2 SV=2	Zinc finger protein 831 OS=Homo sapiens GN=ZNF831 PE=2 SV=4	Ig heavy chain V-III region GAL OS=Homo sapiens PE=1 SV=1	Multidrug resistance-associated protein 4 OS=Homo sapiens GN=ABCC4 PE=1 SV=3	Synaptonemal complex protein 2-like OS=Homo sapiens GN=SYCP2L PE=1 SV=2	Intraflagellar transport protein 140 homolog OS=Homo sapiens GN=IFT140 PE=1 SV=1	Protein FAM75A3 OS=Homo sapiens GN=FAM75A3 PE=2 SV=1	CWF19-like protein 2 OS=Homo sapiens GN=CWF19L2 PE=1 SV=3
Q149M9	Q99707	Q6YHU6	O15553	Q13489	Q9P2E2	Q9P2N2	Q5JPB2	A0A0C4DH32	015439	Q5T4T6	Q96RY7	Q5VYP0	Q2TBE0	P01042
CF170_HUMAN	NWD1_HUMAN	METH_HUMAN	THADA_HUMAN	MEFV_HUMAN	BIRC3_HUMAN	KIF17_HUMAN	RHG28_HUMAN	ZN831_HUMAN	HV320_HUMAN	MRP4_HUMAN	SYC2L_HUMAN	IF140_HUMAN	F75A3_HUMAN	C19L2_HUMAN
28	29	30	31	32	33	34	35	36	37	38	39	40	41	42

N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Immune response	Unknown	Cellular process (organ development)	Lipid metabolism	Unknown	Ion binding and transport (zinc)	Structural constituents (extracellular matrix)	Structural constituents (extracellular matrix)	Protein metabolism (protein localization)	Cellular process (cell proliferation and differentiation)	Cellular process (cell proliferation and differentiation)	Cellular process (organ development)	Unknown	Unknown	Cellular process (organ development)
Unknown	Constitutive coactivator of PPAR- gamma family	Unknown	Serpin family	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	CCN family	Unknown	Transposase 22 family	THOC2 family
71,957	121,888	187,627	47,175	145,748	154,911	150,419	121,127	112,780	47,161	139,034	38,091	112,806	98,850	182,775
KNGI	FAM120A	IMOXM	SERPINA 12	VWA3B	ZMAMZ	COLITAI	ADAMTS17	PLEKHM2	FOXN2	ZFAT	CCN2	CCDC146	LITDI	TH0C2
Kininogen-1 OS=Homo sapiens GN=KNG1 PE=1 SV=2	Constitutive coactivator of PPAR-gamma- like protein 1 OS=Homo sapiens GN=FAM120A PE=1 SV=2	Myomesin-1 OS=Homo sapiens GN=MYOM1 PE=1 SV=2	Serpin A12 OS=Homo sapiens GN=SERPINA12 PE=2 SV=1	von Willebrand factor A domain-containing protein 3B OS=Homo sapiens GN=VWA3B PE=2 SV=2	Zinc finger MYM-type protein 2 OS=Homo sapiens GN=ZMYM2 PE=1 SV=1	Collagen alpha-1(XVII) chain OS=Homo sapiens GN=COL17A1 PE=1 SV=3	A disintegrin and metalloproteinase with thrombospondin motifs 17 OS=Homo sapiens GN=ADAMTS17 PE=2 SV=1	Pleckstrin homology domain-containing family M member 2 OS=Homo sapiens GN=PLEKHM2 PE=1 SV=2	Forkhead box protein N2 OS=Homo sapiens GN=FOXN2 PE=2 SV=3	Zinc finger protein ZFAT OS=Homo sapiens GN=ZFAT PE=1 SV=2	Connective tissue growth factor OS=Homo sapiens GN=CTGF PE=1 SV=2	Coiled-coil domain-containing protein 146 OS=Homo sapiens GN=CCDC146 PE=2 SV=2	LINE-1 type transposase domain-containing protein 1 OS=Homo sapiens GN=L1TD1 PE=2 SV=1	THO complex subunit 2 OS=Homo sapiens GN=THOC2 PE=1 SV=2
Q9NZB2	P52179	Q8IW75	Q502W6	Q9UBW7	60MD9	Q8TE56	Q8IWE5	P32314	Q9P243	P29279	Q8IYE0	Q5T7N2	Q8NI27	Q9Н6А9
KNG1_HUMAN	F120A_HUMAN	MYOM1_HUMAN	SPA12_HUMAN	VWA3B_HUMAN	ZMYM2_HUMAN	COHA1_HUMAN	ATS17_HUMAN	PKHM2_HUMAN	FOXN2_HUMAN	ZFAT_HUMAN	CTGF_HUMAN	CC146_HUMAN	LITD1_HUMAN	THOC2_HUMAN
43	4	45	46	47	48	49	50	51	52	53	54	55	56	57

N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Structural constituents (integral component of membrane)	Structural constituents (integral component of membrane)	Signaling pathway	Immune response	Cellular process (regulation of gene transcription and translation)	Cellular process (regulation of gene transcription and translation)	Cellular process (regulation of gene transcription and translation)	Cellular process (organ development)	Unknown	Structural constituents (cilia structure)	Structural constituents (cilia structure)	Cellular process (regulation of gene transcription and translation)	Cellular process (regulation of gene transcription and translation)	Glucose metabolism	Cellular process (regulation of gene transcription and translation)
Pecanex family	TMEM200 family	DEAD box helicase family, DDX5/DBP2 subfamily	LRRC32/LRRC33 family	Eukaryotic initiation factor 4G family	Mitochondrion-specific ribosomal protein mL55 family	Krueppel C2H2-type zinc-finger protein family	BicC family	Unknown	TALPID3 family	TTC21 family	WAL family	Krueppel C2H2-type zinc-finger protein family	Unknown	NOP14 family
222,039	54,356	69,148	76,366	176,652	15,128	49,689	104,844	13,218	169,307	150,937	240,459	88,339	137,334	97,668
PCNX3	TMEM200A	DDX5	NRROS	EIF4G3	MRPL55	ZNF355P	BICCI	FBXL19-ASI	KIAA0586	TTC21B	BAZ2B	ZNF287	IRS2	NOP14
Pecanex-like protein 3 OS=Homo sapiens GN=PCNXL3 PE=1 SV=2	Transmembrane protein 200A OS=Homo sapiens GN=TMEM200A PE=2 SV=1	Probable ATP-dependent RNA helicase DDX5 OS=Homo sapiens GN=DDX5 PE=1 SV=1	Leucine-rich repeat-containing protein 33 OS=Homo sapiens GN=LRRC33 PE=2 SV=1	Eukaryotic translation initiation factor 4 gamma 3 OS=Homo sapiens GN=EIF4G3 PE=1 SV=2	395 ribosomal protein L55, mitochondrial OS=Homo sapiens GN=MRPL55 PE=1 SV=1	Putative zinc finger protein 834 OS=Homo sapiens GN=ZNF834 PE=5 SV=2	Protein bicaudal C homolog 1 OS=Homo sapiens GN=BICC1 PE=1 SV=2	Putative uncharacterized protein encoded by NCRNA00095 OS=Homo sapiens GN=NCRNA00095 PE=5 SV=1	Uncharacterized protein KIAA0586 OS=Homo sapiens GN=KIAA0586 PE=1 SV=2	Tetratricopeptide repeat protein 21B OS=Homo sapiens GN=TTC21B PE=2 SV=1	Bromodomain adjacent to zinc finger domain protein 2B OS=Homo sapiens GN=BAZ2B PE=1 SV=3	Zinc finger protein 287 OS=Homo sapiens GN=ZNF287 PE=2 SV=1	Insulin receptor substrate 2 OS=Homo sapiens GN=IRS2 PE=1 SV=2	Nucleolar protein 14 OS=Homo sapiens GN=NOP14 PE=1 SV=3
Q86VY9	P17844	Q86YC3	043432	Q7Z7F7	1fSN6Ò	Q9Н694	Q494R0	Q9BVV6	Q7Z4L5	Q9UIF8	Q9HBT7	Q9Y4H2	P78316	000192
PCX3_HUMAN	T200A_HUMAN	DDX5_HUMAN	LRC33_HUMAN	IF4G3_HUMAN	RM55_HUMAN	ZN834_HUMAN	BICC1_HUMAN	YP028_HUMAN	K0586_HUMAN	TT21B_HUMAN	BAZ2B_HUMAN	ZN287_HUMAN	IRS2_HUMAN	NOP14_HUMAN
58	59	60	61	62	63	64	65	66	67	68	69	70	71	72

238	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Cell interaction and communication	Structural constituents (actin cytoskeletal structure)	Structural constituents (actin cytoskeletal structure)	Cellular process (cell apoptosis)	Inflammatory response	Cellular process (cell proliferation and differentiation)	Structural constituents (integral component of membrane)	Cellular process (cell proliferation and differentiation)	Cellular process (cell proliferation and differentiation)	Structural constituents (integral component of membrane)	Cellular process (organ development)
	Beta-catenin family	Unknown	TRAFAC class myosin-kinesin ATPase superfamily, Myosin family	Methyltransferase superfamily, LCMT family	NFRKB family	Class V-like SAM-binding methyltransferase superfamily	LRRC37A family	Protein kinase superfamily, CMGC Ser/Thr protein kinase family	Glycosyltransferase 31 family	TMC family	SBNO family
	104,642	167,704	116,202	38,379	139,001	293,515	188,258	164,923	36,424	125,685	150,275
	ARVCF	ARHGEF11	DIOW	ICMTI	NFRKB	KMT2B	LRRC37A	CDK13	RFNG	TMC3	SBNO2
	Armadillo repeat protein deleted in velo- cardio-facial syndrome OS=Homo sapiens GN=ARVCF PE=1 SV=1	Rho guanine nucleotide exchange factor 11 OS=Homo sapiens GN=ARHGEF11 PE=1 SV=1	Myosin-Id OS=Homo sapiens GN=MYOID PE=I SV=2	Leucine carboxyl methyltransferase 1 OS=Homo sapiens GN=LCMT1 PE=1 SV=2	Nuclear factor related to kappa-B-binding protein OS=Homo sapiens GN=NFRKB PE=1 SV=2	Histone-Iysine N-methyltransferase MLL4 OS=Homo sapiens GN=WBP7 PE=1 SV=1	Leucine-rich repeat-containing protein 37A OS=Homo sapiens GN=LRRC37A PE=2 SV=2	Cell division protein kinase 13 0S=Homo sapiens GN=CDK13 PE=1 SV=2	Beta-1,3-N-acetylglucosaminyltransferase radical fringe OS=Homo sapiens GN=RFNG PE=2 SV=2	Transmembrane channel-like protein 3 OS=Homo sapiens GN=TMC3 PE=1 SV=2	Protein strawberry notch homolog 2 OS=Homo sapiens GN=SBNO2 PE=2 SV=3
	O15085	094832	Q9UIC8	Q6P4R8	9NMU6D	A6NMS7	Q14004	Q9Y644	Q7Z5M5	Q9Y2G9	Q9HBR0
	ARVC_HUMAN	ARHGB_HUMAN	MY01D_HUMAN	LCMT1_HUMAN	NFRKB_HUMAN	MLL4_HUMAN	L37A1_HUMAN	CDK13_HUMAN	RFNG_HUMAN	TMC3_HUMAN	SBN02_HUMAN
	73	74	75	76	LL	78	79	80	81	82	83

N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cell interaction and communication	Cellular process (cell proliferation and differentiation)	Cellular process (regulation of gene transcription and translation)	Unknown	Cell interaction and communication (endocytosis)	Signaling pathway (G protein- coupled receptor)	Signaling pathway	Unknown	Cellular process (organ development)	Cellular process (organ development)	Cell interaction and communication	Lipid metabolism	Cellular process (regulation of gene transcription and translation)	Structural constituents (intermediate filament structure)
Amino acid/polyamine transporter 2 family	Unknown	Krueppel C2H2-type zinc-finger protein family	Unknown	Cation transport ATPase (P-type) (TC 3.A.3) family, Type IV subfamily	Unknown	Unknown	Unknown	Protein kinase superfamily, CK1 Ser/Thr protein kinase family	Unknown	Anoctamin family	OSBP family	Krueppel C2H2-type zinc-finger protein family	Intermediate filament family
119,762	107,954	69,106	94,048	118,583	152,979	179,971	93,909	137,412	260,389	114,078	101,224	90,273	48,131
SLC38A10	BRDT	ZNF440	ANKRD20A1	ATP9A	SOS2	ANKRD6	ANKRD20A8P	TTBK2	C2CD3	ANOI	OSBPL3	ZNF616	KRT23
Putative sodium-coupled neutral amino acid transporter 10 OS=Homo sapiens GN=SLC38A10 PE=1 SV=2	Bromodomain testis-specific protein OS=Homo sapiens GN=BRDT PE=1 SV=4	Zinc finger protein 440 OS=Homo sapiens GN=ZNF440 PE=2 SV=1	Ankyrin repeat domain-containing protein 20A1 OS=Homo sapiens GN=ANKRD20A1 PE=1 SV=1	Probable phospholipid-transporting ATPase IIA OS=Homo sapiens GN=ATP9A PE=1 SV=3	Son of sevenless homolog 2 OS=Homo sapiens GN=SOS2 PE=1 SV=2	Ankyrin repeat domain-containing protein 6 OS=Homo sapiens GN=ANKRD6 PE=1 SV=2	Ankyrin repeat domain-containing protein 20B OS=Homo sapiens GN=ANKRD20B PE=2 SV=2	Tau-tubulin kinase 2 OS=Homo sapiens GN=TTBK2 PE=1 SV=2	C2 domain-containing protein 3 OS=Homo sapiens GN=C2CD3 PE=1 SV=3	Anoctamin-1 OS=Homo sapiens GN=ANO1 PE=1 SV=1	Oxysterol-binding protein-related protein 3 OS=Homo sapiens GN=OSBPL3 PE=1 SV=1	Zinc finger protein 616 OS=Homo sapiens GN=ZNF616 PE=2 SV=2	Keratin, type I cytoskeletal 23 OS=Homo sapiens GN=KRT23 PE=1 SV=2
Q58F21	Q81Y18	Q5TYW2	075110	Q07890	Q9Y2G4	Q5CZ79	Q6IQ55	Q4AC94	Q5XXA6	Q9H4L5	Q08AN1	Q9C075	Q9H6R7
S38AA_HUMAN	BRDT_HUMAN	ZN440_HUMAN	A20A1_HUMAN	ATP9A_HUMAN	SOS2_HUMAN	ANKR6_HUMAN	AN20B_HUMAN	TTBK2_HUMAN	C2CD3_HUMAN	ANO1_HUMAN	OSBL3_HUMAN	ZN616_HUMAN	KI C23_HUMAN
84	85	86	87	88	89	90	91	92	93	94	95	96	76

N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Protein metabolism (protein complex oligomerization)	Cellular process (organ development)	Structural constituents (microtubule cytoskeletal structure)	Structural constituents (actin cytoskeletal structure)	Lipid metabolism	Cell interaction and communication	Others (UDP-N-acetylglucosamine biosynthetic process)	Cellular process (organ development)	Cellular process (regulation of gene transcription and translation)	Signaling pathway (Notch)	Inflammatory response	Cellular process (regulation of gene transcription and translation)	Signaling pathway (G protein- coupled receptor)	Structural constituents (actin cytoskeletal structure)
Unknown	Protein kinase superfamily, TKL Ser/Thr protein kinase family, TGFB receptor subfamily	Crescerin family	TRAFAC class myosin-kinesin ATPase superfamily, Myosin family	Unknown	TRIM/RBCC family	UDPGP type I family	Protein kinase superfamily, AGC Ser/Thr protein kinase family, S6 kinase subfamily	Krueppel C2H2-type zinc-finger protein family	Unknown	NLRP family	Unknown	Unknown	TRAFAC class myosin-kinesin ATPase superfamily, Myosin family
79,136	115,201	111,153	243,401	99,351	79,177	58,769	83,872	94,331	265,351	111,807	59,760	152,464	131,985
WDCP	BMPR2	TOGARAM2	MYO9B	MTTP	TRIM9	UAPI	RPS6KA6	ZNF658B	CREBBP	NLRP7	ELOA3BP	ISOS	MYOIB
WD repeat-containing protein C2orf44 OS=Homo sapiens GN=C2orf44 PE=1 SV=1	Bone morphogenetic protein receptor type-2 OS=Homo sapiens GN=BMPR2 PE=1 SV=2	Protein FAM179A OS=Homo sapiens GN=FAM179A PE=2 SV=2	Myosin-IXb OS=Homo sapiens GN=MYO9B PE=1 SV=2	Microsomal triglyceride transfer protein large subunit OS=Homo sapiens GN=MTTP PE=1 SV=1	Tripartite motif-containing protein 9 OS=Homo sapiens GN=TRIM9 PE=1 SV=1	UDP-N-acetylhexosamine pyrophosphorylase OS=Homo sapiens GN=UAPI PE=1 SV=3	Ribosomal protein S6 kinase alpha-6 OS=Homo sapiens GN=RPS6KA6 PE=1 SV=1	Zinc finger protein 658B OS=Homo sapiens GN=ZNF658B PE=2 SV=1	CREB-binding protein OS=Homo sapiens GN=CREBBP PE=1 SV=3	NACHT, LRR and PYD domains- containing protein 7 OS=Homo sapiens GN=NLRP7 PE=1 SV=1	RNA polymerase II transcription factor SIII subunit A3-like-1 OS=Homo sapiens GN=TCEB3CL PE=2 SV=1	Son of sevenless homolog 1 OS=Homo sapiens GN=SOS1 PE=1 SV=1	Myosin-Ib OS=Homo sapiens GN=MYOIB PE=1 SV=3
Q13873	Q6ZUX3	Q13459	P55157	Q9C026	Q16222	Q9UK32	Q4V348	Q92793	Q8WX94	Q3SY89	Q07889	043795	О9Н8G1
CB044_HUMAN	BMPR2_HUMAN	F179A_HUMAN	MY09B_HUMAN	MTP_HUMAN	TRIM9_HUMAN	UAP1_HUMAN	KS6A6_HUMAN	Z658B_HUMAN	CBP_HUMAN	NALP7_HUMAN	EA3L1_HUMAN	SOS1_HUMAN	MYOIB_HUMAN
98	66	100	101	102	103	104	105	106	107	108	109	110	111

N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cellular process (regulation of gene transcription and translation)	Cellular process (regulation of gene transcription and translation)	Cellular process (cell division)	Cellular process (regulation of gene transcription and translation)	Structural constituents (extracellular matrix)	Structural constituents (microtubule cytoskeletal structure)	Cellular process (regulation of gene transcription and translation)	Ion binding and transport (metal)	Structural constituents (actin cytoskeletal structure)	Structural constituents (actin cytoskeletal structure)	Glucose metabolism	Cellular process (cell division)	Signaling pathway	Lipid metabolism
Krueppel C2H2-type zinc-finger protein family	Protein kinase superfamily, RIO- type Ser/Thr kinase family	Retinoblastoma protein (RB) family	Unknown	ITIH family	Dynein heavy chain family	Nuclear hormone receptor family, NR3 subfamily	Krueppel C2H2-type zinc-finger protein family	Unknown	Unknown	Unknown	SMC family, SMC1 subfamily	Proteasome subunit S1 family	Nuclear hormone receptor family, NR1 subfamily
66,319	65,583	128,367	72,341	143,187	356,942	45,510	141,696	41,136	60,868	159,895	143,908	105,836	50,396
ZNF430	RIOKI	RBL2	MYB	0HILI	DNAH12	ESRRA	ZNF532	FRMD8P1	BAIAP2	MBD5	SMCIB	IGWSA	NR1H3
Zinc finger protein 430 OS=Homo sapiens GN=ZNF430 PE=2 SV=2	Serine/threonine-protein kinase RIOI OS=Homo sapiens GN=RIOK1 PE=1 SV=2	Retinoblastoma-like protein 2 OS=Homo sapiens GN=RBL2 PE=1 SV=3	Transcriptional activator Myb OS=Homo sapiens GN=MYB PE=1 SV=2	Inter-alpha-trypsin inhibitor heavy chain H5-like protein OS=Homo sapiens GN=ITIH5L PE=2 SV=1	Axonemal dynein heavy chain 12-like protein OS=Homo sapiens GN=DNAH12L PE=1 SV=2	Steroid hormone receptor ERR1 OS=Homo sapiens GN=ESRRA PE=1 SV=3	Zinc finger protein 532 OS=Homo sapiens GN=ZNF532 PE=1 SV=2	Putative FBRM domain-containing protein FKSG43 OS=Homo sapiens GN=FKSG43 PE=5 SV=2	Brain-specific angiogenesis inhibitor 1- associated protein 2 OS-Homo sapiens GN-BAIAP2 PE=1 SV=1	Methyl-CpG-binding domain protein 5 OS=Homo sapiens GN=MBD5 PE=2 SV=2	Structural maintenance of chromosomes protein 1B OS=Homo sapiens GN=SMC1B PE=1 SV=2	26S proteasome non-ATPase regulatory subunit 1 OS=Homo sapiens GN=PSMD1 PE=1 SV=2	Oxysterols receptor LXR-alpha OS=Homo sapiens GN=NR1H3 PE=1 SV=2
Q9BRS2	66680D	P10242	Q6UXX5	P49747	Q6ZR08	Q9HCE3	Q9BZ68	മുവാര	Q9P2 <i>6</i> 7	Q8NDV3	Q99460	Q13133	Q6WKZ4
ZN430_HUMAN	RIOK1_HUMAN	RBL2_HUMAN	MYB_HUMAN	ITH5L_HUMAN	DY12L_HUMAN	ERR1_HUMAN	ZN532_HUMAN	FKS43_HUMAN	BAIP2_HUMAN	MBD5_HUMAN	SMC1B_HUMAN	PSMD1_HUMAN	NR1H3_HUMAN
112	113	114	115	116	117	118	119	120	121	122	123	124	125

N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lipid metabolism	Cellular process (cell division)	Cell interaction and communication	Cell interaction and communication	Cellular process (regulation of gene transcription and translation)	Signaling pathway (G protein- coupled receptor)	Cellular process (regulation of gene transcription and translation)	Cellular process (cell division)	Signaling pathway (phosphatidylinositol)	Cellular process (cell division)	Cellular process (organ development)	Structural constituents (intermediate filament structure)	Unknown	Unknown	Cellular process (cell division)
Unknown	Peptidase C19 family, UBP8 subfamily	Cation transport ATPase (P-type) (TC 3.A.3) family, Type IIA subfamily	Unknown	Unknown	Protein kinase superfamily, AGC Ser/Thr protein kinase family, GPRK subfamily	CNOT11 family	DNA mismatch repair MutS family	Unknown	Protein kinase superfamily, NEK Ser/Thr protein kinase family, NIMA subfamily	Protein kinase superfamily, Tyr protein kinase family, Ephrin receptor subfamily	Intermediate filament family	Unknown	Unknown	DNA repair metallo-beta-lactamase (DRMBL) family
137,167	59,961	114,757	133,084	102,642	79,574	55,215	104,756	189,223	107,168	109,860	64,417	151,684	33,784	116,400
RABIIFIPI	USP22	ATP2A2	TBCIDI	SAFB	GRK2	CNOTII	MSH4	PLCHI	NEK9	EPHA4	KRT3	TTC41P	DPPA2	DCLREIA
Rab11 family-interacting protein 1 OS=Homo sapiens GN=RAB11FIP1 PE=1 SV=2	Ubiquitin carboxyl-terminal hydrolase 22 OS=Homo sapiens GN=USP22 PE=1 SV=2	Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 OS=Homo sapiens GN=ATP2A2 PE=1 SV=1	TBC1 domain family member 1 OS=Homo sapiens GN=TBC1D1 PE=1 SV=2	Scaffold attachment factor B1 OS=Homo sapiens GN=SAFB PE=1 SV=4	Beta-adrenergic receptor kinase 1 OS=Homo sapiens GN=ADRBK1 PB=1 SV=2	UPF0760 protein C2orf29 OS=Homo sapiens GN=C2orf29 PE=1 SV=1	MutS protein homolog 4 OS=Homo sapiens GN=MSH4 PE=2 SV=2	1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase eta-1 OS=Homo sapiens GN=PLCH1 PE=1 SV=1	Serine/threonine-protein kinase Nek9 OS=Homo sapiens GN=NEK9 PE=1 SV=2	Ephrin type-A receptor 4 OS=Homo sapiens GN=EPHA4 PE=1 SV=1	Keratin, type II cytoskeletal 3 OS=Homo sapiens GN=KRT3 PE=1 SV=2	Tetratricopeptide repeat protein GNN OS=Homo sapiens GN=GNN PE=2 SV=3	Developmental pluripotency-associated protein 2 OS=Homo sapiens GN=DPPA2 PE=2 SV=2	DNA cross-link repair 1A protein OS=Homo sapiens GN=DCLRE1A PE=1 SV=2
614U6Q	P16615	Q86T10	Q15424	P25098	Q9UKZ1	015457	Q4KWH8	Q8TD19	P54764	P12035	Q6P2S7	Q7Z7J5	Q6PJP8	Q70EK8
RFIP1_HUMAN	UBP22_HUMAN	AT2A2_HUMAN	TBCD1_HUMAN	SAFB1_HUMAN	ARBK1_HUMAN	CB029_HUMAN	MSH4_HUMAN	PLCH1_HUMAN	NEK9_HUMAN	EPHA4_HUMAN	K2C3_HUMAN	GNN_HUMAN	DPPA2_HUMAN	DCR1A_HUMAN
126	127	128	129	130	131	132	133	134	135	136	137	138	139	140

N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cellular process (cell apoptosis)	Structural constituents (actin cytoskeletal structure)	Cellular process (cell proliferation and differentiation)	Cellular process (cell apoptosis)	Lipid metabolism	Structural constituents (actin cytoskeletal structure)	Cellular process (cell apoptosis)	Signaling pathway (G protein- coupled receptor)	Cellular process (cell division)	Structural constituents (extracellular matrix)	Lipid metabolism	Glucose metabolism	Cell interaction and communication	Inflammatory response (unfolded protein response)
Peptidase C19 family	Unknown	CBFA2T family	AAA ATPase family; Peptidase M41 family	Peptidase S8 family	Protein kinase superfamily, AGC Ser/Thr protein kinase family, DMPK subfamily	Protein kinase superfamily, STE Ser/Thr protein kinase family, MAP kinase kinase kinase subfamily	Unknown	Clathrin heavy chain family	Unknown	LDLR family	DNA polymerase type-B-like family	NUP210 family	STT3 family
120,806	68,065	67,133	86,455	106,420	172,459	103,694	97,348	191,615	133,888	180,429	63,267	205,111	93,674
USP53	POFIB	CBFA2T2	YMEILI	PCSK6	CDC42BPG	MAP3K10	PIK3R5	CLTC	ADAMTS14	LRP6	TENT4B	NUP210	STT3B
Inactive ubiquitin carboxyl-terminal hydrolase 53 OS=Homo sapiens GN=USP53 PE=2 SV=2	Protein POF1B OS=Homo sapiens GN=POF1B PE=1 SV=2	Protein CBFA2T2 OS=Homo sapiens GN=CBFA2T2 PE=1 SV=1	ATP-dependent metalloprotease YME1L1 OS=Homo sapiens GN=YME1L1 PE=1 SV=2	Proprotein convertase subtilisin/kexin type 6 OS=Homo sapiens GN=PCSK6 PE=1 SV=1	Serine/threonine-protein kinase MRCK gamma OS=Homo sapiens GN=CDC42BPG PE=1 SV=2	Mitogen-activated protein kinase kinase kinase 10 OS=Homo sapiens GN=MAP3K10 PE=1 SV=3	Phosphoinositide 3-kinase regulatory subunit 5 OS=Homo sapiens GN=PIK3R5 PE=1 SV=1	Clathrin heavy chain 1 OS=Homo sapiens GN=CLTC PE=1 SV=5	A disintegrin and metalloproteinase with thrombospondin motifs 14 OS=Homo sapiens GN=ADAMTS14 PE=2 SV=1	Low-density lipoprotein receptor-related protein 6 OS=Homo sapiens GN=LRP6 PE=1 SV=1	PAP-associated domain-containing protein 5 OS=Homo sapiens GN=PAPD5 PE=1 SV=2	Nuclear pore membrane glycoprotein 210 OS=Homo sapiens GN=NUP210 PE=1 SV=3	Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit STT3B OS=Homo sapiens GN=STT3B PE=1 SV=1
Q8WVV4	043439	Q96TA2	P29122	Q6DT37	Q02779	Q8WYR1	Q00610	Q8WXS8	075581	Q8NDF8	Q8TEM1	Q8TCJ2	Q9UPZ3
UBP53_HUMAN	POF1B_HUMAN	MTG8R_HUMAN	YMEL1_HUMAN	PCSK6_HUMAN	MRCKG_HUMAN	M3K10_HUMAN	PI3R5_HUMAN	CLH1_HUMAN	ATS14_HUMAN	LRP6_HUMAN	PAPD5_HUMAN	PO210_HUMAN	STT3B_HUMAN
141	142	143	144	145	146	147	148	149	150	151	152	153	154

N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Blood coagulation	Immune response	Structural constituents (microtubule cytoskeletal structure)	Structural constituents (integral component of membrane)	Unknown	Blood coagulation	Protein metabolism (protein localization)	Cellular process (regulation of gene transcription and translation)	Cellular process (cell proliferation and differentiation)	Cellular process (cell proliferation and differentiation)	Cellular process (cell apoptosis)	Cellular process (organ development)	Cell interaction and communication	Protein metabolism (proteolysis)
HPS5 family	PSPC family	TRAFAC class myosin-kinesin ATPase superfamily, Kinesin family, BimC subfamily	Nucleotide pyrophosphatase/phosphodiesterase family	FAM214 family	Globin family	Unknown	Krueppel C2H2-type zinc-finger protein family	Protein kinase superfamily, CAMK Ser/Thr protein kinase family, CaMK subfamily	Unknown	TRAFAC class dynamin-like GTPase superfamily, Dynamin/Fzo/YdjA family	TRAFAC class myosin-kinesin ATPase superfamily, Myosin family	MICU1 family, MICU1 subfamily	Peptidase C2 family
127,449	58,744	119,159	104,924	121,670	16,140	161,571	178,674	41,337	228,863	81,877	224,619	54,351	117,314
HPS5	PSPCI	KIFIJ	ENPPI	FAM214A	HBGI	CNTLN	MIZ	CAMKI	PRRC2A	DNMIL	MYHIS	MICUI	CAPN15
Hermansky-Pudlak syndrome 5 protein OS=Homo sapiens GN=HPS5 PE=1 SV=2	Paraspeckle component 1 OS=Homo sapiens GN=PSPC1 PE=1 SV=1	Kinesin-like protein KIF11 OS=Homo sapiens GN=KIF11 PE=1 SV=2	Ectonucleotide pyrrophosphatase/phosphodiesterase family member 1	Uncharacterized protein KIAA1370 OS=Homo sapiens GN=KIAA1370 PE=2 SV=2	Hemoglobin subunit gamma-1 OS=Homo sapiens GN=HBG1 PE=1 SV=2	Centlein OS=Homo sapiens GN=CNTLN PE=2 SV=4	Protein Wiz OS=Homo sapiens GN=WIZ PE=1 SV=2	Calcium/calmodulin-dependent protein kinase type 1 OS=Homo sapiens GN=CAMK1 PE=1 SV=1	Large proline-rich protein BAT2 OS=Homo sapiens GN=BAT2 PE=1 SV=2	Dynamin-1-like protein OS=Homo sapiens GN=DNM1L PE=1 SV=2	Myosin-15 OS=Homo sapiens GN=MYH15 PE=1 SV=4	Calcium-binding atopy-related autoantigen 1 OS=Homo sapiens GN=CBARA1 PE=1 SV=1	Calpain-15 OS=Homo sapiens GN=SOLH PE=1 SV=1
Q8WXF1	P52732	P22413	Q32MH5	P69891	09NXG0	095785	Q14012	P48634	000429	Q9Y2K3	Q9BPX6	075808	Q6UW02
HPS5_HUMAN	PSPC1_HUMAN	KIF11_HUMAN	ENPP1_HUMAN	K1370_HUMAN	HBG1_HUMAN	CNTLN_HUMAN	WIZ_HUMAN	KCC1A_HUMAN	BAT2_HUMAN	DNM1L_HUMAN	MYH15_HUMAN	CBAA1_HUMAN	CAN15_HUMAN
155	156	157	158	159	160	161	162	163	164	165	166	167	168

N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Blood coagulation	Unknown	Structural constituents (actin cytoskeletal structure)	Inflammatory response (unfolded protein response)	Others (oxidoreductase activity)	Others (vacuolar acidification)	Unknown	Immune response	Structural constituents (intermediate filament structure)	Protein metabolism (proteolysis)	Cell interaction and communication (cell adhesion)	Signaling pathway (insulin)	Cellular process (regulation of gene transcription and translation)	Signaling pathway	Unknown	Cellular process (regulation of gene transcription and translation)
Cytochrome P450 family	INSYN2 family	Unknown	Protein kinase superfamily, Ser/Thr protein kinase family, GCN2 subfamily	Gfo/Idh/MocA family	Unknown	Unknown	Unknown	Intermediate filament family	Unknown	Astrotactin family	Unknown	DNA2/NAM7 helicase family, SDE3 subfamily	MYTI family	Unknown	Unknown
52,432	59,204	85,226	125,216	43,158	339,641	21,666	12,582	46,214	118,965	144,913	206,689	135,293	115,155	158,049	162,208
CYP20A1	INSYN2B	LIMAI	EIF2AK3	GFODI	DMXL2	SPRYD7	IGHV3-23	KRT33B	LRIG2	ASTNI	dIHd	ITOIAOW	ST18	ANKRD30B	ZNF608
Cytochrome P450 20A1 OS=Homo sapiens GN=CYP20A1 PE=1 SV=1	Uncharacterized protein LOC100131897 OS=Homo sapiens PE=2 SV=1	LIM domain and actin-binding protein 1 OS=Homo sapiens GN=LIMA1 PE=1 SV=1	Eukaryotic translation initiation factor 2- alpha kinase 3	Glucose-fructose oxidoreductase domain- containing protein 1 OS=Homo sapiens GN=GFOD1 PE=2 SV=1	DmX-like protein 2 OS=Homo sapiens GN=DMXL2 PE=1 SV=1	Chronic lymphocytic leukemia deletion region gene 6 protein OS=Homo sapiens GN=CLLD6 PE=1 SV=2	Ig heavy chain V-III region TUR OS=Homo sapiens PE=1 SV=1	Keratin, type I cuticular Ha3-II OS=Homo sapiens GN=KRT33B PE=1 SV=3	Leucine-rich repeats and immunoglobulin- like domains protein 2 OS=Homo sapiens GN=LRIG2 PE=1 SV=3	Astrotactin-1 OS=Homo sapiens GN=ASTN1 PE=1 SV=3	PH-interacting protein OS=Homo sapiens GN=PHIP PE=1 SV=1	Putative helicase Mov1011 OS=Homo sapiens GN=MOV10L1 PE=1 SV=1	Suppression of tumorigenicity 18 protein OS=Homo sapiens GN=ST18 PE=1 SV=1	Ankyrin repeat domain-containing protein 30B OS=Homo sapiens GN=ANKRD30B PE=2 SV=2	Zinc finger protein 608 OS=Homo sapiens GN=ZNF608 PE=1 SV=3
A6NMK8	P02458	Q9UHB6	Q9NXC2	Q8TDJ6	Q5W111	P01764	Q14525	094898	014525	Q8WWQ0	Q9BXT6	O60284	Q9BXX2	60TIN6Ò	O60294
CP20A_HUMAN	YE035_HUMAN	LIMAI_HUMAN	E2AK3_HUMAN	GFOD1_HUMAN	DMXL2_HUMAN	CLLD6_HUMAN	HV318_HUMAN	KT33B_HUMAN	LRIG2_HUMAN	ASTNI_HUMAN	PHIP_HUMAN	M10L1_HUMAN	ST18_HUMAN	AN30B_HUMAN	ZN608_HUMAN
169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184

N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cellular process (regulation of gene transcription and translation)	Cellular process (regulation of gene transcription and translation)	Structural constituents (celia structure)	Cell interaction and communication (cell adhesion)	Unknown	Cell interaction and communication	Cell interaction and communication (exocytosis)	Glucose metabolism	Unknown	Signaling pathway (phosphatidylinositol)	Unknown	Cell interaction and communication (cell adhesion)	Signaling pathway (phosphatidylinositol)
Methyltransferase superfamily, LCMT family	JHDM2 histone demethylase family	Unknown	Integrin beta chain family	Unknown	MCTP family	WD repeat L(2)GL family	SID1 family	Unknown	EFR3 family	CEP170 family	Folate receptor family	Protein-tyrosine phosphatase family, Non-receptor class myotubularin subfamily
75,602	147,341	361,746	85,936	20,901	111,624	127,573	94,454	56,909	92,487	171,688	27,885	88,273
LCM72	KDM3A	CPLANEI	ITGB6	SPATA3	MCTP1	STXBP5	SIDT2	CCDC105	EFR3B	CEP170B	FOLR3	MTMR10
Leucine carboxyl methyltransferase 2 OS=Homo sapiens GN=LCMT2 PE=1 SV=3	Lysine-specific demethylase 3A OS=Homo sapiens GN=KDM3A PE=1 SV=3	Transmembrane protein ENSP0000382582 OS=Homo sapiens PE=4 SV=2	Integrin beta-6 OS=Homo sapiens GN=ITGB6 PE=1 SV=2	Spermatogenesis-associated protein 3 OS=Homo sapiens GN=SPATA3 PE=2 SV=1	Multiple C2 and transmembrane domain- containing protein 1 OS=Homo sapiens GN=MCTP1 PE=2 SV=1	Syntaxin-binding protein 5 OS=Homo sapiens GN=STXBP5 PE=1 SV=1	SIDI transmembrane family member 2 OS=Homo sapiens GN=SIDT2 PE=1 SV=2	Coiled-coil domain-containing protein 105 OS=Homo sapiens GN=CCDC105 PE=2 SV=2	Protein EFR3 homolog B OS=Homo sapiens GN=EFR3B PE=2 SV=2	Protein KIAA0284 OS=Homo sapiens GN=KIAA0284 PE=1 SV=4	Folate receptor gamma OS=Homo sapiens GN=FOLR3 PE=1 SV=1	Myotubularin-related protein 10 OS=Homo sapiens GN=MTMR10 PE=1 SV=3
Q9Y4C1	667H6D	P18564	Q8NHX4	Q6DN14	Q5T5C0	Q8NBJ9	Q8IYK2	Q9Y2G0	Q9Y4F5	P41439	Q9NXD2	O60391
LCMT2_HUMAN	KDM3A_HUMAN	YE031_HUMAN	ITB6_HUMAN	SPTA3_HUMAN	MCTP1_HUMAN	STXB5_HUMAN	SIDT2_HUMAN	CC105_HUMAN	EFR3B_HUMAN	K0284_HUMAN	FOLR3_HUMAN	MTMRA_HUMAN
185	186	187	188	189	190	191	192	193	194	195	196	197

N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cell interaction and communication	Immune response	Protein metabolism (amino acid metabolism)	Immune response	Lipid metabolism	Cellular process (cell division)	Cellular process (regulation of gene transcription and translation)	Cellular process (organ development)	Blood coagulation	Cellullar process (cell proliferation and differentiation)	Cellular process (organ development)	Cellular process (regulation of gene transcription and translation)	Others (inositol phosphate metabolic process)
Glutamate-gated ion channel (TC 1.A.10.1) family, NR3B/GR1N3B subfamily	Unknown	Unknown	Unknown	Acyl-CoA oxidase family	Formin homology family, Cappuccino subfamily	Unknown	Protein-tyrosine phosphatase family, Receptor class 5 subfamily	Unknown	JIP scaffold family	Unknown	Mediator complex subunit 23 family	Inositol 3,4-bisphosphate 4- phosphatase family
112,992	65,835	72,080	465,734	76,827	180,106	130,322	254,587	71,540	146,205	76,112	156,474	109,956
GRIN3B	TRIM29	ASNSD1	PKHDILI	ACOX2	FMN2	ZBED4	PTPRZI	GPIBA	SPAG9	ANOSI	MED23	INPP4A
Glutamate [NMDA] receptor subunit 3B OS=Homo sapiens GN=GRIN3B PE=2 SV=2	Tripartite motif-containing protein 29 OS=Homo sapiens GN=TRIM29 PE=1 SV=2	Asparagine synthetase domain-containing protein 1 OS=Homo sapiens GN=ASNSD1 PE=2 SV=1	Fibrocystin-L OS=Homo sapiens GN=PKHD1L1 PE=2 SV=2	Peroxisomal acyl-coenzyme A oxidase 2 OS=Homo sapiens GN=ACOX2 PE=1 SV=1	Formin-2 OS=Homo sapiens GN=FMN2 PE=1 SV=4	Zine finger BED domain-containing protein 4 OS=Homo sapiens GN=ZBED4 PE=1 SV=1	Receptor-type tyrosine-protein phosphatase zeta OS=Homo sapiens GN=PTPRZ1 PE=1 SV=4	Platelet glycoprotein Ib alpha chain OS=Homo sapiens GN=GP1BA PE=1 SV=1	C-Jun-amino-terminal kinase-interacting protein 4 OS=Homo sapiens GN=SPAG9 PE=1 SV=4	Anosmin-1 OS=Homo sapiens GN=KAL1 PE=1 SV=3	Mediator of RNA polymerase II transcription subunit 23 OS=Homo sapiens GN=MED23 PE=1 SV=2	Type I inositol-3,4-bisphosphate 4- phosphatase OS=Homo sapiens GN=INPP4A PE=1 SV=1
Q14134	9TMN6D	Q86W11	Q99424	09NZ56	075132	P23471	P07359	060271	P23352	Q9ULK4	Q96PE3	
NMD3B_HUMAN	TRI29_HUMAN	ASND1_HUMAN	PKHL1_HUMAN	ACOX2_HUMAN	FMN2_HUMAN	ZBED4_HUMAN	PTPRZ_HUMAN	GP1BA_HUMAN	JIP4_HUMAN	KALM_HUMAN	MED23_HUMAN	INP4A_HUMAN
198	199	200	201	202	203	204	205	206	207	208	209	210

		Fold change nean S.D.	0.18	0.40	0.36	0.43	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		Fold c mean	0.35	0.45	0.64	0.66	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		Protein function	Cellular process (organ development)	Structural constituents (extracellular matrix)	Inflammatory response	Lipid metabolism	Signaling pathway (MAPK)	Inflammatory response (unfolded protein response)	Cellular process (organ development)	Immune response	Cellular process (regulation of gene transcription and translation)	Cell interaction and communication (endocytosis)	Unknown	Glucose metabolism	Cell interaction and communication (cell adhesion)
fferentially expressed plasma proteins (Study III)		Protein family	Calycin superfamily, Lipocalin family	Intermediate filament family	Peptidase S1 family	Apolipoprotein A1/A4/E family	Serpin family	Dynactin 150 kDa subunit family	TRAFAC class myosin-kinesin ATPase superfamily, Myosin family	Unknown	DNA2/NAM7 helicase family	Clathrin heavy chain family	GOLGA6 family	Unknown	TRAFAC class myosin-kinesin ATPase superfamily, Kinesin family, KIF26 subfamily
asma p		Mass (Da)	23,010	66,039	45,205	45,372	53,154	141,695	222,763	18,099	109,149	187,030	79,884	208,883	223,883
kpressed pl		Encoding	RBP4	KRTI	HP	APOA4	AGT	DCTNI	WYH8	JCHAIN	IGHMBP2	CLTCL1	GOLGA6C	ZNF106	KIF26B
Differentially ex	teins $(n = 313)$	Protein name	Retinol-binding protein 4 OS=Homo sapiens GN=RBP4 PE=1 SV=3	Keratin, type II cytoskeletal 1 OS=Homo sapiens GN=KRT1 PE=1 SV=6	Haptoglobin OS=Homo sapiens GN=HP PE=1 SV=1	Apolipoprotein A-IV OS=Homo sapiens GN=APOA4 PE=1 SV=3	Angiotensinogen OS=Homo sapiens GN=AGT PE=1 SV=1	Dynactin subunit 1 OS=Homo sapiens GN=DCTN1 PE=1 SV=3	Myosin-8 OS=Homo sapiens GN=MYH8 PE=1 SV=3	Immunoglobulin J chain OS=Homo sapiens GN=IGJ PE=1 SV=4	DNA-binding protein SMUBP-2 OS=Homo sapiens GN=IGHMBP2 PE=1 SV=2	Clathrin heavy chain 2 OS=Homo sapiens GN=CLTCL1 PE=1 SV=2		Zinc finger protein 106 homolog OS=Homo sapiens GN=ZFP106 PE=1 SV=1	Kinesin-like protein KIF26B OS=Homo sapiens GN=KIF26B PE=1 SV=1
	essed pro	mber Uniprot	P02753	P04264	P00738	P06727	P01019	Q14203	P13535	P01591	P38935	P53675	A6NDK9	Q9H2Y7	Q2KJY2
	(ii) Down-expressed proteins (n = 313)	Accession number Swiss-Prot Uni	RET4_HUMAN	K2C1_HUMAN	HPT_HUMAN	APOA4_HUMAN	ANGT_HUMAN	DCTN1_HUMAN	MYH8_HUMAN	IGJ_HUMAN	SMBP2_HUMAN	CLH2_HUMAN	GOG6C_HUMAN	ZF106_HUMAN	K126B_HUMAN
)		211	212	213	214	215	216	217	218	219	220	221	222	223

Appendix H Differentially expressed plasma proteins (Study III)

N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Others (flagellated sperm motility)	Protein metabolism (protein localization)	Cell interaction and communication	Cellular process (organ development)	Immune response	Structural constituents (cilia structure)	Structural constituents	Cellular process (cell proliferation and differentiation)	Cellular process (regulation of gene transcription and translation)	Cell interaction and communication	Unknown
CFAP65 family	AKAP110 family	VPS11 family	PAR3 family	Protein kinase superfamily, Tyr protein kinase family, TEC subfamily	Dynein heavy chain family	Protein kinase superfamily, AGC Ser/Thr protein kinase family	Unknown	SNF2/RAD54 helicase family, SWR1 subfamily	Sodium channel (TC 1.A.1.10) family, Nav1.3/SCN3A subfamily	Unknown
217,250	94,751	107,837	151,423	73,581	511,877	284,097	180,781	343,555	226,294	134,020
CFAP65	AKAP3	VPSII	PARD3	TEC	DNAH9	MAST4	MROH2B	SRCAP	SCN3A	VWA3A
Cilia- and flagella-associated protein 65 <i>CFAP65</i> (Coiled-coil domain-containing protein 108)	A-kinase anchor protein 3 OS=Homo AKAP3 sapiens GN=AKAP3 PE=1 SV=2	ng-associated S=Homo sapiens =1	Partitioning defective 3 homolog PARD3 OS=Homo sapiens GN=PARD3 PE=1 SV=2	Tyrosine-protein kinase Tec OS=Homo TEC sapiens GN=TEC PE=1 SV=2	Dynein heavy chain 9, axonemal OS=Homo sapiens GN=DNAH9 PE=1 SV=2	Microtubule-associated MAST4 serine/threonine-protein kinase 4 (EC 2.7.11.1)	Maestro heat-like repeat-containing MROH2B protein family member 2B (HEAT repeat-containing protein 7B2) (Spem PKA-interacting factor) (SPIF)	Helicase SRCAP (EC 3.6.4) (Domino SRCAP homolog 2) (Snf2-related CBP activator)	Sodium channel protein type 3 subunit SCN3A alpha (Sodium channel protein brain III subunit alpha) (Sodium channel protein type III subunit alpha) (Voltage-gated sodium channel subunit alpha Mav1.3)	von Willebrand factor A domain- containing protein 3A
	in 3 OS=Homo PE=1 SV=2	ens	oning defective 3 homolog omo sapiens GN=PARD3 PE=1		n heavy chain 9, axonemal omo sapiens GN=DNAH9 PE=1	SON S	The second second	~		A domain-
Cilia- and flagella-associated protein 65 (Coiled-coil domain-containing protein 108)	A-kinase anchor protein 3 OS=Homo sapiens GN=AKAP3 PE=1 SV=2	Vacuolar protein sorting-associated protein 11 homolog OS=Homo sapiens GN=VPS11 PE=1 SV=1	Partitioning defective 3 homolog OS=Homo sapiens GN=PARD3 PE=1 SV=2	Tyrosine-protein kinase Tec OS=Homo sapiens GN=TEC PE=1 SV=2	Dynein heavy chain 9, axonemal OS=Homo sapiens GN=DNAH9 PE=1 SV=2	Microtubule-associated serine/threonine-protein kinase 4 (EC 2.7.11.1)	Maestro heat-like repeat-containing protein family member 2B (HEAT repeat-containing protein 7B2) (Sperm PKA-interacting factor) (SPIF)	Helicase SRCAP (EC 3.6.4) (Domino homolog 2) (Snf2-related CBP activator)	Sodium channel protein type 3 subunit alpha (Sodium channel protein brain III subunit alpha) (Sodium channel protein type III subunit alpha) (Voltage-gated sodium channel subtype III) (Voltage- gated sodium channel subunit alpha Nav1.3)	von Willebrand factor A domain- containing protein 3A

N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Structural constituents (actomyosin structure)	Structural constituents (cilia structure)	Cell interaction and communication (signal transduction)	Unknown	Others (response to stimuli: amino acids)	Structural constituents (actin cvtoskeletal structure)	Cell interaction and communication	Structural constituents (microtubule cytoskeletal structure)	Structural constituents (microtubule cytoskeletal structure)	Structural constituents (microtubule cytoskeletal structure)	Structural constituents (extracellular matrix)	Cellular process (cell proliferation and differentiation)
TRAFAC class myosin-kinesin ATPase superfamily, Myosin family	IFT74 family	Unc-13 family	Unknown	Class-I aminoacyl-tRNA synthetase family	Unknown	Nucleoporin interacting component (NIC) family	Intermediate filament family	Unknown	Unknown	Type IV collagen family	Unknown
215,405	69,239	250,911	181,249	134,466	69,413	93,488	53,501	151,162	208,537	161,813	110,041
MYO5A	IFT74	UNCI3C	MROHI	LARSI	EZR	NUP93	KRT86	PHLDBI	NCKAP5	COL4A3	RAI14
Unconventional myosin-Va (Dilute myosin heavy chain, non-muscle) (Myosin heavy chain 12) (Myosin-12) (Myoxin)	Intraflagellar transport protein 74 homolog (Capillary morphogenesis gene 1 protein) (CMG-1) (Coiled-coil domain-containing protein 2)	Protein unc-13 homolog C (Munc13-3)	Maestro heat-like repeat-containing protein family member 1 (HEAT repeat- containing protein 7A)	LeucinetRNA ligase, cytoplasmic (EC 6.1.1.4) (Leucyl-tRNA synthetase) (LeuRS)	Ezrin (Cytovillin) (Villin-2) (p81)	Nuclear pore complex protein Nup93 (93 kDa nucleoporin) (Nucleoporin Nup93)	Keratin, type II cuticular Hb6 (Hair keratin K2.11) (Keratin-86) (K86) (Type II hair keratin Hb6) (Type-II keratin Kb26)	Pleckstrin homology-like domain family B member 1 (Protein LL5-alpha)	Nck-associated protein 5 (NAP-5) (Peripheral clock protein)	Collagen alpha-3(IV) chain OS=Homo sapiens GN=COL4A3 PE=1 SV=3	Ankycorbin OS=Homo sapiens GN=RAI14 PE=1 SV=2
Q9Y4I1	Q96LB3	Q8NB66	Q8NDA8	Q9P2J5	P15311	Q8N1F7	O43790	Q86UU1	014513	Q01955	Q9P0K7
MY05A_HUMAN	IFT74_HUMAN	UN13C_HUMAN	HTR7A_HUMAN	SYLC_HUMAN	EZRI_HUMAN	NUP93_HUMAN	KRT86_HUMAN	PHLB1_HUMAN	NCKP5_HUMAN	CO4A3_HUMAN	RAI14_HUMAN
235	236	237	238	239	240	241	242	243	244	245	246

N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cellular process (regulation of gene transcription and translation)	Cell interaction and communication	Cellular process (regulation of gene transcription and translation)	Unknown	Cellular process (regulation of gene transcription and translation)	Cellular process (autophagy)	Cellular process (regulation of gene transcription and translation)	Cellular process (autophagy)	Structural constituents (integral component of membrane)	Cellular process (cell apoptosis)	Others (flagellated sperm motility)	Cellular process (nucleotide- excision repair)
CEF1 family	Calcium channel alpha-1 subunit (TC 1.A.1.11) family, CACNA1A subfamily	CUT homeobox family	ANKRD36 family	Unknown	Protein kinase superfamily, Ser/Thr protein kinase family	TRAFAC class YlqF/YawG GTPase family, MTG1 subfamily	Unknown	UPF0606 family	Reverse transcriptase family, Telomerase subfamily	AKAP110 family	FPG family
92,251	282,564	164,187	214,500	210,816	153,103	37,237	103,457	210,755	126,997	94,477	67,769
CDC5L	CACNAIA	CUXI	ANKRD36	ANKRD31	PIK3R4	MTGI	RASIPI	KIAA1549	TERT	AKAP4	NEIL3
Cell division cycle 5-like protein OS=Homo sapiens GN=CDC5L PE=1 SV=2	Voltage-dependent P/Q-type calcium channel subunit alpha-1A OS=Homo sapiens GN=CACNA1A PE=1 SV=2	Homeobox protein cut-like 1 OS=Homo sapiens GN=CUX1 PE=1 SV=2	Ankyrin repeat domain-containing protein 36A	Ankyrin repeat domain-containing protein 31	Phosphoinositide 3-kinase regulatory subunit 4 (Pl3-kinase regulatory subunit 4) (EC 2.7.11.1) (Pl3-kinase p150 subunit) (Phosphoinositide 3-kinase adaptor protein)	Mitochondrial ribosome-associated GTPase 1 (GTP-binding protein 7) (Mitochondrial GTPase 1)	Ras-interacting protein 1 (Rain)	UPF0606 protein KIAA1549	Telomerase reverse transcriptase (BC 2.7.7.49) (HEST2) (Telomerase catalytic subunit) (Telomerase-associated protein 2) (TP2)	A-kinase anchor protein 4 (AKAP-4) (A-kinase anchor protein 82 kDa) (AKAP 82) (hAKAP82) (Major sperm fibrous sheath protein) (HI) (Protein kinase A-anchoring protein 4) (PRKA4)	Endonuclease 8-like 3 (EC 3.2.2) (EC 4.2.99.18) (DNA glycosylase FPG2) (DNA glycosylase/AP1yase Neil3) (Endonuclease VIII-like 3) (Nei-like protein 3)
Q99459	000555	P39880	A6QL64	Q8N7Z5	Q99570	Q9BT17	Q5U651	Q9HCM3	014746	Q51QC9	Q8TAT5
247 CDC5L_HUMAN	CACIA_HUMAN	CUX1_HUMAN	U634A_HUMAN	ANR31_HUMAN	PI3R4_HUMAN	MTG1_HUMAN	RAIN_HUMAN	K1549_HUMAN	TERT_HUMAN	AKAP4_HUMAN	NEIL3_HUMAN
247	248	249	250	251	252	253	254	255	256	257	258

N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Immune response	Structural constituents (cilia structure)	Immune response	Cell interaction and communication	Lipid metabolism	Cellular process (organ development)	Cell interaction and communication (signal transduction)	Structural constituents (extracellular matrix)	Cellular process (regulation of gene transcription and translation)	Protein metabolism (ubiquitin protein ligase activity)	Cellular process (regulation of gene transcription and translation)	Cellular process (cell apoptosis)	Cellular process (regulation of gene transcription and translation)
Unknown	BBOF1 family	Unknown	Unknown	FGGY kinase family	TRAFAC class myosin-kinesin ATPase superfamily, Myosin family	Unknown	Type VI collagen family	TET family	Unknown	Unknown	Unknown	Krueppel C2H2-type zinc- finger protein family
202,800	61,987	145,175	109,880	61,245	223,735	80,703	343,669	235,309	166,907	127,495	132,821	89,815
PARP14	BBOFI	SIN3A	TBC1D2B	GK	9HXH	TAGAP	COL6A3	TETI	NEURL4	HR	CCARI	ZNF786
Protein mono-ADP-ribosyltransferase PARP14 (EC 2.4.2) (ADP- ribosyltransferase diphtheria toxin-like 8) (ARTD8) (B aggressive lymphoma protein 2) (Poly [ADP-ribose] polymerase 14) (PARP-14)	Basal body-orientation factor 1 (Coiled- coil domain-containing protein 176)	Paired amphipathic helix protein Sin3a (Histone deacetylase complex subunit Sin3a) (Transcriptional corepressor Sin3a)	TBC1 domain family member 2B	Glycerol kinase (GK) (Glycerokinase) (EC 2.7.1.30) (ATP:glycerol 3- phosphotransferase)	Myosin-6 (Myosin heavy chain 6) (Myosin heavy chain, cardiac muscle alpha isoform) (MyHC-alpha)	T-cell activation Rho GTPase-activating protein (T-cell activation GTPase- activating protein)	Collagen alpha-3(VI) chain	Methylcytosine dioxygenase TET1 (EC 1.14.11.n2) (CXXC-type zinc finger protein 6) (Leukemia-associated protein with a CXXC domain) (Ten-eleven translocation 1 gene protein)	Neuralized-like protein 4	Lysine-specific demethylase hairless (EC 1.14.11.65) ([histone H3]-dimethyl- L-lysine(9) demethylase hairless)	Cell division cycle and apoptosis regulator protein 1 (Cell cycle and apoptosis regulatory protein 1) (CARP- 1) (Death inducer with SAP domain)	Zinc finger protein 786
Q460N5	Q8ND07	Q96ST3	7UPU7	P32189	P13533	Q8N103	P12111	Q8NFU7	Q96JN8	043593	Q8IX12	Q8N393
PAR14_HUMAN	CN045_HUMAN	SIN3A_HUMAN	TBD2B_HUMAN	GLPK_HUMAN	MYH6_HUMAN	TAGAP_HUMAN	CO6A3_HUMAN	TETI_HUMAN	NEUL4_HUMAN	HAIR_HUMAN	CCAR1_HUMAN	ZN786_HUMAN
259	260	261	262	263	264	265	266	267	268	269	270	271

N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Protein metabolism (ubiquitin- dependent protein catabolic process)	Immune response	Cell interaction and communication	Cell interaction and communication (cell adhesion)	Cellular process (regulation of gene transcription and translation)	Structural constituents (actin cytoskeletal structure)	Signaling pathway (growth factor beta receptor)	Structural constituents (extracellular matrix)	Cellular process (regulation of gene transcription and translation)	Cell interaction and communication (cell adhesion)
Zyg-11 family	Calycin superfamily, Lipocalin family	Cation transport ATPase (P- type) (TC 3.A.3) family, Type IIB subfamily	Liprin family, Liprin-alpha subfamily	Unknown	MAP7 family	Cingulin family	Fibrillar collagen family	Class V-like SAM-binding methyltransferase superfamily	Unknown
88,169	23,603	136,876	135,779	229,481	84,052	136,386	175,496	130,136	45,287
ZERI	ORM2	ATP2B2	PPFIAI	PHF3	MAP7	CGN	COL24A1	PRDM10	MAEA
Protein zer-1 homolog (Hzyg) (Zyg-11 homolog B-like protein) (Zyg11b-like protein)	Alpha-1-acid glycoprotein 2 (AGP 2) (Orosomucoid-2) (OMD 2)	Plasma membrane calcium-transporting ATPase 2 (PMCA2) (EC 7.2.2.10) (Plasma membrane calcium ATPase isoform 2) (Plasma membrane calcium pump isoform 2)	Liprin-alpha-1 (LAR-interacting protein 1) (LIP-1) (Protein tyrosine phosphatase receptor type f polypeptide-interacting protein alpha-1) (PTPRF-interacting protein alpha-1)	PHD finger protein 3	Ensconsin (Epithelial microtubule- associated protein of 115 kDa) (E-MAP- 115) (Microtubule-associated protein 7) (MAP-7)	Cingulin	Collagen alpha-1(XXIV) chain	PR domain zinc finger protein 10 (EC 2.1.1) (PR domain-containing protein 10) (Tristanin)	E3 ubiquitin-protein transferase MAEA (EC 2.3.2.27) (Cell proliferation- inducing gene 5 protein) (Erythroblast macrophage protein) (Human lung cancer oncogene 10 protein) (HLC-10) (Macrophage erythroblast attacher) (P44EMLP)
Q7Z7L7	P19652	Q01814	Q13136	Q92576	Q14244	Q9P2M7	Q17RW2	9ADN6D	Q7L5Y9
ZERI_HUMAN	AIAG2_HUMAN	AT2B2_HUMAN	LIPAI_HUMAN	PHF3_HUMAN	MAP7_HUMAN	CING_HUMAN	COOA1_HUMAN	PRD10_HUMAN	MAEA_HUMAN
272	273	274	275	276	277	278	279	280	281

N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Protein metabolism (protein localization)	Structural constituents (extracellular matrix)	Inflammatory response (unfolded protein response)	Cellular process (cell proliferation and differentiation)	Unknown	Cellular process (cell proliferation and differentiation)	Cell interaction and communication (signal transduction)	Cell interaction and communication (signal transduction)	Cellular process (cell apoptosis)	Cellular process (cell division)	Cellullar process (cell proliferation and differentiation)	Structural constituents (integral component of membrane)	Lipid metabolism
AKAP110 family	Intermediate filament family	Cullin family	Unknown	Unknown	Unknown	TRAFAC class myosin-kinesin ATPase superfamily, Kinesin family, Kinesin subfamily	Ankyrin SOCS box (ASB) family	Complement C6/C7/C8/C9 family	ELYS family	Krueppel C2H2-type zinc- finger protein family	TMC family	ATP-dependent AMP-binding enzyme family
210,512	54,928	191,161	85,887	70,379	95,751	109,495	65,084	63,173	252,498	122,833	114,797	64,130
AKAPII	KRT81	CUL7	MYBLI	LMNTD2	FSTL5	KIF5C	ASB2	C9	AHCTF1	ADNP2	TMC5	ACSF3
A-kinase anchor protein 11 (AKAP-11) (A-kinase anchor protein 220 kDa) (AKAP 220) (hAKAP220) (Protein kinase A-anchoring protein 11) (PRKA11)	Keratin, type II cuticular Hb1 (Hair keratin K2.9) (Keratin, hair, basic, 1) (Keratin-81) (K81) (Metastatic lymph node 137 gene protein) (MLN 137) (Type II hair keratin Hb1) (Type-II keratin Kb21) (ghHKb1) (ghHb1)	Cullin-7 (CUL-7)	Myb-related protein A (A-Myb) (Myb- like protein 1)	Lamin tail domain-containing protein 2	Follistatin-related protein 5 (Follistatin- like protein 5)	Kinesin heavy chain isoform 5C (Kinesin heavy chain neuron-specific 2)	Ankyrin repeat and SOCS box protein 2 (ASB-2)	Complement component C9 [Cleaved into: Complement component C9a; Complement component C9b]	Protein ELYS (Embryonic large molecule derived from yolk sac) (Protein MEL-28) (Putative AT-hook- containing transcription factor 1)	Activity-dependent neuroprotector homeobox protein 2 (ADNP homeobox protein 2) (Zinc finger protein 508)	Transmembrane channel-like protein 5	MalonateCoA ligase ACSF3, mitochondrial (EC 6.2.1.n3) (Acyl-CoA synthetase family member 3)
Q9UKA4	Q14533	Q14999	P10243	Q8IXW0	Q8N475	O60282	Q96Q27	P02748	Q8WYP5	Q6IQ32	Q6UXY8	Q4G176
AKAII_HUMAN	KRT81_HUMAN	CUL7_HUMAN	MYBA_HUMAN	CK035_HUMAN	FSTL5_HUMAN	KIF5C_HUMAN	ASB2_HUMAN	CO9_HUMAN	ELYS_HUMAN	ADNP2_HUMAN	TMC5_HUMAN	ACSF3_HUMAN
282	283	284	285	286	287	288	289	290	291	292	293	294

N/A	Υ/Υ	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lipid metabolism	Immune response	Cellular process (cell proliferation and differentiation)	Cellular process (cell division)	Immune response	Unknown	Cellular process (regulation of gene transcription and translation)	Cell interaction and communication (cell adhesion)	Unknown	Cellular process (organ development)
AccD/PCCB family	PI3/PI4-kinase family	Class-II pyridoxal-phosphate- dependent aminotransferase family	Unknown	Unknown	Unknown	Krueppel C2H2-type zinc- finger protein family	Unknown	Unknown	CYFIP family
58,216	126,454	70,581	121,005	274,258	189,561	50,339	87,387	147,703	145,182
PCCB	PIK3CG	ALASI	MAP4	ANKRDI7	MROH2A	ZNF101	SCARF1	WDR17	CYFIPI
Propionyl-CoA carboxylase beta chain, mitochondrial (PCCase subunit beta) (EC 6.4.1.3) (Propanoyl-CoA:carbon dioxide licase subunit beta)	Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma) (PI3K-gamma) (PI3.Kgamma) (PtdIns-3- kinase subunit gamma) (EC 2,7.1.137) (EC 2,7.1.153) (EC 2,7.1.154) (Phosphatidylinositol 4,5-bisphosphate 3-kinase 110 kDa catalytic subunit gamma) (PtdIns-3-kinase subunit p110- gamma) (PtlIns-3-kinase subunit p110- gamma) (PtlIns-3-kinase catalytic gamma polypeptide) (Serine/Ihreonine protein kinase PIK3CG) (EC 2,7.11.1) (p120-P13K)	5-aminolevulinate synthase, nonspecific, mitochondrial (ALAS-H) (EC 2.3.1.37) (5-aminolevulinic acid synthase 1) (Delta-ALA synthase 1) (Delta- aminolevulinate synthase 1)	Microtubule-associated protein 4 (MAP-4)	Ankyrin repeat domain-containing protein 17 (Gene trap ankyrin repeat protein) (Serologically defined breast cancer antigen NY-BR-16)	Maestro heat-like repeat-containing protein family member 2A (HEAT repeat-containing protein 7B1)	Zinc finger protein 101 (Zinc finger protein HZF12)	Scavenger receptor class F member 1 (Acetyl LDL receptor) (Scavenger receptor expressed by endothelial cells 1) (SREC-1)	WD repeat-containing protein 17	Cytoplasmic FMR1-interacting protein 1 (Specifically Rac1-associated protein 1) (Sra-1) (p140sra-1)
P05166	P48736	P13196	P27816	075179	A6NES4	Q8IZC7	Q14162	Q8IZU2	Q7L576
PCCB_HUMAN	PK3CG_HUMAN	HEMI_HUMAN	MAP4_HUMAN	ANR17_HUMAN	YB046_HUMAN	ZN101_HUMAN	SREC_HUMAN	WDR17_HUMAN	CYFP1_HUMAN
295	296	297	298	299	300	301	302	303	304

N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cell interaction and communication (signal transduction)	Cellular process (regulation of gene transcription and translation)	Immune response	Immune response	Cellular process (cell proliferation and differentiation)	Cell interaction and communication	Cellular process (autophagy)	Cellular process (organ development)	Cellular process (regulation of gene transcription and translation)	Cell interaction and communication	Signaling pathway (G protein- coupled receptor)
G-protein coupled receptor 2 family, Adhesion G-protein coupled receptor (ADGR) subfamily	Krueppel C2H2-type zinc- finger protein family	Unknown	Ribonuclease III family	CFAP54 family	83,354 LETMI family	Unknown	AF4 family	Krueppel C2H2-type zinc- finger protein family	ABC transporter superfamily, ABCA family	G-protein coupled receptor 1 family
60,885	96,915	115,283	159,316	351,970	83,354	108,622	144,771	304,816	191,362	36,754
ADGRAI	ZNF281	NOD2	DROSHA	CFAP54	LETMI	RUBCN	AFF2	ZNF292	ABCA3	GPR171
Adhesion G protein-coupled receptor A1 (G-protein coupled receptor 123)	Zinc finger protein 281 (GC-box- binding zinc finger protein 1) (Transcription factor ZBP-99) (Zinc finger DNA-binding protein 99)	Nucleotide-binding oligomerization domain-containing protein 2 (Caspase recruitment domain-containing protein 15) (Inflammatory bowel disease protein 1)	Ribonuclease 3 (EC 3.1.26.3) (Protein Drosha) (Ribonuclease III) (RNase III) (p241)	Cilia- and flagella-associated protein 54	Mitochondrial proton/calcium exchanger protein (Leucine zipper-EF- hand-containing transmembrane protein 1)	Run domain Beclin-I-interacting and cysteine-rich domain-containing protein (Rubicon) (Beclin-I associated RUN domain containing protein) (Baron)	AF4/FMR2 family member 2 OS=Homo sapiens GN=AFF2 PE=1 SV=4	Zinc finger protein 292 OS=Homo sapiens GN=ZNF292 PE=1 SV=2	ATP-binding cassette sub-family A member 3 OS=Homo sapiens GN=ABCA3 PE=1 SV=2	Probable G-protein coupled receptor 171 OS=Homo sapiens GN=GPR171 PE=2 SV=1
Q86SQ6	Q9Y2X9	Q9HC29	Q9NRR4	Q96N23	095202	Q92622	P51816	O60281	Q99758	O14626
GP123_HUMAN	ZN281_HUMAN	NOD2_HUMAN	RNC_HUMAN	CL063_HUMAN	LETMI_HUMAN	K0226_HUMAN	AFF2_HUMAN	ZN292_HUMAN	ABCA3_HUMAN	GP171_HUMAN
305	306	307	308	309	310	311	312	313	314	315

N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Structural constituents (extracellular matrix)	Cellular process (regulation of gene transcription and translation)	Immune response	Cellular process (cell proliferation and differentiation)	Cell interaction and communication	Cellular process (regulation of gene transcription and translation)	Structural constituents (actomyosin structure)	Cell interaction and communication (cell adhesion)	Signaling pathway (G protein- coupled receptor)	Cellular process (cell proliferation and differentiation)	Others (D-gluconate catabolic process)	Structural constituents (extracellular matrix)	Structural constituents (lamin filament structure)	Cellular process (organ development)
Fibril-associated collagens with interrupted helices (FACIT) family	Ro 60 kDa family	Unknown	UTX family	Importin beta family, Importin beta-2 subfamily	Vestigial family	Formin homology family	MAGUK family	G-protein coupled receptor 2 family, Adhesion G-protein coupled receptor (ADGR) subfamily	Unknown	Gluconokinase GntK/GntV family	Integrin alpha chain family	Intermediate filament family	Unknown
115,221	60,671	13,380	154,177	101,388	30,948	117,213	195,459	162,717	109,935	20,578	114,489	69,948	82,512
COL19A1	R060	IGKV4-1	KDM6A	TNP02	VGL14	FMNL3	TJPI	ADGRLI	SART3	IDNK	ITGA9	LMNB2	APBA2
Collagen alpha-1(XIX) chain OS=Homo sapiens GN=COL19A1 PE=1 SV=3	60 kDa SS-A/Ro ribonucleoprotein OS=Homo sapiens GN=TROVE2 PE=1 SV=2	Ig kappa chain V-IV region (Fragment) OS=Homo sapiens GN=IGKV4-1 PE=4 SV=1	Lysine-specific demethylase 6A OS=Homo sapiens GN=KDM6A PE=1 SV=2	Transportin-2 OS=Homo sapiens GN=TNPO2 PE=1 SV=3	Transcription cofactor vestigial-like protein 4 OS=Homo sapiens GN=VGLL4 PE=1 SV=4	Formin-like protein 3 OS=Homo sapiens GN=FMNL3 PE=1 SV=3	Tight junction protein ZO-1 OS=Homo sapiens GN=TJP1 PE=1 SV=3	Adhesion G protein-coupled receptor LJ (Calcium-independent alpha-latrotoxin receptor 1) (CIRL-1) (Latrophilin-1) (Lectomedin-2)	Squamous cell carcinoma antigen recognized by T-cells 3 OS=Homo sapiens GN=SART3 PE=1 SV=1	Probable gluconokinase OS=Homo sapiens GN=C9orf103 PE=2 SV=1	Integrin alpha-9 OS=Homo sapiens GN=ITGA9 PE=1 SV=2	Lamin-B2 OS=Homo sapiens GN=LMNB2 PE=1 SV=3	Amyloid beta A4 precursor protein- binding family A member 2 OS=Homo sapiens GN=APBA2 PE=1 SV=3
Q14993	P10155	P06312	015550	014787	Q14135	Q8IVF7	Q07157	O94910	Q15020	Q5T6J7	Q13797	Q03252	Q99767
COJA1_HUMAN	R060_HUMAN	KV401_HUMAN	KDM6A_HUMAN	TNPO2_HUMAN	VGLL4_HUMAN	FMNL3_HUMAN	ZOI_HUMAN	LPHNI_HUMAN	SART3_HUMAN	GNTK_HUMAN	ITA9_HUMAN	LMNB2_HUMAN	APBA2_HUMAN
316	317	318	319	320	321	322	323	324	325	326	327	328	329

N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Structural constituents (cilia structure)	Cellular process (regulation of centriole replication)	Others (Rho guanyl-nucleotide exchange factor activity)	Cellular process (cell proliferation and differentiation)	Unknown	Cellular process (regulation of gene transcription and translation)	Cellular process (cell proliferation and differentiation)	Cell interaction and communication	Cellular process (cell proliferation and differentiation)	Cell interaction and communication	Cell interaction and communication (cell adhesion)	Structural constituents (cilia structure)	Cell interaction and communication (signal transduction)
Unknown	Unknown	Unknown	TEX15 family	Unknown	Krueppel C2H2-type zinc- finger protein family	NLRP family	Protein kinase superfamily, CAMK Ser/Thr protein kinase family, CAMK subfamily; MAGUK family	TRAFAC class myosin-kinesin ATPase superfamily, Myosin family; Protein kinase superfamily, STE Ser/Thr protein kinase family	Glutamate-gated ion channel (TC 1.A.10.1) family, NR2A/GRIN2A subfamily	Neurexin family	CFAP46 family	Unknown
125,446	295,176	155,439	315,336	70,519	200,825	124,733	105,123	151,829	165,283	140,690	303,500	190,438
FBFI	CEP295	PLEKHGI	TEX15	SH3D21	ZNF646	NLRP14	CASK	MYO3B	GRIN2A	CNTNAP3	CFAP46	SIPA1L2
Fas-binding factor 1 OS=Homo sapiens GN=FBF1 PE=1 SV=2	Centrosomal protein of 295 kDa	Pleckstrin homology domain-containing family G member 1 OS=Homo sapiens GN=PLEKHG1 PE=1 SV=2	Testis-expressed sequence 15 protein OS=Homo sapiens GN=TEX15 PE=1 SV=1	SH3 domain-containing protein Cl orf113 OS=Homo sapiens GN=Cl orf113 PE=1 SV=2	Zinc finger protein 646 OS=Homo sapiens GN=ZNF646 PE=2 SV=1	NACHT, LRR and PYD domains- containing protein 14 OS=Homo sapiens GN=NLRP14 PE=2 SV=1	Peripheral plasma membrane protein CASK OS=Homo sapiens GN=CASK PE=1 SV=3	Myosin-IIIb OS=Homo sapiens GN=MYO3B PE=2 SV=3	Glutamate [NMDA] receptor subunit epsilon-1 OS=Homo sapiens GN=GRIN2A PE=1 SV=1	Contactin-associated protein-like 3 OS=Homo sapiens GN=CNTNAP3 PE=2 SV=3	Cilia- and flagella-associated protein 46 (Tetratricopeptide repeat protein 40)	Signal-induced proliferation-associated 1-like protein 2 OS=Homo sapiens GN=SIPA1L2 PE=1 SV=2
Q8TES7	Q9C0D2	09ULL1	Q9BXT5	A4FU49	015015	Q86W24	014936	Q8WXR4	Q12879	Q9BZ76	Q8IYW2	Q9P2F8
FBF1_HUMAN	K1731_HUMAN	PKHG1_HUMAN	TEX15_HUMAN	CA113_HUMAN	ZN646_HUMAN	NAL14_HUMAN	CSKP_HUMAN	MY 03B_HUMAN	NMDE1_HUMAN	CNTP3_HUMAN	CJ092_HUMAN	SIIL2_HUMAN
330	331	332	333	334	335	336	337	338	339	340	341	342

N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ion binding and transport (iron)	Ion binding and transport (metal)	Immune response (response to virus)	Signaling pathway (ephrin receptor)	Cell interaction and communication (cell adhesion)	Immune response (response to virus)	Cell interaction and communication (exocytosis)	Cellular process (autophagy)	Unknown	Cell interaction and communication (signal transduction)	Cell interaction and communication (cell adhesion)	Cellular process (regulation of gene transcription and translation)
Aconitase/IPM isomerase family	Unknown	SEC3 family	Unknown	Beta-catenin family	Ficolin lectin family	Unknown	SEC16 family	Unknown	Unknown	Immunoglobulin superfamily	HIBADH-related family, NP60 subfamily
105,059	117,103	101,982	138,066	81,745	32,903	160,403	116,604	197,466	416,469	134,742	60,547
IREB2	PDZRN4	EXOCI	ANKSIB	dDf	FCN3	RIMS2	SEC16B	NWD2	BSN	ISHAN	GLYRI
Iron-responsive element-binding protein 2 OS=Homo sapiens GN=IREB2 PE=1 SV=2	PDZ domain-containing RING finger protein 4 OS=Homo sapiens GN=PDZRN4 PE=1 SV=3	Exocyst complex component 1 OS=Homo sapiens GN=EXOC1 PE=1 SV=4	Ankyrin repeat and sterile alpha motif domain-containing protein 1B OS=Homo sapiens GN=ANKS1B PE=1 SV=1	Junction plakoglobin OS=Homo sapiens GN=JUP PE=1 SV=3	Ficolin-3 OS=Homo sapiens GN=FCN3 PE=1 SV=2	Regulating synaptic membrane exocytosis protein 2 OS=Homo sapiens GN=RIMS2 PE=1 SV=2	Protein transport protein Sec16B OS=Homo sapiens GN=SEC16B PE=1 SV=2	NACHT and WD repeat domain- containing protein 2 (Leucine-rich repeat and WD repeat-containing protein KIAA1239)	Protein bassoon OS=Homo sapiens GN=BSN PE=1 SV=4	Nephrin OS=Homo sapiens GN=NPHS1 PE=1 SV=1	Putative oxidoreductase GLYR1 OS=Homo sapiens GN=GLYR1 PE=1 SV=3
P48200	Q6ZMN7	0LVN6D	Q7Z6G8	P14923	075636	Q9UQ26	Q96JE7	ULU90	Q9UPA5	O60500	Q49A26
IREB2_HUMAN	PZRN4_HUMAN	EXOC1_HUMAN	ANSIB_HUMAN	PLAK_HUMAN	FCN3_HUMAN	RIMS2_HUMAN	SC16B_HUMAN	K1239_HUMAN	BSN_HUMAN	NPHN_HUMAN	GLYR1_HUMAN
343	344	345	346	347	348	349	350	351	352	353	354

N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Inflammatory response	Others (UDP-N- acetylglucosamine metabolic process)	Cell interaction and communication (signal transduction)	Signaling pathway	Cellular process (regulation of gene transcription and translation)	Structural constituents (microtubule cytoskeletal structure)	Cell interaction and communication	Signaling pathway (G protein- coupled receptor)	Ion binding and transport (iron)	Cell interaction and communication (cell junction)	Structural constituents (actin cytoskeletal structure)	Cellular process (organ development)	Cell interaction and communication
Unknown	Unknown	Unknown	Dapper family	Periaxin family	WD repeat EMAP family	Chloride channel (TC 2.A.49) family, ClC-3/CLCN3 subfamily	G-protein coupled receptor 2 family, Adhesion G-protein coupled receptor (ADGR) subfamily	Ferritin family	Unknown	Protein kinase superfamily, AGC Ser/Thr protein kinase family, DMPK subfamily	Unknown	SCARA5 family
48,198	76,931	124,264	90,174	154,905	217,899	90,966	333,368	22,644	82,682	197,307	58,420	53,994
IKBKG	GFPT2	SRGAP1	DACTI	PRX	EML6	CLCN3	ADGRG4	FTH1P19	SDCCAG8	CDC42BPA	BTBD3	SCARA5
NF-kappa-B essential modulator OS=Homo sapiens GN=IKBKG PE=1 SV=2	Glucosaminefructose-6-phosphate aminotransferase [isomerizing] 2 OS=Homo sapiens GN=GFPT2 PE=1 SV=3	SLIT-ROBO Rho GTPase-activating protein 1 OS=Homo sapiens GN=SRGAP1 PE=1 SV=1	Dapper homolog 1 OS=Homo sapiens GN=DACT1 PE=2 SV=2	Periaxin OS=Homo sapiens GN=PRX PE=1 SV=1	Echinoderm microtubule-associated protein-like 6 OS=Homo sapiens GN=EML6 PE=2 SV=2	H(+)/Cl(-) exchange transporter 3 OS=Homo sapiens GN=CLCN3 PE=1 SV=2	Adhesion G-protein coupled receptor G4 (G-protein coupled receptor 112)	Putative ferritin heavy polypeptide-like 19 OS=Homo sapiens GN=FTHL19 PE=5 SV=1	Serologically defined colon cancer antigen 8 OS=Homo sapiens GN=SDCCAG8 PE=1 SV=1	Serine/threonine-protein kinase MRCK alpha OS=Homo sapiens GN=CDC42BPA PE=1 SV=1	BTB/POZ domain-containing protein 3 OS=Homo sapiens GN=BTBD3 PE=2 SV=1	Scavenger receptor class A member 5 OS=Homo sapiens GN=SCARA5 PE=2 SV=1
Q9Y6K9	O94808	Q7Z6B7	Q9NYF0	Q9BXM0	Q6ZMW3	P51790	Q8IZF6	P0C7X4	Q86SQ7	Q5VT25	Q9Y2F9	Q6ZMJ2
NEMO_HUMAN	GFPT2_HUMAN	SRGP1_HUMAN	DACT1_HUMAN	PRAX_HUMAN	EMAL6_HUMAN	CLCN3_HUMAN	GP112_HUMAN	FHL19_HUMAN	SDCG8_HUMAN	MRCKA_HUMAN	BTBD3_HUMAN	SCAR5_HUMAN
355	356	357	358	359	360	361	362	363	364	365	366	367

N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Immune response	Cellular process (regulation of gene transcription and translation)	Cell interaction and communication (cell adhesion)	Unknown	Protein metabolism (ubiquitin- dependent protein catabolic process)	Cell interaction and communication	Cellular process (regulation of gene transcription and translation)	Structural constituents (actin cytoskeletal structure)	Lipid metabolism	Cell interaction and communication	Cell interaction and communication (endocytosis)	Cellular process (cell apoptosis)	Immune response (response to bacteria, fungi)	Cellular process (cell apoptosis)
Unknown	TRAFAC class translation factor GTPase superfamily, Classic translation factor GTPase family, ERF3 subfamily	Unknown	SABRE family	Cullin family	TRAFAC class myosin-kinesin ATPase superfamily, Kinesin family, Kinesin subfamily	Krueppel C2H2-type zinc- finger protein family	Ena/VASP family	Nuclear hormone receptor family, NR1 subfamily	Unknown	Cation transport ATPase (P- type) (TC 3.A.3) family, Type IV subfamily	Unknown	Transferrin family	PTPA-type PPIase family
79,663	68,883	115,687	253,700	281,229	109,685	65,622	44,620	49,903	52,965	129,304	102,803	78,182	40,668
APPLJ	GSPT2	EMILIN2	KIAA0100	cur9	KIF5B	ZNF587	EVL	PPARD	RUFY3	ATP9B	ITCH	LTF	PTPA
DCC-interacting protein 13-alpha OS=Homo sapiens GN=APPL1 PE=1 SV=1	Eukaryotic peptide chain release factor GTP-binding subunit ERF3B OS=Homo sapiens GN=GSPT2 PE=1 SV=2	EMILIN-2 OS=Homo sapiens GN=EMILIN2 PE=1 SV=2	Protein KIAA0100 (Antigen MLAA-22) (Breast cancer-overexpressed gene 1 protein)	Cullin-9 OS=Homo sapiens GN=CUL9 PE=1 SV=2	Kinesin-1 heavy chain OS=Homo sapiens GN=KIF5B PE=1 SV=1	Zinc finger protein 587 OS=Homo sapiens GN=ZNF587 PE=2 SV=1	Ena/VASP-like protein OS=Homo sapiens GN=EVL PE=1 SV=2	Peroxisome proliferator-activated receptor delta OS=Homo sapiens GN=PPARD PE=1 SV=1	Protein RUFY3 OS=Homo sapiens GN=RUFY3 PE=1 SV=1	Probable phospholipid-transporting ATPase IIB OS=Homo sapiens GN=ATP9B PE=2 SV=4	E3 ubiquitin-protein ligase Itchy homolog OS=Homo sapiens GN=ITCH PE=1 SV=2	Lactotransferrin OS=Homo sapiens GN=LTF PE=1 SV=6	Serine/threonine-protein phosphatase 2A regulatory subunit B~ OS=Homo sapiens GN=PPP2R4 PE=1 SV=3
Q9UKG1	Q8IYDI	Q9BXX0	Q14667	Q8IWT3	P33176	Q96SQ5	Q9U108	Q03181	Q7L099	043861	Q96J02	P02788	Q15257
DP13A_HUMAN	ERF3B_HUMAN	EMIL2_HUMAN	K0100_HUMAN	CUL9_HUMAN	KINH_HUMAN	ZN587_HUMAN	EVL_HUMAN	PPARD_HUMAN	RUFY3_HUMAN	ATP9B_HUMAN	ITCH_HUMAN	TRFL_HUMAN	PTPA_HUMAN
368	369	370	371	372	373	374	375	376	377	378	379	380	381

N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cell interaction and communication (cell adhesion)	Cellular process (organ development)	Cell interaction and communication (Cell interaction and communication (synaptic transmission))	Others (response to stimuli: DNA damage stimulus)	Cellular process (mRNA splicing)	Structural constituents (extracellular matrix)	Cell interaction and communication (signal transduction)	Inflammatory response	Cell interaction and communication (cell adhesion)	Unknown	Cellular process (regulation of gene transcription and translation)	Cellular process (autophagy)	Cellular process (cell division)
Lysyl oxidase family	Nuclear hormone receptor family, NR2 subfamily	Glutamate-gated ion channel (TC 1.A.10.1) family, GRID1 subfamily	Unknown	PRP31 family	Fibrillar collagen family	Unknown	Unknown	Unknown	Unknown	Krueppel C2H2-type zinc- finger protein family	Unknown	WD repeat CDC20/Fizzy family
86,725	42,979	112,131	68,554	55,456	141,785	149,814	91,300	506,273	184,533	50,802	80,680	57,335
ГОХГ2	NR2F6	GRIDI	FANCG	PRPF31	COL2AI	CASKINI	AFAP1L2	FATI	SAMD9L	ZNF70	GRAMDIA	CDC20B
Lysyl oxidase homolog 2 OS=Homo saniens GN=LOXL2 PE=1 SV=1	Nuclear receptor subfamily 2 group F member 6 OS=Homo sapiens GN=NR2F6 PE=1 SV=2	Glutamate receptor delta-1 subunit OS=Homo sapiens GN=GRID1 PE=2 SV=2	Fanconi anemia group G protein OS=Homo sapiens GN=FANCG PE=1 SV=1	U4/U6 small nuclear ribonucleoprotein Prp31 0S=Homo sapiens GN=PRPF31 PE=1 SV=2	Collagen alpha-1(II) chain OS=Homo sapiens GN=COL2A1 PE=1 SV=3	Caskin-1 OS=Homo sapiens GN=CASKIN1 PE=1 SV=1	Actin filament-associated protein 1-like 2 OS=Homo sapiens GN=AFAP1L2 PE=1 SV=1	Protocadherin Fat 1 (Cadherin family member 7) (Cadherin-related tumor suppressor homolog) (Protein fat homolog) [Cleaved into: Protocadherin Fat 1, nuclear form]	Sterile alpha motif domain-containing protein 9-like (SAM domain-containing protein 9-like)	Zinc finger protein 70 OS=Homo sapiens GN=ZNF70 PE=2 SV=2	GRAM domain-containing protein 1A OS=Homo sapiens GN=GRAMD1A PE=1 SV=2	Cell division cycle protein 20 homolog B OS=Homo sapiens GN=CDC20B PE=2 SV=2
Q9Y4K0	P10588	09ULK0	015287	Q8WWY3	SIZN6D	Q8WXD9	Q8N4X5	Q14517	Q8IVG5	Q9UC06	Q96CP6	Q86Y33
LOXL2_HUMAN	NR2F6_HUMAN	GRID1_HUMAN	FANCG_HUMAN	PRP31_HUMAN	CO2A1_HUMAN	CSKI1_HUMAN	AF1L2_HUMAN	FATI_HUMAN	SAM9L_HUMAN	ZNF70_HUMAN	GRM1A_HUMAN	CD20B_HUMAN
382	383	384	385	386	387	388	389	390	391	392	393	394

N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Unknown	Inflammatory response (unfolded protein response)	Signaling pathway (G protein- coupled receptor)	Cell interaction and communication (cell adhesion)	Unknown	Others (copper ion metabolism)	Cell interaction and communication	Cell interaction and communication	Cellular process (mRNA splicing)	Structural constituents (actin cytoskeletal structure)	Cellular process (cell apoptosis)	Inflammatory response	Cellular process (organ development)	Inflammatory response
Unknown	Thrombospondin family	G-protein coupled receptor 1 family	Vinculin/alpha-catenin family	Unknown	Cation transport ATPase (P- type) (TC 3.A.3) family, Type IB subfamily	COG5 family	Synaptotagmin family	Polyadenylate-binding protein type-1 family	BRAG family	Protein kinase superfamily, STE Ser/Thr protein kinase family, MAP kinase kinase subfamily	Peptidase S1 family	POTE family; Actin family	Fetuin family
86,436	82,860	86,453	81,896	104,880	163,373	92,743	47,573	70,671	108,314	37,492	39,030	121,445	39,341
QRICHI	СОМР	RXFP2	CTNNALI	ECT2L	ATP7A	cods	SYTI	PABPCI	IQSECI	MAP2K6	HPR	POTEF	AHSG
Glutamine-rich protein 1 OS=Homo sapiens GN=QRICH1 PE=1 SV=1	Cartilage oligomeric matrix protein OS=Homo sapiens GN=COMP PE=1 SV=2	Relaxin receptor 2 OS=Homo sapiens GN=RXFP2 PE=1 SV=1	Alpha-catulin OS=Homo sapiens GN=CTNNAL1 PE=1 SV=2	Epithelial cell-transforming sequence 2 oncogene-like OS=Homo sapiens GN=ECT2L PE=2 SV=2	Copper-transporting ATPase 1 OS=Homo sapiens GN=ATP7A PE=1 SV=3	Conserved oligomeric Golgi complex subunit 5 OS=Homo sapiens GN=COG5 PE=1 SV=2	Synaptotagmin-1 OS=Homo sapiens GN=SYT1 PE=1 SV=1	Polyadenylate-binding protein 1 OS=Homo sapiens GN=PABPC1 PE=1 SV=2	IQ motif and SEC7 domain-containing protein 1 OS=Homo sapiens GN=IQSEC1 PE=1 SV=1	Dual specificity mitogen-activated protein kinase kinase 6 OS=Homo sapiens GN=MAP2K6 PE=1 SV=1	Haptoglobin-related protein OS=Homo sapiens GN=HPR PE=1 SV=2	POTE ankyrin domain family member F OS=Homo sapiens GN=POTEF PE=1 SV=2	Alpha-2-HS-glycoprotein OS=Homo sapiens GN=AHSG PE=1 SV=1
Q2TAL8	P11474	Q8WXD0	Q9UBT7	Q008S8	Q04656	Q9UP83	P21579	P11940	Q6DN90	P52564	P00739	A5A3E0	P02765
QRIC1_HUMAN	COMP_HUMAN	RXFP2_HUMAN	CTNL1_HUMAN	ECT2L_HUMAN	ATP7A_HUMAN	COG5_HUMAN	SYT1_HUMAN	PABP1_HUMAN	IQEC1_HUMAN	MP2K6_HUMAN	HPTR_HUMAN	POTEF_HUMAN	FETUA_HUMAN
395	396	397	398	399	400	401	402	403	404	405	406	407	408

N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ion binding and transport (zinc)	Lipid metabolism	Lipid metabolism	Others (response to stimuli: mechanical stimulus)	Cellular process (regulation of telomere maintenance)	Cellular process (organ development)	Cellular process (organ development)	Cellular process (organ development)	Cellular process (cell apoptosis)	Others (serine-type endopeptidase inhibitor activity)	Cell interaction and communication (signal tranduction)	Cellular process (regulation of gene transcription and translation)	Cellular process (organ development)
Unknown	Peptidase S1 family, Plasminogen subfamily	Apolipoprotein C2 family	Polycystin family	Unknown	Chondroitin N- acetylgalactosaminyltransferase family	UTX family	LTBP family	Плкпоwn	Unknown	Unknown	IWS1 family	Unknown
265,618	501,319	11,284	272,514	241,645	91,784	176,632	186,796	162,505	27,824	212,711	91,955	70,547
ZDBF2	LPA	APOC2	PKD1L2	YLPMI	CHSYI	KDM6B	LTBP1	UACA	WFDC8	DENND4C	ISMI	MBTD1
ser-containing sapiens SV=3	-Homo sapiens	Apo-CII) (ApoC-) [Cleaved into: [(ProapoC-II)]	e protein 1-like =PKD1L2	; protein 1 N=YLPM1 PE=1	se l HSY1 PE=1	e 6B M6B PE=1	factor beta- sapiens	d-coil OS=Homo V=2	ain protein DC8	otein 4C ND4C	Homo =2	rotein 1 BTD1 PE=1
DBF4-type zinc finger-containing protein 2 OS=Homo sapiens GN=ZDBF2 PE=1 SV=3	Apolipoprotein(a) OS=Homo sapiens GN=LPA PE=1 SV=1	Apolipoprotein C-II (Apo-CII) (ApoC- II) (Apolipoprotein C2) [Cleaved into: Proapolipoprotein C-II (ProapoC-II)]	Polycystic kidney disease protein 1-like 2 OS-Homo sapiens GN=PKD1L2 PE=1 SV=3	YLP motif-containing pro OS=Homo sapiens GN=N SV=3	Chondroitin sulfate synthase 1 OS=Homo sapiens GN=CHSY1 PE=1 SV=3	Lysine-specific demethylase 6B OS=Homo sapiens GN=KDM6B PE=1 SV=3	Latent-transforming growth factor beta- binding protein 1 OS=Homo sapiens GN=LTBP1 PE=1 SV=4	Uveal autoantigen with coiled-coil domains and ankyrin repeats OS=Homo sapiens GN=UACA PE=1 SV=2	WAP four-disulfide core domain protein 8 OS=Homo sapiens GN=WFDC8 PE=2 SV=2	DENN domain-containing protein 4C OS=Homo sapiens GN=DENND4C PE=1 SV=2	Protein IWS1 homolog OS=Homo sapiens GN=IWS1 PE=1 SV=2	MBT domain-containing protein 1 OS=Homo sapiens GN=MBTD1 PE=1 SV=2
Q9HCK1 DBF4-type zinc fing protein 2 OS=Homo GN=ZDBF2 PE=1 5	P08519 Apolipoprotein(a) OS= GN=LPA PE=1 SV=1	P02655 Apolipoprotein C-II (Ap II) (Apolipoprotein C2) Proapolipoprotein C-II (Q7Z442 Polycystic kidney disease 2 OS=Homo sapiens GN PE=1 SV=3	notif-containing of the second	Q86X52 Chondroitin sulfate synthe OS=Homo sapiens GN=C SV=3	O15054 Lysine-specific demethylas OS=Homo sapiens GN=KL SV=3	Q14766 Latent-transforming growth binding protein 1 OS=Homc GN=LTBP1 PE=1 SV=4	Q9BZF9 Uveal autoantigen with coile domains and ankyrin repeats sapiens GN=UACA PE=1 S	Q8IUA0 WAP four-disulfide core dom 8 OS=Homo sapiens GN=WF PE=2 SV=2	Q5VZ89 DENN domain-containing pr OS=Homo sapiens GN=DEN PE=1 SV=2	Q96ST2 Protein IWS1 homolog OS=1 sapiens GN=IWS1 PE=1 SV	Q05BQ5 MBT domain-containing p OS=Homo sapiens GN=M SV=2
				YLP motif-containing OS=Homo sapiens GN SV=3								

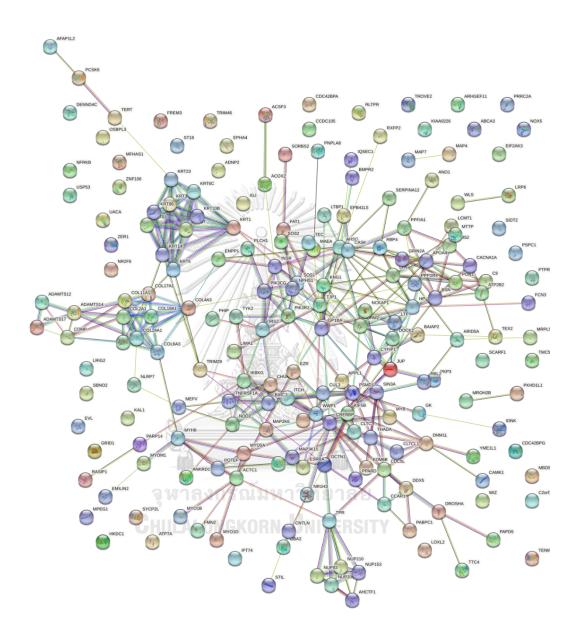
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Signaling pathway (G protein- coupled receptor)	Cell interaction and communication	Protein metabolism (ubiquitin- dependent protein catabolic process)	Cellular process (mRNA splicing)	Signaling pathway	Cellular process (cell division)	Cellular process (organ development)	Cell interaction and communication	Cell interaction and communication	Cellular process (cell division)	Cellular process (organ development)	Unknown	Structural constituents (extracellular matrix)	Cellular process (regulation of gene transcription and translation)
Unknown	Unknown	Peptidase C19 family	4E-T/EIF4E-T family	Unknown	BCOR family	HEM-1/HEM-2 family	Dopey family	NUP186/NUP192/NUP205 family	TRAFAC class myosin-kinesin ATPase superfamily, Kinesin family	Tenascin family, Teneurin subfamily	FILIP1 family	Fibrillar collagen family	MYTI family
76,966	105,202	181,656	108,201	309,352	182,526	128,790	277,355	227,922	202,308	305,011	130,382	181,065	122,329
RGS9	IdmM	USP32	EIF4ENIF1	UBR5	BCORLI	NCKAPI	DOPIA	NUP205	KIF13A	TENMI	FILIPIL	COLIIAI	MYTI
Regulator of G-protein signaling 9 OS=Homo sapiens GN=RGS9 PE=1 SV=1	NEDD4-like E3 ubiquitin-protein ligase WWP1 OS=Homo sapiens GN=WWP1 PE=1 SV=1	Ubiquitin carboxyl-terminal hydrolase 32 OS=Homo sapiens GN=USP32 PE=1 SV=1	Eukaryotic translation initiation factor 4E transporter OS=Homo sapiens GN=EIF4ENIF1 PE=1 SV=2	E3 ubiquitin-protein ligase UBR5 OS=Homo sapiens GN=UBR5 PE=1 SV=2	BCL-6 corepressor-like protein 1 OS=Homo sapiens GN=BCORL1 PE=1 SV=1	Nck-associated protein 1 OS=Homo sapiens GN=NCKAP1 PE=1 SV=1	Protein dopey-1 OS=Homo sapiens GN=DOPEY1 PE=1 SV=1	Nuclear pore complex protein Nup205 OS=Homo sapiens GN=NUP205 PE=1 SV=2	Kinesin-like protein KIF13A OS=Homo sapiens GN=KIF13A PE=1 SV=2	Teneurin-1 OS=Homo sapiens GN=ODZ1 PE=1 SV=2	Filamin A-interacting protein 1-like OS=Homo sapiens GN=FIL/P1L PE=1 SV=2	Collagen alpha-1(XI) chain OS=Homo sapiens GN=COL11A1 PE=1 SV=4	Myelin transcription factor 1 OS=Homo sapiens GN=MYT1 PE=1 SV=2
075916	0М0Н6Д	Q8NFA0	Q9NRA8	095071	Q5H9F3	Q9Y2A7	Q5JWR5	Q92621	6H1H6D	Q9UKZ4	Q4L180	P12107	Q01538
RGS9_HUMAN	WWP1_HUMAN	UBP32_HUMAN	4ET_HUMAN	UBR5_HUMAN	BCORL_HUMAN	NCKP1_HUMAN	DOP1_HUMAN	NU205_HUMAN	KII3A_HUMAN	TEN1_HUMAN	FILIL_HUMAN	COBA1_HUMAN	MYT1_HUMAN
422	423	424	425	426	427	428	429	430	431	432	433	434	435

N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Structural constituents (microtubule cytoskeletal structure)	Others (regulation of GTPase activity)	Others (flagellated sperm motility)	Unknown	Cellular process (organ development)	Cell interaction and communication (signal transduction)	Cell interaction and communication (cell adhesion)	Unknown	Cell interaction and communication (cell adhesion)	Signaling pathway	Cell interaction and communication (synaptic transmission)	Cellular process (regulation of gene transcription and translation)	Signaling pathway (MAPK)
TRAFAC class myosin-kinesin ATPase superfamily, Kinesin family, KIF27 subfamily	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Uridine kinase family	FRAS1 family	Protein kinase superfamily, AGC Ser/Thr protein kinase family, cGMP subfamily	TRIM/RBCC family	Unknown	Protein kinase superfamily, Tyr protein kinase family, Insulin receptor subfamily
150,587	200,029	105,883	168,229	109,411	170,679	177,676	61,141	238,179	76,364	83,424	251,112	156,333
KIF7	SIPAILI	CFAP69	PLEKHH2	CCDC66	TOPBPI	ADAMTS12	UCKLI	FREM3	PRKGI	TRIM46	ZNF318	INSR
Kinesin-like protein KIF7 OS=Homo sapiens GN=KIF7 PE=1 SV=2	Signal-induced proliferation-associated 1-like protein 1 OS=Homo sapiens GN=SIPA1L1 PE=1 SV=4	Uncharacterized protein C70rf63 OS=Homo sapiens GN=C70rf63 PE=2 SV=3	Pleckstrin homology domain-containing family H member 2 OS=Homo sapiens GN=PLEKHH2 PE=2 SV=2	Coiled-coil domain-containing protein 66 OS=Homo sapiens GN=CCDC66 PE=1 SV=4	DNA topoisomerase 2-binding protein 1 OS=Homo sapiens GN=TOPBP1 PE=1 SV=2	A disintegrin and metalloproteinase with thrombospondin motifs 12 OS=Homo sapiens GN=ADAMTS12 PE=1 SV=2	Uridine-cytidine kinase-like 1 OS=Homo sapiens GN=UCKL1 PE=1 SV=2	FRAS1-related extracellular matrix protein 3 OS=Homo sapiens GN=FREM3 PE=2 SV=1	cGMP-dependent protein kinase 1 OS=Homo sapiens GN=PRKG1 PE=1 SV=3	Tripartite motif-containing protein 46 OS=Homo sapiens GN=TRIM46 PE=2 SV=2	Zinc finger protein 318 OS=Homo sapiens GN=ZNF318 PE=1 SV=2	Insulin receptor OS=Homo sapiens GN=INSR PE=1 SV=3
Q2M1P5	043166	A5D8W1	Q8IVE3	A2RUB6	Q92547	P58397	SZWN9D	P0C091	Q13976	Q7Z4K8	Q5VUA4	P06213
KIF7_HUMAN	SIIL1_HUMAN	CG063_HUMAN	PKHH2_HUMAN	CCD66_HUMAN	TOPB1_HUMAN	ATS12_HUMAN	UCKL1_HUMAN	FREM3_HUMAN	KGP1_HUMAN	TRI46_HUMAN	ZN318_HUMAN	INSR_HUMAN
436	437	438	439	440	441	442	443	444	445	446	447	448

N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cellular process (regulation of gene transcription and translation)	Cellular process (regulation of gene transcription and translation)	Cellular process (cell proliferation and differentiation)	Cellular process (cell proliferation and differentiation)	Cellular process (cell apoptosis)	Lipid metabolism	Cellular process (cell division)	Cellular process (cell division)	Immune response (cell surface receptor)	Cellular process (cell proliferation and differentiation)	Protein metabolism (histone H4 acetylation)	Glucose metabolism	Structural constituents (cilia structure)	Cellular process (regulation of gene transcription and translation)
TET family	Unknown	Patched family	Unknown	Unknown	Unknown	Unknown	Cullin family	Unknown	Unknown	Unknown	PI3K p85 subunit family	FAM161 family	Unknown
223,811	142,752	130,544	163,810	86,439	88,477	270,884	88,930	109,450	65,681	102,023	81,545	73,647	64,074
TET2	ARID4A	PTCH2	WDR7	NOX5	PNPLA8	TTC28	CUL3	CBLB	HEATR9	ZZZ3	PIK3R2	FAMI6IB	ARID5A
Probable methylcytosine dioxygenase TET2 OS=Homo sapiens GN=TET2 PE=1 SV=3	AT-rich interactive domain-containing protein 4A OS=Homo sapiens GN=ARID4A PE=1 SV=3	Protein patched homolog 2 OS=Homo sapiens GN=PTCH2 PE=2 SV=2	WD repeat-containing protein 7 OS=Homo sapiens GN=WDR7 PE=2 SV=2	NADPH oxidase 5 OS=Homo sapiens GN=NOX5 PE=1 SV=1	Calcium-independent phospholipase A2-gamma OS=Homo sapiens GN=PNPLA8 PE=1 SV=1	Tetratricopeptide repeat protein 28 OS=Homo sapiens GN=TTC28 PE=1 SV=4	Cullin-3 OS=Homo sapiens GN=CUL3 PE=1 SV=2	E3 ubiquitin-protein ligase CBL-B OS=Homo sapiens GN=CBLB PE=1 SV=2	Uncharacterized protein C17orf66 OS=Homo sapiens GN=C17orf66 PE=2 SV=2	ZZ-type zinc finger-containing protein 3 OS=Homo sapiens GN=ZZZ3 PE=1 SV=1	Phosphatidylinositol 3-kinase regulatory subunit beta OS=Homo sapiens GN=PIK3R2 PE=1 SV=1	Protein FAM161B OS=Homo sapiens GN=FAM161B PE=2 SV=2	AT-rich interactive domain-containing protein 5A OS=Homo sapiens GN=ARID5A PE=2 SV=2
Q6N021	P29374	Q9Y6C5	Q9Y4E6	096PH1	084N6D	Q96AY4	Q13618	Q13191	A2RTY3	Q8IYH5	000459	Q96MY7	Q03989
TET2_HUMAN	AR14A_HUMAN	PTC2_HUMAN	WDR7_HUMAN	NOX5_HUMAN	PLPL8_HUMAN	TTC28_HUMAN	CUL3_HUMAN	CBLB_HUMAN	CQ066_HUMAN	ZZZ3_HUMAN	P85B_HUMAN	F161B_HUMAN	ARI5A_HUMAN
449	450	451	452	453	454	455	456	457	458	459	460	461	462

N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Protein metabolism (ubiquitin- dependent protein catabolic process)	Cellular process (organ development)	Cell interaction and communication (signal transduction)	Cell interaction and communication	Cellular process (regulation of gene transcription and translation)	Cellular process (regulation of gene transcription and translation)	Unknown	Cellular process (organ development)	Inflammatory response	Structural constituents (microtubule cytoskeletal structure)	Structural constituents (microtubule cytoskeletal structure)	Protein metabolism (regulation of protein secretion)	Cellular process (organ development)
ANKZF1/VMS1 family	Taxilin family	Unknown	Unknown	Krueppel C2H2-type zinc- finger protein family	Mitochondrion-specific ribosomal protein mS39 family	Unknown	Unknown	Protein kinase superfamily, Ser/Thr protein kinase family, I-kappa-B kinase subfamily	CAMSAP1 family	Unknown	Unknown	Unknown
80,927	60,586	88,329	94,104	217,953	78,550	224,321	184,667	84,640	177,972	48,195	115,458	138,734
ANKZFI	TXLNG	DTHDI	USP6NL	RLF	PTCD3	C2orf16	SHANK3	CHUK	CAMSAPI	TBCEL	FRMD4A	JARID2
Ankyrin repeat and zinc finger domain- containing protein 1 OS=Homo sapiens GN=ANKZF1 PE=1 SV=1	Gamma-taxilin OS=Homo sapiens GN=TXLNG PE=1 SV=2	Putative death domain-containing protein FLJ16686 OS=Homo sapiens PE=2 SV=2	USP6 N-terminal-like protein OS=Homo sapiens GN=USP6NL PE=1 SV=3	Zinc finger protein RIf OS=Homo sapiens GN=RLF PE=1 SV=2	Pentatricopeptide repeat-containing protein 3, mitochondrial OS=Homo sapiens GN=PTCD3 PE=1 SV=3	Uncharacterized protein C2orf16 OS=Homo sapiens GN=C2orf16 PE=1 SV=2	SH3 and multiple ankyrin repeat domains protein 3 OS=Homo sapiens GN=SHANK3 PE=1 SV=2	Inhibitor of nuclear factor kappa-B kinase subunit alpha OS=Homo sapiens GN=CHUK PE=1 SV=1	Calmodulin-regulated spectrin- associated protein 1 OS=Homo sapiens GN=CAMSAPI PE=1 SV=2	Tubulin-specific chaperone cofactor E- like protein OS=Homo sapiens GN=TBCEL PE=2 SV=2	FERM domain-containing protein 4A OS=Homo sapiens GN=FRMD4A PE=1 SV=3	Protein Jumonji OS=Homo sapiens GN=JARID2 PE=1 SV=2
Q9H8Y5	Q9NUQ3	Q6ZMT9	Q92738	Q13129	Q96EY7	Q68DN1	Q9BYB 0	015111	Q5T5Y3	Q5QJ74	Q9P2Q2	Q92833
ANKZ1_HUMAN	TXLNG_HUMAN	YD026_HUMAN	US6NL_HUMAN	RLF_HUMAN	PTCD3_HUMAN	CB016_HUMAN	SHAN3_HUMAN	IKKA_HUMAN	CAMP1_HUMAN	TBCEL_HUMAN	FRM4A_HUMAN	JARD2_HUMAN
463	464	465	466	467	468	469	470	471	472	473	474	475

N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cell interaction and communication (signal transduction)	Inflammatory response (ceramide/glycosphingolipid metabolic process)	Cellular process (organ development)	Cellular process (cell division)	Inflammatory response	Cellular process (regulation of gene transcription and translation)	Cellular process (cell proliferation and differentiation)	Cellular process (cell division)	Structural constituents (actomyosin structure)	Immune response (response to virus)	Protein metabolism (peptidyl- lysine modification to peptidyl- hypusine)	Cellular process (cell division)	Cellular process (regulation of gene transcription and translation)	Others (nucleobase-containing compound metabolic process)
Peptidase S26B family	Unknown	Wntless family	Unknown	Unknown	GLI C2H2-type zinc-finger protein family	Class-I pyridine nucleotide- disulfide oxidoreductase family	Unknown	Unknown	TTC4 family	Unknown	MCM family	Krueppel C2H2-type zinc- finger protein family	DEAD box helicase family, DEAH subfamily, DDX11/CHL1 sub-subfamily
19,160	59,977	62,253	192,948	50,495	55,689	70,683	40,079	81,856	44,679	117,175	96,558	77,054	101,811
SEC11B	CERK	STM	PBRMI	TNFRSFIA	GLIS2	TXNRD3	RCCDI	EPB41L5	TTC4	HEATR4	MCM4	ZBTB48	DDX11L8
Putative signal peptidase complex catalytic subunit SEC11B OS=Homo sapiens GN=SEC11B PE=5 SV=1	Ceramide kinase OS=Homo sapiens GN=CERK PE=1 SV=1	Integral membrane protein GPR177 OS=Homo sapiens GN=GPR177 PE=2 SV=2	Protein polybromo-1 OS=Homo sapiens GN=PBRM1 PE=1 SV=1	Tumor necrosis factor receptor superfamily member 1A OS=Homo sapiens GN=TNFRSF1A PE=1 SV=1	Zinc finger protein GLIS2 OS=Homo sapiens GN=GLIS2 PE=1 SV=1	Thioredoxin reductase 3 OS=Homo sapiens GN=TXNRD3 PE=1 SV=2	RCC1 domain-containing protein 1 OS=Homo sapiens GN=RCCD1 PE=1 SV=1	Band 4.1-like protein 5 OS=Homo sapiens GN=EPB41L5 PE=1 SV=3	Tetratricopeptide repeat protein 4 OS=Homo sapiens GN=TTC4 PE=1 SV=3	HEAT repeat-containing protein 4 OS=Homo sapiens GN=HEATR4 PE=1 SV=1	DNA replication licensing factor MCM4 OS=Homo sapiens GN=MCM4 PE=1 SV=5	Zinc finger and BTB domain-containing protein 48 OS=Homo sapiens GN=ZBTB48 PE=1 SV=2	Putative ATP-dependent RNA helicase DDX11-like protein OS=Homo sapiens PE=1 SV=1
POC7V7	Q8TCT0	Q5T9L3	Q86U86	P19438	Q9BZE0	Q86VQ6	A6NED2	Q9HCM4	095801	Q86WZ0	P33991	P10074	A8MPP1
SC11B_HUMAN	CERK1_HUMAN	GP177_HUMAN	PB1_HUMAN	TNR IA_HUMAN	GLIS2_HUMAN	TRXR3_HUMAN	RCCD1_HUMAN	E41L5_HUMAN	TTC4_HUMAN	HEAT4_HUMAN	MCM4_HUMAN	ZBT48_HUMAN	DD11L_HUMAN
476	477	478	479	480	481	482	483	484	485	486	487	488	489


N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cellular process (cell division)	Cellular process (cell division)	Cellular process (regulation of gene transcription and translation)	Cellular process (mRNA splicing)	Cell interaction and communication	Cellular process (regulation of gene transcription and translation)	Cell interaction and communication (cell adhesion)	Signaling pathway (MAPK)	Inflammatory response	Cellular process (organ development)	Cell interaction and communication	Cell interaction and communication	Unknown	Cellular process (regulation of gene transcription and translation)	Cellular process (regulation of gene transcription and translation)
Unknown	TPR family	Krueppel C2H2-type zinc- finger protein family	Unknown	Unknown	Krueppel C2H2-type zinc- finger protein family	Beta-catenin family	Protein-tyrosine phosphatase family, Non-receptor class dual specificity subfamily	Unknown	Unknown	WD repeat WDR81 family	Cation transport ATPase (P- type) (TC 3.A.3) family, Type IV subfamily	Unknown	GLE1 family	SPT20 family
85,515	267,293	87,974	134,357	92,960	119,165	87,082	65,827	116,950	47,495	211,697	160,274		79,836	87,541
IWIS	TPR	ZNF585A	RBM20	DEPDCI	ZNF827	PKP3	DUSP8	MFHASI	CHRDL2	WDR81	ATP10D		GLEI	SUPT20HL2
Single-minded homolog 1 OS=Homo sapiens GN=SIM1 PE=2 SV=2	Nucleoprotein TPR OS=Homo sapiens GN=TPR PE=1 SV=3	Zinc finger protein 585A OS=Homo sapiens GN=ZNF585A PE=1 SV=2	Probable RNA-binding protein 20 OS=Homo sapiens GN=RBM20 PE=1 SV=2	DEP domain-containing protein 1A OS=Homo sapiens GN=DEPDC1A PE=1 SV=1	Zinc finger protein 827 OS=Homo sapiens GN=ZNF827 PE=2 SV=1	Plakophilin-3 OS=Homo sapiens GN=PKP3 PE=1 SV=1	Dual specificity protein phosphatase 8 OS=Homo sapiens GN=DUSP8 PE=2 SV=2	Malignant fibrous histiocytoma- amplified sequence 1 OS=Homo sapiens GN=MFHAS1 PE=1 SV=1	Chordin-like protein 2 OS=Homo sapiens GN=CHRDL2 PE=1 SV=1	WD repeat-containing protein 81 OS=Homo sapiens GN=WDR81 PE=2 SV=1	Probable phospholipid-transporting ATPase VD OS=Homo sapiens GN=ATP10D PE=2 SV=2	Putative exonuclease GOR-like protein OS=Homo sapiens GN=REX01L2P PE=5 SV=2	Nucleoporin GLE1 OS=Homo sapiens GN=GLE1 PE=1 SV=2	Putative protein FAM48B2 OS=Homo sapiens GN=FAM48B2 PE=5 SV=1
P81133	P12270	Q6P3V2	Q5T481	Q5TB30	Q17R98	Q9Y446	Q13202	Q9Y4C4	Q6WN34	Q562E7	Q9P241	A0PJM3	Q53GS7	P0C7V6
SIM1_HUMAN	TPR_HUMAN	Z585A_HUMAN	RBM20_HUMAN	DEPIA_HUMAN	ZN827_HUMAN	PKP3_HUMAN	DUS8_HUMAN	MFHA1_HUMAN	CRDL2_HUMAN	WDR81_HUMAN	AT10D_HUMAN	GORL_HUMAN	GLE1_HUMAN	F48B2_HUMAN
490	491	492	493	494	495	496	497	498	499	500	501	502	503	504

N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cellular process (mRNA splicing)	Cell interaction and communication (signal transduction)	Cell interaction and communication (signal transduction)	Unknown	Others (response to stimuli: drug)	Cell interaction and communication (cell junction)	Others (nucleobase-containing compound metabolic process)	Inflammatory response (ceramide/glycosphingolipid metabolic process)	Inflammatory response (ceramide/glycosphingolipid metabolic process)	Glucose metabolism	Cellular process (cell division)	Cellular process (regulation of gene transcription and translation)	Cellular process (regulation of gene transcription and translation)
SNU66/SART1 family	Unknown	RINT1 family	Unknown	DNA mismatch repair MutL/HexB family	Unknown	37,155 WD repeat BUB3 family	Unknown	Unknown	Hexokinase family	MCM family	Protein kinase superfamily, CK1 Ser/Thr protein kinase family	Unknown
90,255	193,452	90,632	100,400	95,797	97,502	37,155	97,810	125,303	102,545	93,697	142,737	77,163
SARTI	ARAP2	RINTI	IGSF22	PMS2	MICALL2	BUB3	SMPD4	TEX2	HKDCI	MCM8	TTBKI	KBTBD7
U4/U6.U5 tri-snRNP-associated protein 1 OS=Homo sapiens GN=SART1 PE=1 SV=1	Arf-GAP with Rho-GAP domain, ANK repeat and PH domain-containing protein 2 OS=Homo sapiens GN=ARAP2 PE=1 SV=2	RAD50-interacting protein 1 OS=Homo sapiens GN=RINT1 PE=1 SV=1	Immunoglobulin superfamily member 22 OS=Homo sapiens GN=IGSF22 PE=2 SV=2	Mismatch repair endonuclease PMS2 OS=Homo sapiens GN=PMS2 PE=1 SV=1	MICAL-like protein 2 OS=Homo sapiens GN=MICALL2 PE=1 SV=1	Mitotic checkpoint protein BUB3 OS=Homo sapiens GN=BUB3 PE=1 SV=1	Sphingomyelin phosphodiesterase 4 OS=Homo sapiens GN=SMPD4 PE=1 SV=2	Testis-expressed sequence 2 protein OS=Homo sapiens GN=TEX2 PE=1 SV=2	Putative hexokinase HKDC1 OS=Homo sapiens GN=HKDC1 PE=2 SV=2	DNA replication licensing factor MCM8 OS=Homo sapiens GN=MCM8 PE=1 SV=2	Tau-tubulin kinase 1 OS=Homo sapiens GN=TTBK1 PE=1 SV=2	Kelch repeat and BTB domain- containing protein 7 OS=Homo sapiens GN=KBTBD7 PE=2 SV=1
043290	Q8WZ64	Q6NUQ1	Q8N9C0	P54278	Q8IY33	O43684	Q9NXE4	Q8IWB9	Q2TB90	Q9UJA3	Q5TCY1	Q8WVZ9
SNUT1_HUMAN	ARAP2_HUMAN	RINT1_HUMAN	IGS22_HUMAN	PMS2_HUMAN	MILK2_HUMAN	BUB3_HUMAN	NSMA3_HUMAN	TEX2_HUMAN	HKDC1_HUMAN	MCM8_HUMAN	TTBK1_HUMAN	KBTB7_HUMAN
505	506	507	508	509	510	511	512	513	514	515	516	517

N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	NA
Lipid metabolism	Inflammatory response (diacylglycerol metabolic process)	Unknown	Unknown	Unknown	Signaling pathway (G protein- coupled receptor)
Non-lysosomal glucosylceramidase family	Eukaryotic diacylglycerol kinase family	Unknown	Unknown	REX01/REX03 family	G-protein coupled receptor 2 family, Adhesion G-protein coupled receptor (ADGR) subfamily
104,649	82,630	124,189	162,423	131,510	146,151
GBA2	DGKA	TBC1D31	Clorf167	REXOI	ADGRA3
Non-lysosomal glucosylceramidase OS=Homo sapiens GN=GBA2 PE=1 SV=2	Diacylglycerol kinase alpha OS=Homo sapiens GN=DGKA PE=1 SV=3	WD repeat-containing protein 67 OS=Homo sapiens GN=WDR67 PE=2 SV=2	Uncharacterized protein Clorf167 OS=Homo sapiens GN=Clorf167 PE=2 SV=2	RNA exonuclease 1 homolog OS=Homo sapiens GN=REXO1 PE=1 SV=2	Adhesion G protein-coupled receptor A3 (G-protein coupled receptor 125)
Q9HCG7	P23743	Q96DN5	Q5SNV9	Q8NIG1	Q8IWK6
518 GBA2_HUMAN	519 DGKA_HUMAN	WDR67_HUMAN	CA167_HUMAN	522 REXOL_HUMAN	523 GP125_HUMAN
518	519	520	521	522	523

Appendix I

Protein-protein interaction networks (Study III)

The protein-protein interaction networks of 212 proteins were investigated using the STRING database limited to *Homo sapiens* (<u>https://string-db.org/cgi/network?taskId=btEmDwQaxSlQ&sessionId=blMUWdLekXNg</u>). The interacting proteins are represented as nodes and their biological relationships as line.

VITA

NAME	Thanchanit Thaipitakwong				
DATE OF BIRTH	29 February 1988				
PLACE OF BIRTH	Trat				
INSTITUTIONS ATTENDED	Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand				
HOME ADDRESS	858/323 Moo 2, Sukhumwit Road, Samrong-Nuea, Samutprakarn, 10270				
PUBLICATION	Thaipitakwong T. and Aramwit P. A review of the efficacy, safety, and clinical implications of naturally derived dietary supplements for dyslipidemia. Am J Cardiovasc Drugs. 2017;17(1):27-35. Thaipitakwong T, Numhom S, Aramwit P. Mulberry leaves and their potential effects against cardiometabolic risks: a review of chemical compositions, biological properties and clinical efficacy. Pharm Biol. 2018;56(1):109-118. Thaipitakwong T, Supasyndh O, Rasmi Y, Aramwit P. A randomized controlled study of dose-finding, efficacy, and safety of mulberry leaves on glycemic profiles in obese persons with borderline diabetes. Complement Ther Med. 2020;49:102292.				
ุณ จุหา ChulA	Thaipitakwong T, Hussain S, Filipek PA, Leitner PD, Valovka T, Jakschitz T, Gstir R, Bonn G, Aramwit P. Mulberry (Morus alba L.) leaf extracts: chemical compositions and antioxidative properties regarding drying processes. Nat Prod Res. (In review).				
AWARD RECEIVED	r · · · · · · · · · · · · · · · · · · ·				

AWARD RECEIVED -