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Chapter I

PRELIMINARIES

Throughout, let q be a prime power, Fq the finite field of q elements and F∗
q :=

Fq \ {0}.

1.1 Basic knowledge in Graph Theory

Let g : F∗
q → F∗

q be a function. The iterates of g are defined by gi(x) =

g(gi−1(x)) for all i ∈ N, where g0(x) = x. The graph from the iteration of g is

defined to be a directed graph Gg = (V,E) whose vertex set is V ⊆ F∗
q and whose

directed edges in E are given by (x, g(x)) for all x ∈ F∗
q . The reverse graph of the

graph Gg, denoted by (Gg)R, is the graph (V,ER), where ER := {(x, y) : (y, x) ∈ E}.

For general reference on graph theory, we refer to ?.

Let x ∈ F∗
q . An orbit of x is a directed path in a graph Gg of the map g starting

at x, see Figure 1. Since Fq is finite, there exists the least positive integer s := s(x)

such that gs(x) ∈ {g0(x), g1(x), …, gs−1(x)}. Let t := t(x) ∈ {0, 1, ..., s−1} be the least

non-negative integer such that gs(x) = gt(x) and let c := c(x) = s(x)− t(x). We then

have c is the smallest positive integer such that gt(x) = gt+c(x). The tail for x is the

list of elements x, g(x), g2(x),…, gt−1(x) in the orbit of x and the cycle for x is the

list of elements gt(x),…, gt+c−1(x) in the orbit of x. Note that the tail length of x is

t(x) and the cycle length of x is c(x), see Figure 1.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

Figure 1. The orbit of x, tail and cycle for x.

Example 1.1.1. The graph from the iteration of g(x) = x2 over F29 is shown as

follows.

We can see that
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x t(x) c(x) x t(x) c(x) x t(x) c(x) x t(x) c(x)

1 0 1 8 2 3 15 2 3 22 1 3

2 2 3 9 1 3 16 0 3 23 0 3

3 2 3 10 2 3 17 2 1 24 0 3

4 1 3 11 2 3 18 2 3 25 0 3

5 1 3 12 2 1 19 2 3 26 2 3

6 1 3 13 1 3 20 0 3 27 2 3

7 0 3 14 2 3 21 2 3 28 1 3

Definition 1.1.2. ? Let p, h ∈ N. A complete p−tree of height h, denoted by Bh, is

a directed graph with pi nodes at depth i, for 0 ≤ i ≤ h, with the property that every

non-leaf node has exactly p children.

Example 1.1.3. A complete 3−tree of height 2 is shown as follows.

1.2 Basic knowledge in Number Theory

Definition 1.2.1. ? Let a,m ∈ Z with m > 0 and gcd(a,m) = 1. The order of a

modulo m, denote by ordm(a), is the least positive integer i such that ai ≡ 1 (mod m).

Definition 1.2.2. ? Let p be a prime, and n an integer. The exponent of the largest

power of p which divides n is denoted by vp(n).
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Definition 1.2.3. ? Let α ∈ F∗
q . The order of α, denoted by ord(α), is the least

positive integer i such that αi = 1.

Theorem 1.2.4. ? Let α ∈ F∗
q and l ∈ N, αl = 1 if and only if ord(α) | l.

Theorem 1.2.5. ? Let α ∈ F∗
q and k ∈ N. Then ord(αk) = ord(α)

gcd(ord(α),k) .

Theorem 1.2.6. ? If d|(q − 1) then there exist φ(d) elements of order d, where φ(d)

is the Euler phi function.

Theorem 1.2.7. ? Let F be a field. For f ∈ F [x], the residue class ring F [x]/(f) is

a field if and only if f is irreducible over F .

Theorem 1.2.8. ? Let K be a field and F its field extension. Let θ ∈ F be algebraic

of degree n over K and let g be the minimal polynomial of θ over K. Then K(θ) is

isomorphic to K[x]/(g).

Theorem 1.2.9. ? Let F be a finite field. Then F has pn elements, where the prime

p is the characteristic of F and n is the degree of F over its prime subfield.

Example 1.2.10. We have F8 = F2[x]
<f(x)> where f(x) = x3 + x + 1 is irreducible. Let

α be a root of x3 + x + 1. From Theorem 1.2.8, F8
∼= {0, 1, α, α2, α + α2, 1 + α, 1 +

α2, 1 + α+ α2}.

Theorem 1.2.11. ? For every finite field Fq the multiplicative group F∗
q of nonzero

elements of Fq is cyclic.

Definition 1.2.12. ? A generator of cyclic group F∗
q is called a primitive element

of Fq.

1.3 Our objectives

In 1996, T.D. Rogers ? studied some properties of the graphs obtained from

iterating the quadratic map g(x) = x2 over Fp, where p is a prime number. The
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formula of the number of cycles relative to g was derived as follows.

Theorem 1.3.1. ? For any positive integer n, let γ(n) denote the number of cycles

in the graph relative to the quadratic map. Then

γ(n) =
∑
d|m

φ(d)

ordd2

where n = 2km, m odd. The number of cycles then depends only on the odd factor

m of n, so that γ(n) = γ(m) and d(m) ≤ γ(m) ≤ m
2 , where d(m) is the number of

divisors of m.

In 2004, T. Vasiga and J. Shallit ? studied some properties of the graph ob-

tained from iterating the quadratic map g(x) = x2 over a finite field Fp, where p is an

odd prime. They characterized the vertices of the directed graph Gx→x2 in terms of

primitive elements as follows.

Theorem 1.3.2. ? Let γ be a primitive root mod p. Then

(a) {a ∈ F∗
p : t(a) = 0} = {γi : 0 < i < p and v2(i) ≥ v2(p− 1)};

(b) For 1 ≤ k ≤ v2(p− 1), we have

{a ∈ F∗
p : t(a) = k} = {γi : 0 < i < p and v2(i) = v2(p− 1)− k}.

Next, they gave the formulas for the length of tail t(x) and the length of cycle

c(x) for particular x in the vertex set V as follows.

Theorem 1.3.3. ? For each x ∈ F∗
p, we have t(x) = v2(ordpx) and c(x) =ordl2, where

ordpx = 2el and e, l are non-negative integers with l is odd.

Theorem 1.3.4. ? Let p− 1 = 2τρ, where ρ is odd. For each positive integer divisor

d of ρ, the graph Gg; g(x) = x2 contains φ(d)
ordd2

cycles of length ordd2. There are ρ

elements in all these cycles, and off each element in these cycles there hang reversed

complete binary trees of height τ − 1 containing 2τ − 1 elements.
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Theorem 1.3.5. ? The structure of the digraph Gx→x2 for a prime p when p = 22
k

+1,

a Fermat prime, is a reversed complete binary tree of height 2k − 1 with root −1,

attached to a cycle of length 1 on the integer 1. The elements x ∈ Fp with t(x) = a

for 0 ≤ a ≤ 2k are given by 3e·2
2k−a

, 0 ≤ e < 2a, where e is odd.

Theorem 1.3.6. ? When p = 2q − 1, a Mersenne prime, the digraph Gx→x2 consists

of cycles whose length divides q− 1. Off each element in these cycles there hangs a

single element with tail length 1.

Some statistics about tail and cycle lengths for the iteration of x → x2 over F∗
p

were also studied in ?.

Definition 1.3.7. ? For iterates of x → x2 mod p, define

• TC(p) := total number of cycles;

• T0(p) := total number of elements in all cycles, i.e., the number of a ∈ F∗
p with

t(a) = 0;

• AC(p) := average length of a cycle;

• C(p) := average value of c(a) for all a ∈ F∗
p;

• T (p) := average value of t(a) for all a ∈ F∗
p.

Then they found the following result.

Theorem 1.3.8. ? Let p − 1 = 2τρ, where ρ is odd and consider the iteration of

x 7→ x2 mod p. Then

1. TC(p) =
∑
d|ρ

φ(d)
ordd2

;
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2. T0(p) = ρ ;

3. AC(p) = ρ
TC(p) ;

4. C(p) = 1
ρ

∑
d|ρ

φ(d)ordd2 ;

5. T (p) = 1
p−1

∑
d|p−1

φ(d)v2(d) = τ − 1 + 2−τ .

Next, for a positive integer N , consider some quantities over all odd primes

p ≤ N .

Definition 1.3.9. ? With respect to the iteration of x → x2 mod p, define

• ST0(N) :=
∑

2<p≤N T0(p);

• ST (N) :=
∑

2<p≤N

∑
1≤a<p tp(a).

Definition 1.3.10. ? Let x, k, l be positive integers. Denote π(x, l, k) the number of

primes p ≤ x which are congruent to k mod l.

Definition 1.3.11. ? Let f, g be functions from non-negative real numbers to non-

negative real numbers, f = O(g) if there exist constants c > 0 and n0 ≥ 0 such that

f(n) ≤ cg(n) for all n ≥ n0.

Definition 1.3.12. ? Let function f(x) and g(x), define f(x) ∼ g(x) as x → ∞ if and

only if

lim
x→∞

f(x)

g(x)
= 1.

Lemma 1.3.13. ? Extended Riemann Hypothesis (ERH) :

Let k and l be relatively prime integers. Then for any ϵ > 0, we have

π(x, l, k) =
li(x)

φ(l)
+O(x1/2+ϵ),

where li(x) = x
logx

(
1 +O( 1

logx)
)
.
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Lemma 1.3.14 (?). Assume the ERH. Then, if the logarithmic integral li(x) is de-

fined by li(x) =
∫ x
2

1
log tdt and k, l are integers with gcd(k, l) = 1, then

π(x, l, k) =
li(x)

φ(l)
+O(

√
x(logx+ 2 log l)).

By assuming ERH, they established the asymptotic estimates for the sums of

some average quantities as follows.

Theorem 1.3.15. ? Assume the ERH. Then

ST0(N) ∼ N2

6 logN
.

Theorem 1.3.16. ? Assume the ERH. Then

ST (N) ∼ 2

3

N2

logN
.

In this thesis, we study the graphs obtained from the iteration of a certain

map g : x → xp, where p is prime, over F∗
q extending the ideas of ? and ?. In

Chapter II, structures of the graphs, characterization of vertices of the graphs in

term of primitive elements in F∗
q and numerical values for the number of cycles with

specific length are investigated. In the last chapter, statistical estimates about the

tail and cycle lengths such as the approximation ST0(N) and ST (N) are shown.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter II

STRUCTURE OF A GRAPH Gx→xp

In this chapter, for a fixed prime p, we consider the graph over a finite field F∗
q

where q is a prime power, obtained by the iteration of the map g : F∗
q → F∗

q defined

by g(x) = xp. The formulas of the tail length and cycle length of each element in F∗
q

are shown as follows.

Theorem 2.0.17. Let α ∈ F∗
q and ord(α) = pel where e ∈ N ∪ {0} and l ∈ N with

gcd(p, l) = 1. If t := t(α) is the tail length for α and c := c(α) is the cycle length for

α, then t = vp(ord(α)) and c =ordlp.

Proof. Let α ∈ F∗
q . We have gt(α) = gt+c(α). Then αpt

= αpt+c and so

αpt+c−pt

= αpt(pc−1) = 1.

Therefore, we obtain pel|pt(pc − 1). Since gcd(pe, pc − 1) = 1 = gcd(l, pt), pe|pt and

l|(pc − 1). We first show that t = e = vp(ord(α)). Obviously, e ≤ t. If e < t, then

pe < pt. Since t is the smallest nonnegative integer such that gt(α) = gt+c(α), we

have ge(α) = ge+c(α) and so

αpe(pc−1) = αpe+c−pe ̸= 1

which contradicts with the fact that pel|pt(pc−1). Hence the first part of the theorem

is done. Next, we will show that ordlp = c. Since l|(pc − 1),

pc = 1(mod l).

Then ordlp ≤ c. Suppose that there exists d ∈ N such that 1 ≤ d < c and

pd = 1(mod l).
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Then l|(pd − 1) and so pel|pt(pd − 1). This implies that

αpt+d−pt

= αpt(pd−1) = 1.

Consequently, gt+d(α) = gt(α) which contradicts the minimal of c.

Note that, from the above theorem, t(α) = vp(d) for some d|(q − 1).

Example 2.0.18. Consider the graph of g(x) = x2 for q = 8.

Here F8 = F2(α) where α ∈ F∗
8 saitisfying α3 + α+ 1 = 0.

By Theorem ??, the tail length and the cycle length for all x ∈ F∗
8, are shown as

follows.

x ord(x) = 2el t(x) = v2(ord(x)) c(x) =ordl2

1 1 = 20 · 1 0 1

α 7 = 20 · 7 0 3

α2 7 = 20 · 7 0 3

α3 7 = 20 · 7 0 3

α4 7 = 20 · 7 0 3

α5 7 = 20 · 7 0 3

α6 7 = 20 · 7 0 3
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Example 2.0.19. Consider the graph of g(x) = x3 over F∗
109.

Figure 2. The graph of g(x) = x3 over F∗
109.

By Theorem ??, we compute the tail length and the cycle length of each element in

F∗
109, as shown in the following table.
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x ord(x) t(x) c(x) x ord(x) t(x) c(x) x ord(x) t(x) c(x)

1 1 0 1 37 108 3 2 73 27 3 1

2 36 2 2 38 9 2 1 74 54 3 1

3 27 3 1 39 108 3 2 75 9 2 1

4 18 2 1 40 108 3 2 76 4 0 2

5 27 3 1 41 12 1 2 77 36 2 2

6 108 3 2 42 108 3 2 78 27 3 1

7 27 3 1 43 18 2 1 79 108 3 2

8 12 1 2 44 108 3 2 80 27 3 1

9 27 3 1 45 3 1 1 81 27 3 1

10 108 3 2 46 6 1 1 82 18 2 1

11 108 3 2 47 108 3 2 83 54 3 1

12 54 3 1 48 27 3 1 84 54 3 1

13 108 3 2 49 27 3 1 85 108 3 2

14 108 3 2 50 108 3 2 86 36 2 2

15 27 3 1 51 108 3 2 87 54 3 1

16 9 2 1 52 108 3 2 88 54 3 1

17 36 2 2 53 108 3 2 89 27 3 1

18 108 3 2 54 36 2 2 90 36 2 2

19 36 2 2 55 36 2 2 91 108 3 2

20 54 3 1 56 108 3 2 92 36 2 2

21 27 3 1 57 108 3 2 93 18 2 1

22 27 3 1 58 108 3 2 94 54 3 1

23 36 0 3 59 108 3 2 95 108 3 2

24 108 3 2 60 54 3 1 96 108 3 2

25 27 3 1 61 54 3 1 97 27 3 1



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

13

x ord(x) t(x) c(x) x ord(x) t(x) c(x) x ord(x) t(x) c(x)

26 27 3 1 62 108 3 2 98 108 3 2

27 9 2 1 63 3 1 1 99 108 3 2

28 54 3 1 64 6 1 1 100 54 3 1

29 54 3 1 65 108 3 2 101 12 1 2

30 108 3 2 66 9 2 1 102 54 3 1

31 54 3 1 67 108 3 2 103 108 3 2

32 36 2 2 68 12 1 2 104 54 3 1

33 4 0 2 69 108 3 2 105 9 2 1

34 18 2 1 70 108 3 2 106 54 3 1

35 27 3 1 71 18 2 1 107 36 2 2

36 54 3 1 72 108 3 2 108 2 0 1

Example 2.0.20. Consider the graph of g(x) = x3 for q = 9.

Here, F9 = F3(α) where α ∈ F∗
9 satisfying α2 + 1 = 0.

By Theorem ??, the tail length and the cycle length for all x ∈ F∗
9 are as in the

following table.
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x ord(x) = 3el t(x) = v3(ord(x)) c(x) =ordl3

1 1 = 30 · 1 0 1

α 8 = 30 · 8 0 2

α2 4 = 30 · 4 0 2

α3 8 = 30 · 8 0 2

α4 2 = 30 · 2 0 1

α5 8 = 30 · 8 0 2

α6 4 = 30 · 4 0 2

α7 8 = 30 · 8 0 2

Example 2.0.21. Consider the graph of g(x) = x5 for q = 9.

By Theorem ??, the tail length and the cycle length for all x ∈ F∗
9 are as in the

following table.

x ord(x) = 5el t(x) = v5(ord(x)) c(x) =ordl5

1 1 = 50 0 1

α 8 = 50 · 8 0 2

α2 4 = 50 · 4 0 1

α3 8 = 50 · 8 0 2

α4 2 = 50 · 2 0 1

α5 8 = 50 · 8 0 2

α6 4 = 50 · 4 0 1

α7 8 = 50 · 8 0 2
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Example 2.0.22. Consider the graph of g(x) = x3 for q = 27.

Here, F27 = F3(α) where α ∈ F∗
27 satisfying α3 + 2α2 + 1 = 0.

By Theorem ??, the tail length and the cycle length for all x ∈ F∗
27 are as in the

following table.

x ord(x) t(x) c(x) x ord(x) t(x) c(x)

α 26 0 3 α14 13 0 3

α2 13 0 3 α15 26 0 3

α3 26 0 3 α16 13 0 3

α4 13 0 3 α17 26 0 3

α5 26 0 3 α18 13 0 3

α6 13 0 3 α19 26 0 3

α7 26 0 3 α20 13 0 3

x ord(x) t(x) c(x) x ord(x) t(x) c(x)

α8 13 0 3 α21 26 0 3

α9 26 0 3 α22 13 0 3

α10 13 0 3 α23 26 0 3

α11 26 0 3 α24 13 0 3

α12 13 0 3 α25 26 0 3

α13 2 0 1 α26 = 1 1 0 1
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The next theorem provides the characterization of vertices of the graph in

terms of primitive elements in F∗
q .

Theorem 2.0.23. Let γ be a primitive element of F∗
q . Then

1. {a ∈ F∗
q : t(a) = 0} = {γi : 1 ≤ i ≤ q − 1 and vp(i) ≥ vp(q − 1)};

2. For 1 ≤ k ≤ vp(q − 1), we have

{a ∈ F∗
q : t(a) = k} = {γi : 1 ≤ i ≤ q − 1 and vp(i) = vp(q − 1)− k}.

Proof. Let q − 1 = pτρ, where gcd(p, ρ) = 1.

1. Let a ∈ F∗
q with t(a) = 0. Then a = γi for some 1 ≤ i ≤ q − 1, and there is

l ≥ 1 such that

a = g0(a) = gl+0(a) = ap
l

Then we have ap
l−1 = 1 and so (γi)p

l−1 = 1. Therefore pτρ|i(pl − 1). Since

gcd(pτ , ρ) = 1, pτ |i. Hence vp(i) ≥ τ = vp(q − 1).

Conversely, consider γi ∈ F∗
q , where 1 ≤ i ≤ q − 1 and vp(i) ≥ vp(q − 1) = τ .

We get pτ |i. Choose l = ordρp. Then pl ≡ 1 (mod ρ); that is, ρ|(pl − 1). Therefore

pτρ|i(pl − 1). Thus (γi)pl−1 = 1. Now we have γip
l

= γi. It follows that gl(γi) = g0(γi).

By the definition of the length of tail, t(γi) = 0.

2. Let k ∈ N be such that 1 ≤ k ≤ vp(q − 1). Let a ∈ F∗
q with t(a) = k. Then

a = γi for some 1 ≤ i ≤ q − 1 and there exists l > 0 such that

gk(a) = gk+l(a) and gk−1(a) ̸= gk−1+l(a).

Then we have

(γi)p
k

= (γi)p
k+l and (γi)p

k−1 ̸= (γi)p
k−1+l

.
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Consequently, we get

(γi)p
k+l−pk

= 1 and (γi)p
k−1+l−pk−1 ̸= 1.

Then (q − 1)|ipk(pl − 1) and (q − 1)ipk−1(pl − 1).

We claim that pτ ip(k−1). To prove claim, write i = prw, where gcd(p, w) = 1.

Suppose that pτ |ip(k−1). Then pτ |prwpk−1. Since gcd(p, w) = 1, pτ |prpk−1. From

pτρ|prwpk(pl−1) and gcd(ρ, p) = 1, we have ρ|w(pl−1). Therefore pτρ|prwpk−1(pl−1);

that is, (q − 1)|ipk−1(pl − 1) which is a contradiction. Note that pτ |ipk.

By claim, we get vp(pτ ) = vp(ip
k). Now we obtain τ = vp(i) + k and so

vp(i) = τ − k = vp(q − 1)− k.

Conversely, consider γi ∈ F∗
q where 1 ≤ i ≤ q − 1 and vp(i) = vp(q − 1)− k. Then we

have

vp(ip
k) = vp(q − 1) = vp(p

τρ).

Therefore pτ |ipk but pτ ipk−j for all 1 ≤ j ≤ k. By the first claim, there exists l ≥ 1

such that ρ|(pl−1). Then (q−1)|ipk(pl−1) and (q−1)ipk−j(pl−1) for all 1 ≤ j ≤ k. So

(γi)p
k(pl−1) = 1 and (γi)p

k−j(pl−1) ̸= 1 for all 1 ≤ j ≤ k. We then have gk(γi) = gk+l(γi)

and gk−1(γi) ̸= gk−1+l(γi). Hence k is the smallest such that gk(γi) = gk+l(γi). By

the definition of the tail length t(γi) = k.
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Theorem 2.0.24. Let q − 1 = pτρ, where τ ∈ N ∪ {0} and ρ ∈ N with gcd(p, ρ) = 1.

1. The total number of elements in all cycles is ρ.

2. For each positive integer divisor d of ρ, Gx→xp contains φ(d)
orddp

cycles of length

orddp.

3. Off each element in these cycles there hang reversed complete binary p−tree

of height τ − 1 containing pτ−1
p−1 elements.

Proof. Let γ be a primitive element over F∗
q . Let x ∈ F∗

q and q − 1 = pτρ with

gcd(p, ρ) = 1.

1. If x is in the cycle, we have t(x) = 0. By Theorem ?? (1), x = γi where

1 ≤ i ≤ q − 1 and vp(i) ≥ vp(q − 1) = τ . So x must be of the form x = γjp
τ , where

1 ≤ j ≤ ρ. Hence the total number of elements in all cycles is ρ.

2. Note that ord(γpτ

) = pτρ
gcd(pτ ,pτρ) = ρ. From (1) we have

{γi : 1 ≤ i ≤ q − 1 and vp(i) ≥ vp(q − 1)} =< γp
τ

>,

a cyclic group of order ρ. We know that if d|ρ, there are φ(d) elements of order d.

Note that ord(γpτ ρ

d ) = ρ
gcd(ρ, ρ

d
) = d. Then, for all 1 ≤ j < d and gcd(j, d) = 1, then

ord(γ pτ ρ

d )j = d
gcd(j,d) = d. Therefore, the elements of order d are given by γjp

τ ρ

d for

1 ≤ j < d and gcd(j, d) = 1. Since ord(γjpτ ρ

d ) = p0d, by Theorem ??, c(γjpτ ρ

d ) =

orddp. Hence for all d|ρ, Gx→xp contains φ(d)
orddp

cycles of length orddp.

3. An element x ∈ F∗
q with t(x) = 1, which xp = γjp

τ in cycle is one of those of

the form γjp
τ−1 where 1 ≤ j ≤ p− 1. In general, if γi is an element with tail length t

(1 ≤ t ≤ τ), the element with tail length t+ 1 are

γ
i+j(q−1)

p for 0 ≤ j ≤ p− 1.
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Since the longest tail length is τ , we have the reversed complete binary p−tree of

height τ − 1 containing 1 + p+ p2 + ...+ pτ−1 = pτ−1
p−1 elements.

Example 2.0.25. The graph of g(x) = x3 over F∗
109. We have 108 = 334 with ρ = 4.

Moreover, it is easily seen from Figure 2 that the total number of elements in all

cycles is ρ = 4. The table shows the number of cycles of length ordd3 for each d|ρ.

d φ(d) c = ordd3 cycle

1 1 1 1

2 1 1 1

4 2 2 1

From Figure 2, off each element in the cycles there hang reversed complete 3-tree

of height 2 containing 33−1
3−1 = 13 elements as in the following figure.
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Chapter III

SOME STATISTICAL RESULTS

3.1 Averages of some quantities

In this section, we consider some statistics about tail and cycle lengths for the

iteration of the map x → xp over F∗
q .

Definition 3.1.1. With respect to the iteration of x → xp, we define

• TC(q) := total number of cycles;

• T0(q) := total number of elements in all cycles, i.e., the number of a ∈ F∗
q with

t(a) = 0;

• AC(q) := average length of a cycle;

• C(q) := average value of c(a) for all a ∈ F∗
q;

• T (q) := average value of t(a) for all a ∈ F∗
q .

Then we have the following results.

Theorem 3.1.2. Let q − 1 = pτρ where gcd(p, ρ) = 1, τ ≥ 0. We have

1. TC(q) =
∑
d|ρ

φ(d)
orddp

;

2. T0(q) = ρ ;

3. AC(q) = ρ
TC(q) ;

4. C(q) = 1
ρ

∑
d|ρ

φ(d)orddp ;
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5. T (q) = 1
q−1

∑
d|q−1

φ(d)vp(d) = τ − pτ−1
pτ (p−1) .

Proof. 1. By Theorem ?? (2), for each positive divisor d of ρ, the graph Gx→xp

contains φ(d)
orddp

cycles. Then

TC(q) =
∑
d|ρ

φ(d)

orddp
.

2. It follows directly from Theorem ?? (1) that

T0(q) = ρ.

3. By Definition ?? and (2), we have

AC(q) =
T0(q)

TC(q)
=

ρ

TC(q)
.

4. By Definition ??, we have

C(q) =
1

q − 1

∑
α∈F∗

q

c(α).

Note that for each positive divisor d of ρ, the corresponding subgraphs have the same

cycle lengths. Let d ∈ N be such that d|ρ. Consider a subgraph corresponding to

d, by Theorem ?? (2), there are orddp elements in each cycle. Each element in the

cycle has pτ−1
p−1 elements in the p−tree reversed graph and p− 1 elements of height 0.

Then there are orddp+ (p− 1)p
τ−1
p−1 orddp elements in this subgraph. By Theorem ??

(1) there are φ(d)
orddp

subgraphs whose cycle length is orddp. This implies that

C(q) =
1

q − 1

∑
d|ρ

φ(d)

orddp
orddp

(
orddp+ (p− 1)

pτ − 1

p− 1
orddp

)
=

1

pτρ
pτ

∑
d|ρ

φ(d)orddp

=
1

ρ

∑
d|ρ

φ(d)orddp
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5. By Theorem ??, we have t(α) = vp(d), for some d|(q − 1). Then

T (q) =
1

q − 1

∑
α∈F∗

q

t(α) =
1

q − 1

∑
d|q−1

φ(d)vp(d) =
1

q − 1

∑
d|pτρ

φ(d)vp(d)

=
1

q − 1

∑
d|ρ

∑
0≤i≤τ

φ(dpi)vp(dp
i)

=
1

q − 1

∑
d|ρ

∑
0≤i≤τ

φ(d)φ(pi)(vp(d) + vp(p
i))

=
1

q − 1

∑
d|ρ

φ(d)
∑

0≤i≤τ

φ(pi) · i

=
1

q − 1

∑
d|ρ

φ(d)(p− 1)
∑

0≤i≤τ

pi−1 · i

=
1

q − 1
ρ(p− 1)

∑
0≤i≤τ

pi−1 · i

=
1

pτ
(p− 1)

d

dp

( ∑
0≤i≤τ

pi
)

=
1

pτ
(p− 1)

d

dp

(pτ+1 − 1

p− 1

)
=

1

pτ
(p− 1)

(p− 1)(τ + 1)pτ − (pτ+1 − 1)

(p− 1)2

=
1

pτ
(p− 1)(τpτ + pτ )− (pτ+1 − 1)

(p− 1)

=
1

pτ

(
τpτ − pτ − 1

p− 1

)
= τ − pτ − 1

pτ (p− 1)
.

3.2 Asymptotic estimates of some quantities

In this section, we consider sums of average quantities over all primes q ≤ N

where N ∈ N.

Definition 3.2.1. With respect to the iteration of map x → xp over F∗
q , we define

• ST0(N) :=
∑

q≤N T0(q);
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• ST (N) :=
∑

q≤N

∑
1≤a<q tq(α), where tq(α) is a tail length of α over F∗

q .

Next, we assume the extended Riemann hypothesis (ERH) and recall the following

lemma.

Lemma 3.2.2. ? Assume the ERH. Let k, l be integers with gcd(k, l) = 1. Then

∑
p≤x

p≡k (mod l)
p is prime

p =
1

φ(l)

( x2

2 logx

)(
1 +O

( 1

logx

))
+O(x3/2(logx+ 2 log l)).

We now consider the behaviour of ST0(N) and ST (N) as follows.

Theorem 3.2.3. Assume the ERH. Then

ST0(N) ∼ 1

2(p2 − 1)

N2

logN
.

Proof. We know that ST0(N) :=
∑

q≤N T0(q). From Theorem ??, T0(q) = q−1
pvp(q−1) .

We then have

ST0(N) =
∑
q≤N

T0(q)

=
∑
q≤N

q − 1

pvp(q−1)

=
∑

0≤i≤logp N

∑
q≤N

pi||(q−1)

q − 1

pi
.

Claim 1. For each i ∈ N0, if pi||(q − 1) ,then there exists r ∈ N such that r < p and

q − 1 ≡ rpi (mod pi+1).

Proof of Claim 1. Let i be a non-negative integer.

Assume that pi||(q−1). Then pi|(q−1) and pi+1(q−1). So there exists l ∈ N such that

q − 1 = pil. Since pi+1(q − 1), there are k, r ∈ N0 such that 1 ≤ r < p and l = pk + r.

Then

q − 1 = pi(pk + r) = pi+1k + rpi.
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Hence we have q − 1 ≡ rpi (mod pi+1) as required.

Now we have

ST0(N) =
∑

0≤i≤logp N

∑
q≤N

q≡rpi+1 (mod pi+1)

q − 1

pi

=
∑

0≤i≤logp N

1

pi

∑
q≤N

q≡rpi+1 (mod pi+1)

(q − 1)

=
∑

0≤i≤logp N

1

pi

( ∑
q≤N

q≡rpi+1 (mod pi+1)

q −
∑
q≤N

q≡rpi+1 (mod pi+1)

1
)
.

Note that, by Lemma ??,

∑
q≤N

q≡rpi+1 (mod pi+1)

q =
1

φ(pi+1)

( N2

2 logN

)(
1 +O

( 1

logN

))
+O(N3/2(logN + 2 log(pi+1)))

=
1

φ(pi+1)

( N2

2 logN

)(
1 +O

( 1

logN

))
+O(N3/2(logN)

and by Definition ??,

∑
q≤N

q≡rpi+1 (mod pi+1)

1 = π(N, pi+1, rpi + 1).

We have, by using Lemma ??, that

π(N, pi+1, rpi + 1) =
1

φ(pi+1)

( N

logN
+O

( N

(logN)2

))
+O(

√
N(logN + 2 log(pi+1)))

=
1

φ(pi+1)

( N

logN
+O

( N

(logN)2

))
+O(

√
N logN).
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We have φ(pi+1) = pi(p− 1). Then

ST0(N) =
∑

1≤i≤logp N

1

pi

[ 1

φ(pi+1)

( N2

2 logN

(
1 +O

( 1

logN

))
+O(N3/2(logN))

−
( 1

φ(pi+1)

( N

logN
+O

( N

(logN)2

))
+O(

√
N logN)

)]
=

∑
0≤i≤logp N

1

pi

[ 1

pi(p− 1)

( N2

2 logN

(
1 +O

( 1

logN

))
+O(N3/2 logN)

]

=
∑

0≤i≤logp N

1

p2i(p− 1)

( N2

2 logN

(
1 +O

( 1

logN

)))

=
1

p− 1

N2

2 logN

(
1 +O

( 1

logN

)) ∑
0≤i≤logp N

1

p2i
.

Claim 2. ∑0≤i≤logp N
1
p2i =

1
p+1

(
1 +O

(
1
N

))
.

Proof of Claim 2. We have

∑
0≤i≤logp N

1

p2i
=

(
1− 1

N2 · 1
p2

)
1− 1

p2

=
p2 − 1

N2

p2 − 1

=
(p− 1)

p2 − 1

(
1 +O

( 1

N

))
=

1

p+ 1

(
1 +O

( 1

N

))
.

Hence, by Claim 2, we have

ST0(N) =
1

p− 1

N2

2 logN

(
1 +O

( 1

logN

)) 1

p+ 1

(
1 +O

( 1

N

))
=

1

p− 1

1

p+ 1

N2

2 logN

(
1 +O

( 1

logN

))(
1 +O

( 1

N

))
.

Consider the following limit, we have

lim
N→∞

ST0N
1

(p−1)(p+1)
N2

2 logN

= lim
N→∞

1
p−1

1
p+1

N2

2 logN

(
1 +O

(
1

logN

))(
1 +O

(
1
N

))
1

2(p2−1)
N2

logN

= 1.

Therefore

ST0(N) ∼ 1

2(p2 − 1)

N2

logN
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as desired.

Now, we turn to ST (N).

Theorem 3.2.4. Assume the ERH. Then

ST (N) ∼ p+ 2

2(p− 1)2(p+ 1)

N2

logN
.

Proof. By Theorem ?? (5), we have

ST (N) =
∑
q≤N

∑
1≤a<q

tq(a)

=
∑
q≤N

(q − 1)
[
vp(q − 1)− 1

p− 1
+

p−vp(q−1)

p− 1

]
=

∑
q≤N

qvp(q − 1)−
∑
q≤N

q

p− 1
+

∑
q≤N

qp−vp(q−1)

p− 1

−
∑
q≤N

vp(q − 1) +
∑
q≤N

1

p− 1
−

∑
q≤N

p−vp(q−1)

p− 1

=
∑
q≤N

qvp(q − 1)− 1

p− 1

∑
q≤N

q −
∑
q≤N

vp(q − 1) +
1

p− 1

∑
q≤N

1

+
1

p− 1

∑
q≤N

q − 1

pvp(q−1)
.

We have

1

p− 1

∑
q≤N

q − 1

pvp(q−1)
=

1

p− 1
ST0(N) ∼ 1

2(p− 1)2(p+ 1)

N2

logN
.
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Consider

∑
q≤N

qvp(q − 1) =
∑

1≤i≤logp N

( ∑
q≤N

q≡1 (mod pi)

q
)

=
∑

1≤i≤logp N

( 1

φ(pi)

( N2

2 logN

(
1 +O

( 1

logN

))

+O(N3/2(logN + 2 log pi)
)

=
∑

1≤i≤logp N

( 1

pi−1(p− 1)

( N2

2 logN

)(
1 +O

( 1

logN

))

=
1

p− 1

N2

2 logN

(
1 +O

( 1

logN

)) ∑
1≤i≤logp N

1

pi−1
.

Claim 1. ∑
1≤i≤logp N

1

pi−1
=

p

p− 1

(
1 +O

( 1

N

))
.

Proof of Claim 1. We have

∑
1≤i≤logp N

1

pi−1
=
1− 1

N

1− 1
p

=
N−1
N
p−1
p

=
p

p− 1

(
1− 1

N

)
=

p

p− 1

(
1 +O

( 1

N

))
.

Then, by Claim 1, we have

∑
q≤N

qvp(q − 1) =
1

p− 1

N2

2 logN

(
1 +O

( 1

logN

)) p

p− 1

(
1 +O

( 1

N

))
.
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Consider

∑
q≤N

vp(q − 1) =
∑

1≤i≤logp N

( ∑
q≤N

q≡1 (mod pi)

1
)

=
∑

1≤i≤logp N

π(N, pi, 1)

=
∑

1≤i≤logp N

( li(N)

φ(pi)
+O(

√
N(logN + 2 log pi))

)
by Lemma ??

= li(N)
∑

1≤i≤logp N

1

pi−1(p− 1)
+O(

√
N(logN2)).

Thus, by Claim 1 and li(N) = N
logN

(
1 +O

(
1

log(N)

))
, we have

∑
q≤N

vp(q − 1) =
N

logN

(
1 +O

( 1

log(N)

)) 1

p− 1

( p

p− 1

(
1 +O

( 1

N

)))
.

By [1,p.28−29], ∑q≤N q ∼ N2

2 logN and by [??],∑q≤N 1 ∼ N
logN .

Now, we get

ST (N) =
∑
q≤N

qvp(q − 1)− 1

p− 1

∑
q≤N

q −
∑
q≤N

vp(q − 1) +
1

p− 1

∑
q≤N

1

+
1

p− 1

1

2(p2 − 1)

N2

logN

=
1

p− 1

N2

2 logN

(
1 +O

( 1

logN

)) p

p− 1

(
1 +O

( 1

N

))
− 1

p− 1

N2

2 logN

− 1

p− 1

N

logN

(
1 +O

( 1

log(N)

)( p

p− 1

(
1 +O

( 1

N

)))
+

1

p− 1

N

logN

+
1

2(p− 1)2(p+ 1)

N2

logN
.

Thus,

lim
N→∞

ST (N)
p+2

2(p−1)2(p+1)
N2

logN

= lim
N→∞

1
p−1

N2

2 logN

(
1 +O

(
1
N

))
p

p−1

(
1 +O 1

N

)
− 1

p−1
N2

2 logN

p+2
2(p−1)2(p+1)

N2

logN

+ lim
N→∞

− 1
p−1

(
1 +O

(
1

log(N)

)
N

logN

(
p

p−1

(
1 +O

(
1
N

)))
+ 1

p−1
N

logN

p+2
2(p−1)2(p+1)

N2

logN

+ lim
N→∞

+ 1
2(p−1)2(p+1)

N2

logN

p+2
2(p−1)2(p+1)

N2

logN

= 1.
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Therefore,

ST (N) ∼ p+ 2

2(p− 1)2(p+ 1)

N2

logN
.

Next, we consider sums of average quantities over all primes q that q2 ≤ N .

Definition 3.2.5. With respect to the iteration of the map x → xp over F∗
q2 , we define

• ST0(N) :=
∑

q2≤N T0(q
2), where T0(q

2) is the number of elements in cycles

over F∗
q2 .

We first consider the graph obtained by iteration of x → xp, where p = 2.

Theorem 3.2.6. Assume the ERH. Then

ST0(N) ∼ 1

18

N3/2

logN
.

Proof. Write q2 − 1 = 2τ · ρ where τ = v2(q
2 − 1) and gcd(2, ρ) = 1. We have, using

Theorem ?? (2), that

T0(q
2) =

q2 − 1

2v2(q2−1)
.

Therefore

ST0(N) =
∑
q2≤N

q2 − 1

2v2(q2−1)
=

∑
q≤N1/2

q2 − 1

2v2(q2−1)

=
∑

0≤i≤log2 N

∑
q≤N1/2

2i||(q2−1)

q2 − 1

2i
.

Claim 1. For each i ∈ N0. If 2i||(q2 − 1), then q2 − 1 ≡ 2i (mod 2i+1).

Proof of Claim 1. Let i be a non-negative integer.
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Assume that 2i||(q2 − 1). Then 2i|(q2 − 1) and 2i+1(q2 − 1). So there exists l ∈ N such

that q2 − 1 = 2i(2l + 1) which gives

q2 − 1 = 2i+1l + 2i.

Hence q2 − 1 ≡ 2i (mod 2i+1). This completes the proof of Claim 1.

By Claim 1, we have

ST0(N) =
∑

0≤i≤log2 N

∑
q≤N1/2

q2≡2i+1 (mod 2i+1)

q2 − 1

2i

=
∑

0≤i≤log2 N

1

2i

∑
q≤N1/2

q2≡2i+1 (mod 2i+1)

(q2 − 1)

=
∑

0≤i≤log2 N

1

2i

( ∑
q≤N1/2

q2≡2i+1 (mod 2i+1)

q2 −
∑

q≤N1/2

q2≡2i+1 (mod 2i+1)

1
)
. (3.2.1)

Next, we will find the estimates the sum Eq. (??).

We first consider the congruence q2 ≡ 2i + 1 (mod 2i+1) for all nonnegative integers

i.

Case i = 0. The congruence becomes q2 ≡ 2 (mod 2). The only solution for this case

is q = 2.

Case i = 1. The congruence q2 ≡ 3 (mod 4) has no solution.

Case i = 2. The congruence q2 ≡ 5 (mod 8) has no solution.

Case i ≥ 3. Since i ≥ 3,we have 2i ≡ 0(mod 8). Then 2i + 1 ≡ 1(mod 8). So q2 ≡

2i + 1 (mod 2i+1) has 4 solutions. We know that

(2i−1 + 1)2 = 22i−2 + 2i + 1 ≡ 2i + 1 (mod 2i+1),

and we set q1 ≡ 2i−1 + 1(mod 2i+1). Therefore, the other solutions are

−q1 ≡ −2i−1 − 1 ≡ 2i−1 + 2i − 1 (mod 2i+1),

q1 + 2i ≡ 2i−1 + 2i + 1 (mod 2i+1)

and − (q1 + 2i) ≡ −2i−1 − 2i − 1 ≡ 2i−1 − 1 (mod 2i+1).
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Consequenetly, if i ≥ 3, we get

∑
q≤N1/2

q2≡2i+1 (mod 2i+1)

q2 =
∑

q≤N1/2

q≡2i−1+1 (mod 2i+1)

q2 +
∑

q≤N1/2

q≡2i−1−1 (mod 2i+1)

q2

+
∑

q≤N1/2

q≡2i−1+2i+1 (mod 2i+1)

q2 +
∑

q≤N1/2

q≡2i−1+2i−1 (mod 2i+1)

q2

Claim 2. Let f be a real valued function. Then

∑
q≤N

q≡k (mod l)
gcd(k,l)=1

f(q) =
1

φ(l)

∫ x

2

f(t)

log(t) + f(x)ϵ(x)−
∫ x

2
f ′(t)ϵ(t) dt+O(1).

Proof of Claim 2. Let

a(n) =


1 ; n is prime, n ≡ k (mod l), gcd(k, l) = 1

0 ; otherwise.

So,

A(x) =
∑
n≤x

a(n) =
∑
n≤x

n≡k (mod l)
gcd(k,l)=1

1 = π(x, l, k).

Then, by Stieljes integral, we have

∑
q≤N

q≡k (mod l)
gcd(k,l)=1

f(q) =
∑

1<n≤x

a(n)f(n) =

∫ x

1
f(t) dA(t)

=

∫ 2

1
f(t) dA(t) +

∫ x

2
f(t) dA(t)

=

∫ x

2
f(t) dπ(t, l, k) +O(1).

By Lemma ??,

π(x, l, k) =
li(x)

φ(l)
+O(x1/2(logx+ 2 log(l)))

=
li(x)

φ(l)
+ ϵ(x),



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

33

where ϵ(x) := O(x1/2(logx+ 2 log(l))). Then

∑
q≤N

q≡k (mod l)
gcd(k,l)=1

f(q) =

∫ x

2
f(t) d

( li(t)
φ(l)

+ ϵ(t)
)
+O(1)

=

∫ x

2
f(t) d

li(t)

φ(l)
+

∫ x

2
f(t) dϵ(t) +O(1).

Note that ∫ x

2
f(t) dϵ(t) = f(t)ϵ(t)|x2 −

∫ x

2
f ′(t)ϵ(t) dt+O(1)

and li(x) =
∫ x
2

1
log tdt+O(1). Hence,

∑
q≤x

q≡k (mod l)
gcd(k,l)=1

f(q) =
1

φ(l)

∫ x

2

f(t)

log(t)dt+ f(x)ϵ(x)−
∫ x

2
f ′(t)ϵ(t) dt+O(1).

Then we have Claim 2. By putting f(a) = a2 for all a ≥ 2 and Claim 2, for all

positive integers k, l with gcd(k, l) = 1, we have

∑
q≤x

q≡k (mod l)

q2 =
1

φ(l)

∫ x

2

t2

log(t)dt+ x2ϵ(x)−
∫ x

2
2tϵ(t) dt+O(1).

By [??, p.28], we have

∫ x

2

dt

log(t) =
x

logx
+O

( x

(logx)2

)
.

This implies that,

∫ x

2

t2

log(t)dt =
∫ x3

23

du

logu

=

∫ x3

2

du

logu
−
∫ 8

2

du

logu

=
x3

logx3
+O

( x3

(logx3)2

)
+O(1)

=
x3

logx3
+O

( x3

(logx3)2

)
.
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So, we obtain the following approximation.

∑
q≤x

q≡k (mod l)

q2 =
1

φ(l)

[ x3

logx3
+O

( x3

(logx3)2

)]
+ x2O(x1/2(logx+ 2 log(l)))

−
∫ x

2
2tO(t1/2(log t+ 2 log(l))) dt+O(1)

=
1

φ(l)

[ x3

logx3
+O

( x3

(logx3)2

)]
+ x2O(x1/2(logx+ 2 log(l))) +O(1)

=
1

φ(l)

[ x3

logx3
+O

( x3

(logx3)2

)]
+ x2O(x1/2(logx+ 2 log(l))).

By letting x = N1/2, l = 2i+1 (i ≥ 3) and gcd(k, 2) = 1, we have

∑
q≤N1/2

q≡k (mod 2i+1)

q2 =
1

φ(2i+1)

[ N3/2

logN3/2
+O

( N3/2

(logN3/2)2

)]
+NO(N1/4(logN1/2+2 log(2i+1))).

Since the sum does not depend on k , we have

∑
q≤N1/2

q2≡2i+1 (mod 2i+1)

q2 = 4
∑

q≤N1/2

q≡k (mod 2i+1)

q2,

= 4
[ 1

φ(2i+1)

[ N3/2

logN3/2
+O

( N3/2

(logN3/2)2

)]
+NO(N1/4(logN1/2 + 2 log(2i+1)))

]
.

Consider the estimates of the second term in the Eq. (??)

∑
q≤N1/2

q2≡2i+1 (mod 2i+1)

1 = 4
∑

q≤N1/2

q≡k (mod 2i+1)

1

= 4π(N1/2, 2i+1, k)

= 4
[ li(N1/2)

φ(2i+1)
+O(N1/4(logN1/2 + 2 log(2i+1)))

]
= 4

[ 1

φ(2i+1)

( N1/2

logN1/2
+O

( N1/2

(logN1/2)2

))
+O(N1/4(logN1/2 + 2 log(2i+1)))

]
.
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We have φ(2i+1) = 2i. Then, by Eq. (??), we have

ST0(N) =
∑

0≤i≤log2 N

1

2i

( ∑
q≤N1/2

q2≡2i+1 (mod 2i+1)

q2 −
∑

q≤N1/2

q2≡2i+1 (mod 2i+1)

1
)

=
(
4 +

∑
1≤i≤log2 N

1

2i

∑
q≤N1/2

q2≡2i+1 (mod 2i+1)

q2
)
−
(
1 +

∑
1≤i≤log2 N

1

2i

∑
q≤N1/2

q2≡2i+1 (mod 2i+1)

1
)

=
∑

3≤i≤log2 N

4

2i

[ ∑
q≤N1/2

q≡k (mod 2i+1)

q2 −
∑

q≤N1/2

q≡k (mod 2i+1)

1
]
+ 3

=
∑

3≤i≤log2 N

4

2i

[ 1

φ(2i+1)

( N3/2

logN3/2

(
1 +O

( 1

logN3/2

)))
+NO(N1/4(logN1/2 + 2 log(2i+1)))

−
( 1

φ(2i+1)

( N1/2

logN1/2
+O

( N1/2

(logN1/2)2

)))
+O(N1/4(logN1/2 + 2 log(2i+1)))

)]
+ 3

=
∑

3≤i≤log2 N

4

22i

[ N3/2

logN3/2

(
1 +O

( 1

logN3/2

))]
+ 3

=
[ N3/2

logN3/2

(
1 +O

( 1

logN3/2

))] ∑
3≤i≤log2 N

4

22i
.
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Claim 3. ∑3≤i≤log2 N
1
22i =

1
48

(
1 +O

(
1
N

))
.

Proof of Claim 3. We have

∑
3≤i≤log2 N

1

22i
=

1
43

(
1− 42

N2 )
)

1− 1
4

=
1

43
· 4
3

(
1− 16

N2

)
=

1

48

(
1 +O

( 1

N

))
.

This completes the proof of Claim 3.

Hence

ST0(N) =4
( 1

48

(
1 +O

( 1

N

)))( N3/2

logN3/2

(
1 +O

( 1

logN3/2

))
=

1

18

N3/2

logN

(
1 +O

( 1

N

))(
1 +O

( 1

logN3/2

)
.

Since

lim
N→∞

ST0N
1
18

N3/2

logN

= lim
N→∞

(
1 +O

( 1

N

))(
1 +O

( 1

logN3/2

)
= 1,

we get

ST0(N) ∼ 1

18

N3/2

logN
.

When p is an odd prime, we have the following result.

Theorem 3.2.7. Assume the ERH. Then

ST0(N) ∼ 4p2

3(p− 1)2(p+ 1)

N3/2

logN
.

Proof. Write q2 − 1 = pτ · ρ where τ = vp(q
2 − 1) and gcd(p, ρ) = 1. We, using

Theorem ?? (2), have that

T0(q
2) =

q2 − 1

pvp(q2−1)
.
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Then, by Definition 3.2.9, we have

ST0(N) =
∑
q2≤N

T0(q
2)

=
∑
q2≤N

q2 − 1

pvp(q2−1)

=
∑

q≤N1/2

q2 − 1

pvp(q2−1)

=
∑

0≤i≤logp N

∑
q≤N1/2

pi||(q2−1)

q2 − 1

pi
.

Claim 1. For each i ∈ N0, if pi||(q2 − 1), then there exists 0 < r < p such that q2 − 1 ≡

rpi (mod pi+1).

Proof of Claim 1. Let i be a non-negative integer and assume that pi||(q2 − 1). Then

pi|(q2 − 1) and pi+1(q2 − 1). So there exist l ∈ N and 0 < r < p such that q2 − 1 =

pi(pl + r) = pi+1l + pir. Then

q2 − 1 ≡ rpi (mod pi+1)

as desired.

Hence, by Claim 1, we have

ST0(N) =
∑

0≤i≤logp N

∑
q≤N1/2

q2−1≡rpi (mod pi+1)

q2 − 1

pi

=
∑

0≤i≤logp N

1

pi

∑
q≤N1/2

q2≡rpi+1 (mod pi+1)

(q2 − 1)

=
∑

0≤i≤logp N

1

pi

( ∑
q≤N1/2

q2≡rpi+1 (mod pi+1)

q2 −
∑

q≤N1/2

q2≡rpi+1 (mod pi+1)

1
)
. (3.2.2)

Next, consider the congruence q2 ≡ rpi + 1 (mod pi+1) for all i ≥ 0.

If i = 0, we will consider the solution of congruence q2 ≡ r + 1 (mod p). We have(
r+1
p

)
= 1, where

(
·
p

)
is the Legendre’s symbol, if and only if q2 ≡ r + 1 (mod p)
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has 2 solutions. Then

∑
q≤N1/2

q2≡r+1 (mod p)

q2 = 2
∑

q≤N1/2

q≡(r+1)1/2 (mod p)(
r+1

p

)
=1

q2.

Now we may assume that i ≥ 1.

Case r is odd, we have

(p− r

2
pi − 1

)2
=

(p− r

2

)2
p2i − (p− r)pi + 1 ≡ rpi + 1 (mod pi+1).

So, q ≡ p−r
2 pi − 1 (mod pi+1) or q ≡ −p−r

2 pi + 1 = p+r
2 pi + 1 (mod pi+1).

Consequently, we get

∑
q≤N1/2

q2≡rpi+1 (mod pi+1)

q2 =
∑

q≤N1/2

q≡ p−r

2
pi−1 (mod pi+1)

q2 +
∑

q≤N1/2

q≡ p+r

2
pi+1 (mod pi+1)

q2.

Case r is even, we have

(r
2
pi + 1

)2
=

(r
2

)2
p2i + rpi + 1 ≡ rpi + 1 (mod pi+1).

So, q ≡ r
2p

i + 1 (mod pi+1) or q ≡ − r
2p

i − 1 = (p− r
2)p

i − 1 (mod pi+1) .

This implies that

∑
q≤N1/2

q2≡rpi+1 (mod pi+1)

q2 =
∑

q≤N1/2

q≡ r

2
pi+1 (mod pi+1)

q2 +
∑

q≤N1/2

q≡(p− r

2
)pi−1 (mod pi+1)

q2.

By the same proof as in Theorem ??, for all positive k with gcd(k, p) = 1, we have

∑
q≤N1/2

q≡k (mod pi+1)

q2 =
1

φ(pi+1)

( N3/2

logN3/2
+O

( N3/2

(logN3/2)2

))

+NO(N1/4(logN1/2 + 2 log(pi+1))).

Since the estimate of the sum does not depend on k, we have

∑
q≤N1/2

q2≡rpi+1 (mod pi+1)

q2 = 2
∑

q≤N1/2

q≡k (mod pi+1)

q2 (i ≥ 0).
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Similarly, for all i ≥ 0, we have

∑
q≤N1/2

q2≡rpi+1 (mod pi+1)

1 = 2
∑

q≤N1/2

q≡k (mod pi+1)

1

= 2π(N1/2, pi+1, k)

= 2
[ 1

φ(pi+1)

( N1/2

logN1/2
+O

( N1/2

(logN1/2)2

))
+O(N1/4(logN1/2 + 2 log(pi+1)))

]
.

We have φ(pi+1) = pi(p− 1). Then, by Eq. (??), we have

ST0(N) =
∑

0≤i≤logp N

1

pi

( ∑
q≤N1/2

q2≡rpi+1 (mod pi+1)

q2 −
∑

q≤N1/2

q2≡rpi+1 (mod pi+1)

1
)

=
∑

0≤i≤logp N

1

pi

[
2

∑
q≤N1/2

q≡k (mod pi+1)

q2 − 2
∑

q≤N1/2

q≡k (mod pi+1)

1
]

=
∑

0≤i≤logp N

2

pi

[ ∑
q≤N1/2

q≡k (mod pi+1)

q2 −
∑

q≤N1/2

q≡k (mod pi+1)

1
]

=
∑

0≤i≤logp N

2

pi

[ 1

φ(pi+1)

[ N3/2

logN3/2

(
1 +O

( 1

logN3/2

))]

+NO(N1/4(logN1/2 + 2 log(pi+1)))

−
( 1

φ(pi+1)

( N1/2

logN1/2
+O

( N1/2

(logN1/2)2

))
+O(N1/4(logN1/2 + 2 log(pi+1)))

)]
=

∑
1≤i≤logp N

2

(p− 1)p2i

[( N3/2

logN3/2

(
1 +O

( 1

logN3/2

))]

=
2

(p− 1)

[( N3/2

logN3/2

(
1 +O

( 1

logN3/2

))] ∑
0≤i≤logp N

1

p2i
.

Claim 2. ∑0≤i≤logp N
1
p2i =

p2

p2−1

(
1 +O

(
1
N

))
.
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Proof of Claim 2. We have

∑
0≤i≤logp N

1

p2i
=

(
1− 1

N2
1
p2 )

)
1− 1

p2

=
p2

p2 − 1

(
1− 1

p2N2

)
=

p2

p2 − 1

(
1 +O

( 1

N

))
.

Now, we ready to find the estimate of ST0(N).

Consider

ST0(N) =
2

(p− 1)

[( N3/2

logN3/2

(
1 +O

( 1

logN3/2

))] p2

p2 − 1

(
1 +O

( 1

N

))
=

2p2

(p2 − 1)(p− 1)

N3/2

logN3/2

(
1 +O

( 1

logN3/2

))(
1 +O

( 1

N

))
=

4p2

3(p2 − 1)((p− 1)

N3/2

logN

(
1 +O

( 1

logN3/2

))(
1 +O

( 1

N

))
.

Thus,

lim
N→∞

ST0N
4p2

3(p2−1)(p−1)
N3/2

logN

= lim
N→∞

(
1 +O

( 1

N

))(
1 +O

( 1

logN3/2

)
= 1,

which gives

ST0(N) ∼ 4p2

3(p2 − 1)(p− 1)

N3/2

logN

as required.
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