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CHAPTER I

INTRODUCTION

In 1980, J. W. Fickett proposed the following problem in [3]:

Find an interval of the ratio

length (∂R1 ∩ Int (R2))

length (∂R2 ∩ Int (R1))
,

where R1 and R2 are two congruent rectangular regions whose interior intersect.

Denote ∂Ri and Int (Ri) the boundary and the interior of region Ri, respectively.

He also conjectured that all possible values of the above ratio must lies between
1

3
and 3.

Figure 1.1: The main objective of the Fickett’s problem is to find an interval of

the ratio between the length of dashed segments and that of thick segments.

Then, in 2004, C. Nielsen and C. Powers studied the same problem in another



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

case, i.e. in the case of R1 and R2 are two congruent equilateral triangles (as

illustrated in figure 1.2). They have proved in [4] that

1

2
≤ length (∂R1 ∩ Int (R2))

length (∂R2 ∩ Int (R1))
≤ 2,

for any two congruent equilaterals R1 and R2 with nonempty intersection of their

interiors.

R1

R2

Figure 1.2: Two congruent equilaterals R1 and R2 whose interiors intersect are

given. According to [4], the ratio between the length of dashed segments and the

length of thick segments always lies between 1

2
and 2.

In this paper, we are going to investigate the Fickett’s problem in the case of

R1 and R2 are two congruent Reuleaux triangles with nonempty intersection of

their interiors by distinguishing the investigation into two parts :

1. when R2 is an image of translation of R1, and

2. when R1 and R2 intersect in general position.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II

REULEAUX TRIANGLE AND ITS PROPERTIES

In this chapter, we are going to introduce a construction of Reuleaux triangle

and some of its properties.

2.1 A Construction of Reuleaux Triangle

A Reuleaux triangle is a convex region whose boundary consists of three vertices

of an equilateral, any two of them are connected by a circular arc which is a part

of a circle centered at the other vertex with radius equal to the side length of the

equilateral.

B C

A

Figure 2.1: The boundary of Reuleaux triangle ABC is shown in the solid arcs.

Note that A, B, C are three vertices of an equilateral △ABC (dashed), and any

two of them arc connected by circular arc centered at the other vertex as shown.
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Note 1. For convenience, in this paper, we denote Reu (ABC) the Reuleaux tri-

angle whose vertices are A, B and C.

2.2 Some Properties of Reuleaux Triangle

Reuleaux triangle is a convex region which satisfies a property called constant

width, i.e. the distance between two parallel supporting lines of the region is

always constant.

Figure 2.2: The distance between two parallel supporting lines of Reuleaux triangle

is always constant.

Another elementary example of convex region with constant width is a circle

since the distance between its two parallel supporting lines is equal to its diameter.

Note that, according to this property, the distance between two distinct points

in Reuleaux triangle does not exceed the width of the Reuleaux.
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B C

A

X

Y

Figure 2.3: For any points X, Y in Reu (ABC) ,
∣∣XY

∣∣ ≤ ∣∣BC
∣∣. and the equality

holds if and only if one of them is a vertex of Reu (ABC) and the other is a point

on the opposite arc.

Moreover, we also obtain another basic property via the following propositions

which can be easily proved by elementary geometry.

Proposition 2.1. Let X and Y be two points on arc >
AB and >

AC of Reu (ABC),

respectively. Then

B C

A

X
Y

(i) π

3
≤ ∠XAY <

2π

3
,

(ii) π

3
≤ ∠CBX <

π

2
and, similarly,

π

3
≤ ∠BCY <

π

2
,

(iii) ∠AXB = ∠AY C =
5π

6
, and

(iv) the perimeter of Reu (ABC) is

equal to π
∣∣BC

∣∣.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

Proof.

l1 l2

B C

A

X
Y

(i) Let l1 and l2 be the tangent lines

at point A of arcs >
AB and >

AC, respec-

tively. Then l1 ⊥ AC and l2 ⊥ AB.

Since ∠BAC =
π

3
, the obtuse angle

(shaded) between these two lines is equal

to 2π

3
. Hence, π

3
= ∠BAC ≤ ∠XAY <

2π

3
as desired.

B C

A

X
Y

(ii) Clearly, ∠CBX > ∠CBA =
π

3
.

Since |CB| = |CX|, we have

∠BXC = ∠XBC =
π

2
− 1

2
∠BCX <

π

2
.

Similarly, π

3
< ∠BCY <

π

2
.

B C

A

X
Y

(iii) Since C is the center

of arc >
AB, we have ∠XAB =

1

2
∠BCX and ∠XBA =

1

2
∠ACX.

Hence,

∠AXB = π − (∠XAB + ∠XBA)

= π − 1

2
(∠BCX + ∠ACX)

= π − 1

2

(π
3

)
=

5π

6
.

Similarly, ∠AY C =
5π

6
.
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B C

A (iv) Since ∠BCA =
π

3
, we have∣∣∣>AB∣∣∣ = π

3

∣∣BC
∣∣. Note that

∣∣∣>AB∣∣∣ = ∣∣∣>BC
∣∣∣ = ∣∣∣>CA

∣∣∣ .
Hence, the perimeter is equal to

3
∣∣∣>AB∣∣∣ = π

∣∣BC
∣∣ as desired.

Proposition 2.2.

B C

A

Z
Y

X

Let Reu (ABC) be a Reuleaux of unit

width and X, Y , Z three points on >
BC,

>
CA and >

AB, respectively. Then the cir-

cumradius of △XY Z does not exceed 1.

Proof. Without loss of generality, assume Y Z is the longest side of △XY Z. Then

∠ZXY is the largest angle of the triangle. Note that
∣∣Y Z

∣∣ ≤ 1.

Assume the contrary that the circumradius of △XY Z is greater than 1. Ap-

plying law of sine in △XY Z, we obtain.

1

sin∠ZXY
≥ Y Z

sin∠ZXY
> 2 =

1

sin∠BXC

, since ∠BXC =
5π

6
by proposition 2.1(iii). Hence, ∠ZXY >

5π

6
which is a

contradiction.
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We also obtain the following consequence from the above proposition.

Corollary 2.3. For any two points Y ̸= B and Z ̸= C on arcs >
AC and >

AB,

respectively, of Reu (ABC) of unit width, let >
Y Z be an arc of a unit circle which

lies on opposite side of line XY to vertices A (shown as the thick arcs in proposition

2.2). Then >
Y Z never meets arc >

BC of Reu (ABC). Moreover
∣∣∣>Y Z

∣∣∣ < ∣∣∣>BC
∣∣∣ and

the center of >Y Z lies outside Reu (ABC).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III

INTERSECTIONS OF REULEAUX TRIANGLES

In this chapter, we are going to separate all cases of intersection between two

congruent Reuleaux triangles by considering the numbers of arcs in the boundary

of intersection area.

Clearly, all possible numbers of arcs on the boundary of the intersection region

are at least 2 and at most 6.

R1 R2

Let R1 and R2 be two congruent Reuleaux triangles as shown above. For

convenience, the boundaries of R1 and R2 will be illustrated as solid arcs and

dashed arcs, respectively.

When Int (R1) and Int (R2) overlap together, the boundary of Int (R1)∩Int (R2)
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consists of solid arcs and dashed arcs. Denote

a = the number of solid arcs on the boundary of Int (R1) ∩ Int (R2), and

b = the number of dashed arcs on the boundary of Int (R1) ∩ Int (R2).

Without loss of generality, assume that a ≤ b. Note that 1 ≤ a, b ≤ 3. Next,

we are going to distinguish all possible cases of ordered pair (a, b).

Case 1 : a = 1. The intersection which coresponding to (1, 1) and (1, 2) are

illustrated in Figures 3.1a and 3.1b, respectively. Note that proposition 2.2 and

corollary 2.3 guarantee that the case of intersection (a, b) = (1, 2) exists.

(a) (a, b) = (1, 1) (b) (a, b) = (1, 2)

Figure 3.1
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Note that if b = 3 then there are two vertices of R2 which lie in R1 as shown

below.

B1 C1

A1

C2

A2

B2

This situation can occur only when these two vertices, say A2 and C2, of R2

are also two vertices of R1. If {A2, C2} = {A1, C1}, then the intersection will cor-

respond to (a, b) = (1, 1). Otherwise, R1 and R2 are coincide and the intersection

area is corresponding to (a, b) = (3, 3) .

Hence there are no intersections corresponding to (a, b) = (1, 3).

Case 2 : a = 2. An ordinary example of the intersection corresponding to

(a, b) = (2, 2) is illustrated in figure 3.2a.
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(a) (b)

Figure 3.2: (a, b) = (2, 2)

According to figure 3.2b, this kind of intersection can be seen that it corresponds

to (a, b) = (2, 2) by looking at the lowest arc on the boundary of intersection

consisting of two arcs, solid and dashed, overlapping each other.

Next, we are going to show that there are no intersection corresponding to

(a, b) = (2, 3). Assume the contrary. Then the intersection can be illustrated as in

the figure 3.3.

Figure 3.3
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Note that there are a vertex of R2 lying in R1 and a part of its opposite arc lying

in the interior of R1, which contradicts the constant width property of Reuleaux

triangle.

Case 3 : a = 3. Then b = 3 only, and an example of corresponding intersection

is illustrated in figure 3.4.

Figure 3.4: (a, b) = (3, 3)

Finally, we can distinguish all cases of intersection of two Reuleaux triangle as

desired.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER IV

FICKETT’S PROBLEM ON TRANSLATION OF

REULEAUX TRIANGLES

In this section, we are going to investigate the Fickett’s problem in the case of

two congruent Reuleaux triangles each of which is an image via a transation of the

other.

Note 2. In this section, without loss of generality, we assume that the width of

the Reuleaux triangles is 1.

4.1 Distinguishing All Cases of Intersection

v⃗

v⃗

v⃗

B1 C1

A1

B2 C2

A2

Figure 4.1
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Let R1 = Reu (A1B1C1) and R2 = Reu (A2B2C2) be two congruent Reuleaux

triangles such that R2 is the image of translation of R1 via vector v⃗ = ⃗A1A2 =

⃗B1B2 = ⃗C1C2 as shown in figure 4.1. Note that translation is a bijecctive map

from R1 to R2 and preserves interior and boundary. Note that we consider the

translation via nonzero vector only.

According to figure 4.1, we firstly begin with the following Lemma.

Lemma 4.1. If |v⃗| ≥ 1, then Int (R1) ∩ Int (R2) = ∅.

Proof. Assume the contrary. Let x be a point in Int (R1) ∩ Int (R2). Since x ∈

Int (R2), there exists x′ ∈ Int (R1) such that x⃗′x = v⃗. Hence
∣∣∣x⃗′x

∣∣∣ = |v⃗| ≥ 1. Note

that x′ and x lie in the interior of R1 whose width is 1, a contradiction.

Remark 4.2. The result from lemma 4.1 is still true for general convex regions of

unit width.

Now we obtain a consequence from the previous lemma that if the interior of

two Reuleaux triangles intersect, then the magnitude of translation vector must

less than 1. The next lemma helps us to distinguish all cases of intersection in this

situation.

Lemma 4.3. If Int (R1)∩Int (R2) ̸= ∅, then there is at least 1 vertex of a Reuleaux

triangle on the boundary of intersection area.
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Proof. Clearly, there are no two vertices of the same Reuleaux triangle that lie

simulateneously in the interior of the other Reuleuax triangle.

By symmetry, it suffices to assume that 0 ≤ ∠C1B1B2 < π.

B1 C1

A1

B2 C2

A2 1. If 0 ≤ ∠C1B1B2 ≤
π

3
, then B2

lies in Int (R1) since
∣∣∣ ⃗B1B2

∣∣∣ < 1, and

becomes a part of the boundary of in-

tersection area as shown.

B1 C1

A1

B2 C2

A2 2. If π

3
< ∠C1B1B2 ≤

2π

3
, then

0 < ∠B2A2A1 = ∠B2B1A1 ≤
π

3
.

Using the same argument as 1., we

obtain that A1, a vertex of R1, is a part

of the boundary of intersection area.

B1 C1

A1

B2 C2

A2 3. If 2π

3
< ∠C1B1B2 < π, then

0 < ∠C2C1A1 <
π

3
.

Using the same argument as 1., we

obtain that C2, a vertex of R2, is a part

of the boundary of intersection area.
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Note that the boundary of intersection area between two Reuleaux triangles

which is an image of translation of each other must contain at least one vertex of a

Reuleaux, so there are only 1 or 2 vertices of Reuleaux triangles on the boundary

of overlapping region.

Hence, we obtain an important consequence from Lemma 4.3 that if each of

the two Reuleaux triangles is an image of translation of one another, then the

intersection between them must satisfy only one of the following two cases : (a, b) =

(1, 2) or (a, b) = (2, 2).

(a) (a, b) = (1, 2) (b) (a, b) = (2, 2)

Figure 4.2: If each of Reuleaux triangles is an image of translation of one another,

there are only two cases of intersection occur.
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4.2 Computing the Ratio

Now we look back to the figure in proposition 2.2 as shown below.

B C

A

Z
Y

l2

l1

Figure 4.3

According to figure 4.3 on the left,

we need to show that the image of re-

fection of arc >
Y Z across line ←→ZY lies in

Reu (ABC).

Let l1 be the tangent line of >
AC at

Y and l2 the tangent line of >Y Z at Y . It

suffices to show that the white angle is

greater than or equal to the gray angle.

Proposition 4.4. The image of reflection of arc >
Y Z across line ←→ZY lies in

Reu (ABC).

Proof.

B C

A

Z Y

l2

l1

θ

φ

O

Z ′
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Let θ and φ be the white angle and the gray angle, respectively. Let Γ1 and

Γ2 be two unit circles which is the main circles of arcs >
AC and >

Y Z, respectively.

Denote O the center of Γ2 as shown.

Note that Z is a point on the interior of Γ1. Hence,
∣∣Y Z

∣∣ <
∣∣Y Z ′

∣∣ where

Z ′ ̸= Y is a second point of intersection between line ←→ZY and Γ1. Consequently,

2θ = ∠Y BZ > ∠Y OZ = 2φ since l1 is a tangent line of Γ1 and l2 is a tangent line

of Γ2, so we are done.

Reflecting circular sector Y OZ across line ←→ZY , we obtain an illustration as

shown in figure 4.4.

B C

A

Z
Y

O′

P

Figure 4.4

Let O′ be the center of solid arc
>
ZY as shown on the left. Note that

△ACZ and △Y O′Z are isoscele trian-

gle. Hence,

∠AZO = ∠AZY + ∠Y ZO′

≤ ∠AZC + ∠Y ZO′

<
π

2
+

π

2
= π

and, similarly, ∠AY O′ < π. This im-

plies −→OA always lies between −−→OY and
−→
OZ.

Thus, there is a point of intersection, namely P , between arc >
Y Z and segment

O′A as illustrated in figure 4.4.
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Proposition 4.5.

O AP

Z
Let △ZOP be an isoscele triangle

and A a point on the extension of −→OP .

Then ZA ≥ ZP .

Proof. Note that ∠ZPO is always acute and ∠ZPO ≥ ∠ZAP . Applying law of

sine in △XPA, we obtain

ZA

ZP
=

sin∠ZPA

sin∠ZAP =
sin∠ZPO

sin∠ZAP ≥ 1

and the equality holds if and only if P coincides with A.

Corollary 4.6. According to figure 4.4,
∣∣∣>ZY ∣∣∣ = ∣∣∣>ZP ∣∣∣ + ∣∣∣>PY

∣∣∣ ≤ ∣∣∣>ZA∣∣∣ + ∣∣∣>AY ∣∣∣ .
The equality holds if and only if A coincides with Z or Y .

By corollary 4.6, we now obtain a lower bound of the ratio between the length

of boundaries of two congruent Reuleaux triangles that lie in the interior of the

other Reuleaux when the intersection corresponds to (a, b) = (1, 2), i.e. according

to figure 4.5, by corollary 4.6, we have 1 ≤

∣∣∣>EX
∣∣∣+ ∣∣∣>EY

∣∣∣∣∣∣>XY
∣∣∣ . But the condition

that makes equality hold cannot happen when the intersection corresponds to

(a, b) = (1, 2), hence the inequality is strict.
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B C

A

E

F

D

X

Y

Figure 4.5

The next lemma is an important result that we use to find the upper bound of∣∣∣>EX
∣∣∣+ ∣∣∣>EY

∣∣∣∣∣∣>XY
∣∣∣ .

Lemma 4.7.

B C

A

X
Y

Let X and Y be two points different

from A that lie on arcs >
AB and >

AC, re-

spectively, of Reu (ABC) . Then
∣∣AX∣∣ ≤∣∣XY

∣∣ (similarly,
∣∣AY ∣∣ ≤ ∣∣XY

∣∣).

Proof. Let Γ be a circle centered at X of radius XA and. Then A is a point of

intersection between Γ and the big circle of arc >
AC.

If B, X and A are not collinear, then there is another point of intersection

between two circle, say A′, as shown in figure 4.6.
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B C

A

X

Y

A′

Figure 4.6

Note that A′ lie on opposite side of←→BX with >
AC since ∠BXA =

5π

6
. Hence, Y

lies outside Γ and, consequently,
∣∣AX∣∣ ≤ ∣∣XY

∣∣ and the equality holds if and only

if Y = A which contradicts our assumption. Hence, in this case, the inequality is

strict.

In the case of B, X and A are collinear, this situation can occur only when

X = B, hence,
∣∣AX∣∣ = ∣∣AB∣∣ = ∣∣XY

∣∣ as desired.

Corollary 4.8. According to figure 4.5, by lemma 4.7 we have
∣∣∣>EX

∣∣∣ + ∣∣∣>EY
∣∣∣ ≤

2
∣∣∣>XY

∣∣∣, and the equality holds if and only if X = D and Y = E which make the

intersection does not correspond to (a, b) = (1, 2). Hence, the inequality must be

strict.

Now we have a conclusion for Fickett’s problem on translation of Reuleaux

triangles as follow.
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Theorem 4.9 (Main Result 1). If R1 and R2 are two congruent Reuleaux triangles

where R2 is an image of translation of R1 and Int (R1) ∩ Int (R2) ̸= ∅, then

1

2
<

length (∂R1 ∩ Int (R2))

length (∂R2 ∩ Int (R1))
< 2

Moreover, 2 is also the supremum of this ratio, and consequently, by symmetry,
1

2
is also the infimum.

Proof. Using the results from section 4.1, corollaries 4.6 and 4.8, the conclusion is

clear when the intersection corresponds to (a, b) = (1, 2).

In the case of the intersection of R1 and R2 corrsponds to (a, b) = (2, 2), by

propositions 2.1 and 4.4, we can construct two arcs of unit radius connecting X

and Y on the interior of intersection area as shown

B
C

A

E F

D

X

Y

Note that∣∣∣>EX
∣∣∣+ ∣∣∣>EY

∣∣∣∣∣∣>CX
∣∣∣+ ∣∣∣>CY

∣∣∣ =
∣∣∣>EX

∣∣∣+ ∣∣∣>EY
∣∣∣∣∣∣>XY

∣∣∣ ·

∣∣∣>XY
∣∣∣∣∣∣>CX

∣∣∣+ ∣∣∣>CY
∣∣∣ .

Hence, by corollaries 4.6 and 4.8, we have

1

2
= 1 · 1

2
<

∣∣∣>EX
∣∣∣+ ∣∣∣>EY

∣∣∣∣∣∣>XY
∣∣∣ ·

∣∣∣>XY
∣∣∣∣∣∣>CX

∣∣∣+ ∣∣∣>CY
∣∣∣ < 2 · 1 = 2.

To show that 2 is the supremum, we consider the following intersection as

shown in figure 4.7.
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B C

A

E F

D

X

Y

θ

θ

Figure 4.7

Let Reu (DEF ) be a translation of Reu (ABC) such that −−→BE is the internal

bisector of ∠ABC. Then, by symmetry, ∠XFE = ∠Y DE, denote by θ. Note

that 0 < θ <
π

3
.

Then
∣∣EX

∣∣ = ∣∣EY
∣∣ = 2 sin θ

2
and ∠XEY =

π

3
+

π

3
− θ =

2π

3
− θ. Hence,∣∣∣>XY

∣∣∣ = 2 arcsin
[
cos

(π
3
− θ

)
− 1

2

]
by using elementary trigonometry, and the

ratio can be written as a function of θ as follows.

f (θ) =

∣∣∣>EX
∣∣∣+ ∣∣∣>EY

∣∣∣∣∣∣>XY
∣∣∣ =

θ

arcsin
(

cos
(π
3
− θ

)
− 1

2

) , where θ ∈
(
0,

π

3

)
.

We already know that 2 is an upper bound of X =
{
f (x) |x ∈

(
0,

π

3

)}
and

also a limit point of X since limx→π
3
− f (x) = 2. Hence, 2 is the supremum of X

as desired.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER V

FICKETT’S PROBLEM ON GENERAL

INTERSECTION OF REULEAUX TRIANGLES

According to chapter 3, we can distinguish all cases of intersection between two

congruent Reuleaux triangles.

Note that we have already found the supremum and the infimum of desired

ratio in the case of (a, b) = (1, 1), (1, 2) and (2, 2) in section 4 because in the

ratio computing step (subsection 4.2), we do not use any special properties of

translation. Hence, we can adapt those results from subsection 4.2 to these cases

of general intersection, i.e. theorem 4.9 is also suitable for general intersections

which correspond to (a, b) = (1, 1), (1, 2) and (2, 2).

But in the case of (a, b) = (3, 3), we found that it is hard to compute the ratio.

However, we have found some intersecting result in this case.

Theorem 5.1 (Main Result 2). If R1 and R2 are two Reuleaux triangles of unit

width whose intersection corresponds to (a, b) = (3, 3), then the perimeter of inter-

section area must lie between 2π

3
and π.

Proof. Let R1 = Reu (ABC) and R2 = Reu (DEF ) be two Reuleaux triangles of

unit width whose interior intersect in 6 point as illustrated in figure 5.1
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B C

A

D

E

F

G H

I

J

K

L

Figure 5.1

Then by lemma 4.7, we have

π

3
=

∣∣∣>BG
∣∣∣+ ∣∣∣>GH

∣∣∣+ ∣∣∣>HC
∣∣∣ < ∣∣∣>LG∣∣∣+ ∣∣∣>GH

∣∣∣+ ∣∣∣>HI
∣∣∣ , and

π

3
=

∣∣∣>FK
∣∣∣+ ∣∣∣>KJ

∣∣∣+ ∣∣∣>JE∣∣∣ < ∣∣∣>LK∣∣∣+ ∣∣∣>KJ
∣∣∣+ ∣∣∣>JI∣∣∣ .

Combining two above inequalities, we obtain the desired inequality on the left. For

the right hand side inequality, by corollary 4.6, we have

∣∣∣>LG∣∣∣+ ∣∣∣>GH
∣∣∣+ ∣∣∣>HI

∣∣∣+ ∣∣∣>IJ∣∣∣+ ∣∣∣>JK∣∣∣+ ∣∣∣>KL
∣∣∣

<
(∣∣∣>LB∣∣∣+ ∣∣∣>BG

∣∣∣)+
∣∣∣>GH

∣∣∣+ (∣∣∣>HC
∣∣∣+ ∣∣∣>CI

∣∣∣)+
∣∣∣>IJ∣∣∣+ (∣∣∣>JA∣∣∣+ ∣∣∣>AK∣∣∣)+

∣∣∣>KL
∣∣∣

= π

Finally, for further study, we have some claim that might be true after obser-

vation for many times as follows.
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Claim. According to the intersection in figure 5.1, for any two Reuleaux triangles

R1 and R2 of unit width , if length (∂R1 ∩ Int (R2)) is always greater than π

3
,

then the ratio between length (∂R1 ∩ Int (R2)) and length (∂R2 ∩ Int (R1)) must

lies between 1

2
and 2.

The reason of implication of the claim is if the assumption of the claim is true,

i.e. length (∂R1 ∩ Int (R2)) >
π

3
, we also obtain that length (∂R2 ∩ Int (R1)) >

π

3

by symmetry and hence by theorem 5.1 we have

π

3
< length (∂R1 ∩ Int (R2)) <

2π

3
and π

3
< length (∂R2 ∩ Int (R1)) <

2π

3
.

Consequently, these two inequalities imply that

1

2
<

length (∂R1 ∩ Int (R2))

length (∂R2 ∩ Int (R1))
< 2.

Moreover, the Fickett’s problem for another convex curves of constant width,

e.g. Reuleaux n−gon where n ≥ 3 is odd, is very interesting for generalization in

further study.

(a) (b)

Figure 5.2: Reuleaux 5−gon and Reuleaux 7−gon are illustrated in figure 5.2a and

5.2b, respectively.
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