

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาคณิตศาสตร์ ภาควิชาคณิตศาสตร์และวิทยาการคอมพิวเตอร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2562
ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

BOUNDARIES OF OVERLAPPING REULEAUX TRIANGLES

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Program in Mathematics

Department of Mathematics and Computer Science
Faculty of Science
Chulalongkorn University
Academic Year 2019

Copyright of Chulalongkorn University

จุฬาลงกรณ์มหาวิทยาลัย Chiliaiongiorn University

Thesis Title
By Mr. Jirapat Kaewkam

Field of Study
Mathematics
Thesis Advisor
Mr. Jirapat Kaewkam

Kirati Sriamorn, Ph.D.

BOUNDARIES OF OVERLAPPING REULEAUX TRIANGLES

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

Dean of the Faculty of Science (Professor Polkit Sangvanich, Ph.D.)

(Associate Professor Wacharin Wichiramala, Ph.D.)
\qquad
(Kirati Sriamorn, Ph.D.)
.. Examiner
(Assistant Professor Pongdate Montagantirud, Ph.D)
\qquad
External Examiner
(Assistant Professor Chatchawan Panraksa, Ph.D.)

จิราพัชร แก้วกาม: ขอบของสามเหลี่ยมรูโลซ์ที่ซ้อนทับกัน. (BOUNDARIES OF OVERLAPPING REULEAUX TRIANGLES)

อ.ที่ปรึกษาวิทยานิพนธ์หลัก : อ.ดร. กีรติ ศรีอมร, 29 หน้า.

\qquad
\# \# 6171927223 : MAJOR MATHEMATICS

KEYWORDS : INEQUALITIES/ REULEAUX TRIANGLES

JIRAPAT KAEWKAM : BOUNDARIES OF OVERLAPPING REULEAUX TRIANGLES

ADVISOR : KIRATI SRIAMORN, Ph.D.
29 pp.
In this paper, we investigate an analogous case of a problem proposed by J. W.
Fickett in 1980, i.e. finding an interval of the ratio

$$
\frac{\text { length }\left(\partial R_{1} \cap \operatorname{Int}\left(R_{2}\right)\right)}{\text { length }\left(\partial R_{2} \cap \operatorname{Int}\left(R_{1}\right)\right)},
$$

where R_{1} and R_{2} are two congruent Reuleaux triangle such that $\operatorname{Int}\left(R_{1}\right) \cap \operatorname{Int}\left(R_{2}\right) \neq$ \varnothing. Denote ∂R_{i} and Int $\left(R_{i}\right)$ the boundary and the interior of R_{i}, respectively.

We finish the proof when R_{2} is a translated copy R_{1} and we obtain some interesting results when R_{1} and R_{2} intersect in general position.

Department : Mathematics and Computer Science Student's Signature

Field of Study : Mathematics Advisor's Signature \qquad

Academic Year : 2019

ACKNOWLEDGEMENTS

Firstly, I would like to thank sincerely to my thesis advisor, Kirati Sriamorn Ph.D., for giving me much of motivation, suggestion and encouragement to complete this thesis research. I have received much of research experience and interesting knowledge relating to the research topic from him. I would also like to express my special thank to my thesis committees: Associate Professor Wacharin Wichiramala, Ph.D., Assistant Professor Pongdate Montagantirud, Ph.D and Assistant Professor Chatchawan Panraksa, Ph.D. for their suggestions and comments.

Moreover, I would like to thank to my parents, my teachers and my friends for supporting me to complete this thesis and also the Science Archievement Scholarship of Thailand Project (SAST) for supporting me a scholarship to complete this thesis comfortably.

CONTENTS

page
ABSTRACT IN THAI iv
ABSTRACT IN ENGLISH v
ACKNOWLEDGEMENTS vi
CONTENTS vii
CHAPTER
I INTRODUCTION 1
II REULEAUX TRIANGLE AND ITS PROPERTIES 3
2.1 A Construction of Reuleaux Triangle 3
2.2 Some Properties of Reuleaux Triangle
III INTERSECTIONS OF REULEAUX TRIANGLES 9
IV FICKETT'S PROBLEM ON TRANSLATION OF REULEAUX
TRIANGLES 14
4.1 Distinguishing All Cases of Intersection 14
4.2 Computing the Ratio 18
V FICKETT'S PROBLEM ON GENERAL INTERSECTION OF REULEAUX TRIANGLES 25
REFERENCES 28
VITA 29

CHAPTER I

INTRODUCTION

In 1980, J. W. Fickett proposed the following problem in [3]:
Find an interval of the ratio

$$
\frac{\text { length }\left(\partial R_{1} \cap \operatorname{Int}\left(R_{2}\right)\right)}{\text { length }\left(\partial R_{2} \cap \operatorname{Int}\left(R_{1}\right)\right)},
$$

where R_{1} and R_{2} are two congruent rectangular regions whose interior intersect. Denote ∂R_{i} and $\operatorname{Int}\left(R_{i}\right)$ the boundary and the interior of region R_{i}, respectively.

He also conjectured that all possible values of the above ratio must lies between $\frac{1}{3}$ and 3 .

Figure 1.1: The main objective of the Fickett's problem is to find an interval of the ratio between the length of dashed segments and that of thick segments.

Then, in 2004, C. Nielsen and C. Powers studied the same problem in another
case, i.e. in the case of R_{1} and R_{2} are two congruent equilateral triangles (as illustrated in figure (1.2). They have proved in (4] that

$$
\frac{1}{2} \leq \frac{\operatorname{length}\left(\partial R_{1} \cap \operatorname{Int}\left(R_{2}\right)\right)}{\operatorname{length}\left(\partial R_{2} \cap \operatorname{Int}\left(R_{1}\right)\right)} \leq 2
$$

for any two congruent equilaterals R_{1} and R_{2} with nonempty intersection of their interiors.

Figure 1.2: Two congruent equilaterals R_{1} and R_{2} whose interiors intersect are given. According to [4], the ratio between the length of dashed segments and the length of thick segments always lies between $\frac{1}{2}$ and 2 .

In this paper, we are going to investigate the Fickett's problem in the case of R_{1} and R_{2} are two congruent Reuleaux triangles with nonempty intersection of their interiors by distinguishing the investigation into two parts :

1. when R_{2} is an image of translation of R_{1}, and
2. when R_{1} and R_{2} intersect in general position.

CHAPTER II

REULEAUX TRIANGLE AND ITS PROPERTIES

In this chapter, we are going to introduce a construction of Reuleaux triangle and some of its properties.

2.1 A Construction of Reuleaux Triangle

A Reuleaux triangle is a convex region whose boundary consists of three vertices of an equilateral, any two of them are connected by a circular arc which is a part of a circle centered at the other vertex with radius equal to the side length of the equilateral.

Figure 2.1: The boundary of Reuleaux triangle $A B C$ is shown in the solid arcs. Note that A, B, C are three vertices of an equilateral $\triangle A B C$ (dashed), and any two of them arc connected by circular arc centered at the other vertex as shown.

Note 1. For convenience, in this paper, we denote Reu $(A B C)$ the Reuleaux triangle whose vertices are A, B and C.

2.2 Some Properties of Reuleaux Triangle

Reuleaux triangle is a convex region which satisfies a property called constant width, i.e. the distance between two parallel supporting lines of the region is always constant.

Figure 2.2: The distance between two parallel supporting lines of Reuleaux triangle is always constant.

Another elementary example of convex region with constant width is a circle since the distance between its two parallel supporting lines is equal to its diameter.

Note that, according to this property, the distance between two distinct points in Reuleaux triangle does not exceed the width of the Reuleaux.

Figure 2.3: For any points X, Y in $\operatorname{Reu}(A B C),|\overline{X Y}| \leq|\overline{B C}|$. and the equality holds if and only if one of them is a vertex of Reu $(A B C)$ and the other is a point on the opposite arc.

Moreover, we also obtain another basic property via the following propositions which can be easily proved by elementary geometry.

Proposition 2.1. Let X and Y be two points on are $\overparen{A B}$ and $\overparen{A C}$ of $\operatorname{Reu}(A B C)$, respectively. Then

(iv) the perimeter of $\operatorname{Reu}(A B C)$ is equal to $\pi|\overline{B C}|$.

Proof.

(i) Let l_{1} and l_{2} be the tangent lines at point A of $\operatorname{arcs} \overparen{A B}$ and $\overparen{A C}$, respectively. Then $l_{1} \perp A C$ and $l_{2} \perp A B$. Since $\angle B A C=\frac{\pi}{3}$, the obtuse angle (shaded) between these two lines is equal to $\frac{2 \pi}{3}$. Hence, $\frac{\pi}{3}=\angle B A C \leq \angle X A Y<$ $\frac{2 \pi}{3}$ as desired.
(ii) Clearly, $\angle C B X>\angle C B A=\frac{\pi}{3}$. Since $|C B|=|C X|$, we have

$$
\begin{aligned}
& \angle B X C=\angle X B C=\frac{\pi}{2}-\frac{1}{2} \angle B C X<\frac{\pi}{2} . \\
& \text { Similarly, } \frac{\pi}{3}<\angle B C Y<\frac{\pi}{2} .
\end{aligned}
$$

(iii) Since C is the center of arc $\overparen{A B}$, we have $\angle X A B=$ $\frac{1}{2} \angle B C X$ and $\angle X B A=\frac{1}{2} \angle A C X$. Hence,

$$
\begin{aligned}
\angle A X B & =\pi-(\angle X A B+\angle X B A) \\
& =\pi-\frac{1}{2}(\angle B C X+\angle A C X) \\
& =\pi-\frac{1}{2}\left(\frac{\pi}{3}\right)=\frac{5 \pi}{6} . \\
\text { Similarly, } & \angle A Y C=\frac{5 \pi}{6} .
\end{aligned}
$$

(iv) Since $\angle B C A=\frac{\pi}{3}$, we have $|\overparen{A B}|=\frac{\pi}{3}|\overline{B C}|$. Note that

$$
|\overparen{A B}|=|\overparen{B C}|=|\overparen{C A}|
$$

Hence, the perimeter is equal to $3|\overparen{A B}|=\pi|\overline{B C}|$ as desired.

Proposition 2.2.

Let Reu $(A B C)$ be a Reuleaux of unit width and X, Y, Z three points on $\overparen{B C}$, $\overparen{C A}$ and $\overparen{A B}$, respectively. Then the circumradius of $\triangle X Y Z$ does not exceed 1.

Proof. Without loss of generality, assume $\overline{Y Z}$ is the longest side of $\triangle X Y Z$. Then $\angle Z X Y$ is the largest angle of the triangle. Note that $|\overline{Y Z}| \leq 1$.

Assume the contrary that the circumradius of $\triangle X Y Z$ is greater than 1. Applying law of sine in $\triangle X Y Z$, we obtain.

$$
\frac{1}{\sin \angle Z X Y} \geq \frac{Y Z}{\sin \angle Z X Y}>2=\frac{1}{\sin \angle B X C}
$$

, since $\angle B X C=\frac{5 \pi}{6}$ by proposition 2.1(iii). Hence, $\angle Z X Y>\frac{5 \pi}{6}$ which is a contradiction.

We also obtain the following consequence from the above proposition.

Corollary 2.3. For any two points $Y \neq B$ and $Z \neq C$ on arcs $\overparen{A C}$ and $\overparen{A B}$, respectively, of $\operatorname{Reu}(A B C)$ of unit width, let $\widehat{Y Z}$ be an arc of a unit circle which lies on opposite side of line $X Y$ to vertices A (shown as the thick arcs in proposition 2.2). Then $\widehat{Y Z}$ never meets arc $\widehat{B C}$ of $\operatorname{Reu}(A B C)$. Moreover $|\widehat{Y Z}|<|\widehat{B C}|$ and the center of $\widehat{Y Z}$ lies outside $\operatorname{Reu}(A B C)$.

CHAPTER III

INTERSECTIONS OF REULEAUX TRIANGLES

In this chapter, we are going to separate all cases of intersection between two congruent Reuleaux triangles by considering the numbers of arcs in the boundary of intersection area.

Clearly, all possible numbers of arcs on the boundary of the intersection region are at least 2 and at most 6 .

Let R_{1} and R_{2} be two congruent Reuleaux triangles as shown above. For convenience, the boundaries of R_{1} and R_{2} will be illustrated as solid arcs and dashed arcs, respectively.

When $\operatorname{Int}\left(R_{1}\right)$ and $\operatorname{Int}\left(R_{2}\right)$ overlap together, the boundary of $\operatorname{Int}\left(R_{1}\right) \cap \operatorname{Int}\left(R_{2}\right)$
consists of solid arcs and dashed arcs. Denote
$a=$ the number of solid arcs on the boundary of $\operatorname{Int}\left(R_{1}\right) \cap \operatorname{Int}\left(R_{2}\right)$, and $b=$ the number of dashed arcs on the boundary of $\operatorname{Int}\left(R_{1}\right) \cap \operatorname{Int}\left(R_{2}\right)$.

Without loss of generality, assume that $a \leq b$. Note that $1 \leq a, b \leq 3$. Next, we are going to distinguish all possible cases of ordered pair (a, b).

Case 1 : $a=1$. The intersection which coresponding to $(1,1)$ and $(1,2)$ are illustrated in Figures 3.1a and 3.1b, respectively. Note that proposition 2.2 and corollary 2.3 guarantee that the case of intersection $(a, b)=(1,2)$ exists.

(a) $(a, b)=(1,1)$
(b) $(a, b)=(1,2)$

Figure 3.1

Note that if $b=3$ then there are two vertices of R_{2} which lie in R_{1} as shown below.

This situation can occur only when these two vertices, say A_{2} and C_{2}, of R_{2} are also two vertices of R_{1}. If $\left\{A_{2}, C_{2}\right\}=\left\{A_{1}, C_{1}\right\}$, then the intersection will correspond to $(a, b)=(1,1)$. Otherwise, R_{1} and R_{2} are coincide and the intersection area is corresponding to $(a, b)=(3,3)$.

Hence there are no intersections corresponding to $(a, b)=(1,3)$.
Case 2 : $a=2$. An ordinary example of the intersection corresponding to $(a, b)=(2,2)$ is illustrated in figure 3.2a.

Figure 3.2: $(a, b)=(2,2)$

According to figure 3.2 b , this kind of intersection can be seen that it corresponds to $(a, b)=(2,2)$ by looking at the lowest arc on the boundary of intersection consisting of two arcs, solid and dashed, overlapping each other.

Next, we are going to show that there are no intersection corresponding to $(a, b)=(2,3)$. Assume the contrary. Then the intersection can be illustrated as in the figure 3.3.

Figure 3.3

Note that there are a vertex of R_{2} lying in R_{1} and a part of its opposite arc lying in the interior of R_{1}, which contradicts the constant width property of Reuleaux triangle.

Case 3: $a=3$. Then $b=3$ only, and an example of corresponding intersection is illustrated in figure 3.4.

Figure 3.4: $(a, b)=(3,3)$

Finally, we can distinguish all cases of intersection of two Reuleaux triangle as desired.

CHAPTER IV

FICKETT'S PROBLEM ON TRANSLATION OF
 REULEAUX TRIANGLES

In this section, we are going to investigate the Fickett's problem in the case of two congruent Reuleaux triangles each of which is an image via a transation of the other.

Note 2. In this section, without loss of generality, we assume that the width of the Reuleaux triangles is 1 .

4.1 Distinguishing All Cases of Intersection

Figure 4.1

Let $R_{1}=\operatorname{Reu}\left(A_{1} B_{1} C_{1}\right)$ and $R_{2}=\operatorname{Reu}\left(A_{2} B_{2} C_{2}\right)$ be two congruent Reuleaux triangles such that R_{2} is the image of translation of R_{1} via vector $\vec{v}=\overrightarrow{A_{1} A_{2}}=$ $\overrightarrow{B_{1} B_{2}}=\overrightarrow{C_{1} C_{2}}$ as shown in figure 4.1. Note that translation is a bijecctive map from R_{1} to R_{2} and preserves interior and boundary. Note that we consider the translation via nonzero vector only.

According to figure 4.1, we firstly begin with the following Lemma.

Lemma 4.1. If $|\vec{v}| \geq 1$, then $\operatorname{Int}\left(R_{1}\right) \cap \operatorname{Int}\left(R_{2}\right)=\varnothing$.

Proof. Assume the contrary. Let x be a point in $\operatorname{Int}\left(R_{1}\right) \cap \operatorname{Int}\left(R_{2}\right)$. Since $x \in$ Int $\left(R_{2}\right)$, there exists $x^{\prime} \in \operatorname{Int}\left(R_{1}\right)$ such that $x^{\prime} x=\vec{v}$. Hence $\left|x^{\prime} x\right|=|\vec{v}| \geq 1$. Note that x^{\prime} and x lie in the interior of R_{1} whose width is 1 , a contradiction.

Remark 4.2. The result from lemma 4.1 is still true for general convex regions of unit width.

Now we obtain a consequence from the previous lemma that if the interior of two Reuleaux triangles intersect, then the magnitude of translation vector must less than 1. The next lemma helps us to distinguish all cases of intersection in this situation.

Lemma 4.3. If $\operatorname{Int}\left(R_{1}\right) \cap \operatorname{Int}\left(R_{2}\right) \neq \varnothing$, then there is at least 1 vertex of a Reuleaux triangle on the boundary of intersection area.

Proof. Clearly, there are no two vertices of the same Reuleaux triangle that lie simulateneously in the interior of the other Reuleuax triangle.

By symmetry, it suffices to assume that $0 \leq \angle C_{1} B_{1} B_{2}<\pi$.

1. If $0 \leq \angle C_{1} B_{1} B_{2} \leq \frac{\pi}{3}$, then B_{2} lies in $\operatorname{Int}\left(R_{1}\right)$ since $\left|\overrightarrow{B_{1} B_{2}}\right|<1$, and becomes a part of the boundary of intersection area as shown.

2. If $\frac{\pi}{3}<\angle C_{1} B_{1} B_{2} \leq \frac{2 \pi}{3}$, then $0<\angle B_{2} A_{2} A_{1}=\angle B_{2} B_{1} A_{1} \leq \frac{\pi}{3}$.

Using the same argument as 1., we obtain that A_{1}, a vertex of R_{1}, is a part of the boundary of intersection area.

3. If $\frac{2 \pi}{3}<\angle C_{1} B_{1} B_{2}<\pi$, then $0<\angle C_{2} C_{1} A_{1}<\frac{\pi}{3}$.

Using the same argument as 1., we obtain that C_{2}, a vertex of R_{2}, is a part of the boundary of intersection area.

Note that the boundary of intersection area between two Reuleaux triangles which is an image of translation of each other must contain at least one vertex of a Reuleaux, so there are only 1 or 2 vertices of Reuleaux triangles on the boundary of overlapping region.

Hence, we obtain an important consequence from Lemma 4.3 that if each of the two Reuleaux triangles is an image of translation of one another, then the intersection between them must satisfy only one of the following two cases : $(a, b)=$ $(1,2)$ or $(a, b)=(2,2)$.

(a) $(a, b)=(1,2)$
(b) $(a, b)=(2,2)$

Figure 4.2: If each of Reuleaux triangles is an image of translation of one another, there are only two cases of intersection occur.

4.2 Computing the Ratio

Now we look back to the figure in proposition 2.2 as shown below.

Figure 4.3

According to figure 4.3 on the left, we need to show that the image of refection of arc $\overparen{Y Z}$ across line $\overleftarrow{Z Y}$ lies in Reu $(A B C)$.

Let l_{1} be the tangent line of $\overparen{A C}$ at Y and l_{2} the tangent line of $\overparen{Y Z}$ at Y. It suffices to show that the white angle is greater than or equal to the gray angle.

Proposition 4.4. The image of reflection of arc $\widehat{Y Z}$ across line $\overleftrightarrow{Z Y}$ lies in Reu ($A B C$).

Proof.

Let θ and φ be the white angle and the gray angle, respectively. Let Γ_{1} and Γ_{2} be two unit circles which is the main circles of arcs $\overparen{A C}$ and $\widehat{Y Z}$, respectively. Denote O the center of Γ_{2} as shown.

Note that Z is a point on the interior of Γ_{1}. Hence, $|\overline{Y Z}|<\left|\overline{Y Z^{\prime}}\right|$ where $Z^{\prime} \neq Y$ is a second point of intersection between line $\overleftrightarrow{Z Y}$ and Γ_{1}. Consequently, $2 \theta=\angle Y B Z>\angle Y O Z=2 \varphi$ since l_{1} is a tangent line of Γ_{1} and l_{2} is a tangent line of Γ_{2}, so we are done.

Reflecting circular sector $Y O Z$ across line $\grave{Z Y}$, we obtain an illustration as shown in figure 4.4.

$$
\begin{aligned}
\angle A Z O & =\angle A Z Y+\angle Y Z O^{\prime} \\
& \leq \angle A Z C+\angle Y Z O^{\prime} \\
& <\frac{\pi}{2}+\frac{\pi}{2}=\pi
\end{aligned}
$$

Figure 4.4
and, similarly, $\angle A Y O^{\prime}<\pi$. This implies $\overrightarrow{O A}$ always lies between $\overrightarrow{O Y}$ and $\overrightarrow{O Z}$.

Thus, there is a point of intersection, namely P, between arc $\widehat{Y Z}$ and segment $\overline{O^{\prime} A}$ as illustrated in figure 4.4.

Proposition 4.5.

Let $\triangle Z O P$ be an isoscele triangle
 and A a point on the extension of $\overrightarrow{O P}$. Then $Z A \geq Z P$.

Proof. Note that $\angle Z P O$ is always acute and $\angle Z P O \geq \angle Z A P$. Applying law of sine in $\triangle X P A$, we obtain

$$
\frac{Z A}{Z P}=\frac{\sin \angle Z P A}{\sin \angle Z A P}=\frac{\sin \angle Z P O}{\sin \angle Z A P} \geq 1
$$

and the equality holds if and only if P coincides with A.
Corollary 4.6. According to figure 4.4, $|\overparen{Z Y}|=|\overparen{Z P}|+|\overparen{P Y}| \leq|\overparen{Z A}|+|\overparen{A Y}|$.
The equality holds if and only if A coincides with Z or Y.

By corollary 4.6, we now obtain a lower bound of the ratio between the length of boundaries of two congruent Reuleaux triangles that lie in the interior of the other Reuleaux when the intersection corresponds to $(a, b)=(1,2)$, i.e. according to figure 4.5, by corollary 4.6, we have $1 \leq \frac{|\overparen{E X}|+|\overparen{E Y}|}{|\widehat{X Y}|}$. But the condition that makes equality hold cannot happen when the intersection corresponds to $(a, b)=(1,2)$, hence the inequality is strict.

Figure 4.5

The next lemma is an important result that we use to find the upper bound of $\frac{|\overparen{E X}|+|\overparen{E Y}|}{|\widehat{X Y}|}$.

Lemma 4.7.

Proof. Let Γ be a circle centered at X of radius $X A$ and. Then A is a point of intersection between Γ and the big circle of arc $\overparen{A C}$.

If B, X and A are not collinear, then there is another point of intersection between two circle, say A^{\prime}, as shown in figure 4.6.

Figure 4.6

Note that A^{\prime} lie on opposite side of $\overleftrightarrow{B X}$ with $\overparen{A C}$ since $\angle B X A=\frac{5 \pi}{6}$. Hence, Y lies outside Γ and, consequently, $|\overline{A X}| \leq|\overline{X Y}|$ and the equality holds if and only if $Y=A$ which contradicts our assumption. Hence, in this case, the inequality is strict.

In the case of B, X and A are collinear, this situation can occur only when $X=B$, hence, $|\overline{A X}|=|\overline{A B}|=|\overline{X Y}|$ as desired.

Corollary 4.8. According to figure 居.5, by lemma 4.7 we have $|\overparen{E X}|+|\overparen{E Y}| \leq$ $2|\widehat{X Y}|$, and the equality holds if and only if $X=D$ and $Y=E$ which make the intersection does not correspond to $(a, b)=(1,2)$. Hence, the inequality must be strict.

Now we have a conclusion for Fickett's problem on translation of Reuleaux triangles as follow.

Theorem 4.9 (Main Result 1). If R_{1} and R_{2} are two congruent Reuleaux triangles where R_{2} is an image of translation of R_{1} and $\operatorname{Int}\left(R_{1}\right) \cap \operatorname{Int}\left(R_{2}\right) \neq \varnothing$, then

$$
\frac{1}{2}<\frac{\operatorname{length}\left(\partial R_{1} \cap \operatorname{Int}\left(R_{2}\right)\right)}{\operatorname{length}\left(\partial R_{2} \cap \operatorname{Int}\left(R_{1}\right)\right)}<2
$$

Moreover, 2 is also the supremum of this ratio, and consequently, by symmetry, $\frac{1}{2}$ is also the infimum.

Proof. Using the results from section 4.1, corollaries 4.6 and 4.8, the conclusion is clear when the intersection corresponds to $(a, b)=(1,2)$.

In the case of the intersection of R_{1} and R_{2} corrsponds to $(a, b)=(2,2)$, by propositions 2.1 and 4.4, we can construct two arcs of unit radius connecting X and Y on the interior of intersection area as shown

Hence, by corollaries 4.6 and 4.8, we have

$$
\frac{1}{2}=1 \cdot \frac{1}{2}<\frac{|\overparen{E X}|+|\overparen{E Y}|}{|\overparen{X Y}|} \cdot \frac{|\overparen{X Y}|}{|\overparen{C X}|+|\overparen{C Y}|}<2 \cdot 1=2
$$

To show that 2 is the supremum, we consider the following intersection as shown in figure 4.7.

Figure 4.7

Let Reu $(D E F)$ be a translation of $\operatorname{Reu}(A B C)$ such that $\overrightarrow{B E}$ is the internal bisector of $\angle A B C$. Then, by symmetry, $\angle X F E=\angle Y D E$, denote by θ. Note that $0<\theta<\frac{\pi}{3}$.

Then $|\overline{E X}|=|\overline{E Y}|=2 \sin \frac{\theta}{2}$ and $\angle X E Y=\frac{\pi}{3}+\frac{\pi}{3}-\theta=\frac{2 \pi}{3}-\theta$. Hence, $|\widehat{X Y}|=2 \arcsin \left[\cos \left(\frac{\pi}{3}-\theta\right)-\frac{1}{2}\right]$ by using elementary trigonometry, and the ratio can be written as a function of θ as follows.

$$
f(\theta)=\frac{|\overparen{E X}|+|\overparen{E Y}|}{|\widehat{X Y}|}=\frac{\theta}{\arcsin \left(\cos \left(\frac{\pi}{3}-\theta\right)-\frac{1}{2}\right)} \quad \text {, where } \theta \in\left(0, \frac{\pi}{3}\right)
$$

We already know that 2 is an upper bound of $X=\left\{f(x) \left\lvert\, x \in\left(0, \frac{\pi}{3}\right)\right.\right\}$ and also a limit point of X since $\lim _{x \rightarrow \frac{\pi}{3}-} f(x)=2$. Hence, 2 is the supremum of X as desired.

CHAPTER V

FICKETT'S PROBLEM ON GENERAL

INTERSECTION OF REULEAUX TRIANGLES

According to chapter 3, we can distinguish all cases of intersection between two congruent Reuleaux triangles.

Note that we have already found the supremum and the infimum of desired ratio in the case of $(a, b)=(1,1),(1,2)$ and $(2,2)$ in section 4 because in the ratio computing step (subsection 4.2), we do not use any special properties of translation. Hence, we can adapt those results from subsection 4.2 to these cases of general intersection, i.e. theorem 4.9 is also suitable for general intersections which correspond to $(a, b)=(1,1),(1,2)$ and $(2,2)$.

But in the case of $(a, b)=(3,3)$, we found that it is hard to compute the ratio. However, we have found some intersecting result in this case.

Theorem 5.1 (Main Result 2). If R_{1} and R_{2} are two Reuleaux triangles of unit width whose intersection corresponds to $(a, b)=(3,3)$, then the perimeter of intersection area must lie between $\frac{2 \pi}{3}$ and π.

Proof. Let $R_{1}=\operatorname{Reu}(A B C)$ and $R_{2}=\operatorname{Reu}(D E F)$ be two Reuleaux triangles of unit width whose interior intersect in 6 point as illustrated in figure 5.1

Figure 5.1

Then by lemma 4.7, we have

$$
\begin{aligned}
& \frac{\pi}{3}=|\overparen{B G}|+|\overparen{G H}|+|\overparen{H C}|<|\overparen{L G}|+|\overparen{G H}|+|\overparen{H I}|, \text { and } \\
& \frac{\pi}{3}=|\overparen{F K}|+|\overparen{K J}|+|\overparen{J E}|<|\overparen{L K}|+|\overparen{K J}|+|\overparen{J I}|
\end{aligned}
$$

Combining two above inequalities, we obtain the desired inequality on the left. For the right hand side inequality, by corollary 4.6, we have

$$
\begin{aligned}
& |\overparen{L G}|+|\overparen{G H}|+|\widehat{H I}|+|\widehat{I J}|+|\widehat{J K}|+|\widehat{K L}| \\
< & (|\widehat{L B}|+|\overparen{B G}|)+|\overparen{G H}|+(|\overparen{H C}|+|\overparen{C I}|)+|\overparen{I J}|+(|\widehat{J A}|+|\widehat{A K}|)+|\widehat{K L}| \\
= & \pi
\end{aligned}
$$

Finally, for further study, we have some claim that might be true after observation for many times as follows.

Claim. According to the intersection in figure 5.1, for any two Reuleaux triangles R_{1} and R_{2} of unit width , if length $\left(\partial R_{1} \cap \operatorname{Int}\left(R_{2}\right)\right)$ is always greater than $\frac{\pi}{3}$, then the ratio between length $\left(\partial R_{1} \cap \operatorname{Int}\left(R_{2}\right)\right)$ and length $\left(\partial R_{2} \cap \operatorname{Int}\left(R_{1}\right)\right)$ must lies between $\frac{1}{2}$ and 2 .

The reason of implication of the claim is if the assumption of the claim is true, i.e. length $\left(\partial R_{1} \cap \operatorname{Int}\left(R_{2}\right)\right)>\frac{\pi}{3}$, we also obtain that length $\left(\partial R_{2} \cap \operatorname{Int}\left(R_{1}\right)\right)>\frac{\pi}{3}$ by symmetry and hence by theorem 5.1 we have

$$
\frac{\pi}{3}<\text { length }\left(\partial R_{1} \cap \operatorname{Int}\left(R_{2}\right)\right)<\frac{2 \pi}{3} \text { and } \frac{\pi}{3}<\text { length }\left(\partial R_{2} \cap \operatorname{Int}\left(R_{1}\right)\right)<\frac{2 \pi}{3} .
$$

Consequently, these two inequalities imply that

$$
\frac{1}{2}<\frac{\operatorname{length}\left(\partial R_{1} \cap \operatorname{Int}\left(R_{2}\right)\right)}{\operatorname{length}\left(\partial R_{2} \cap \operatorname{Int}\left(R_{1}\right)\right)}<2
$$

Moreover, the Fickett's problem for another convex curves of constant width, e.g. Reuleaux n-gon where $n \geq 3$ is odd, is very interesting for generalization in further study.

Figure 5.2: Reuleaux 5-gon and Reuleaux 7-gon are illustrated in figure 5.2a and 5.2b, respectively.

REFERENCES

[1] Bartle, R. G., and Sherbert, D. R. Introduction to Real Analysis, $4^{\text {th }}$ ed., Hoboken, NJ: Wiley, 2011.
[2] Croft, H., Falconer, K. and Halmos, P. Unsolved Problems in Geometry., New York: Springer New York, 1991.
[3] Fickett, J.W. Overlapping congruent convex bodies. The American Mathematical Monthly 87 (December 1980) : 814-815.
[4] Nielsen, C. and Powers, C. Intersecting equilateral triangles. Forum Geometricorum 13 (2013) : 219-225.

VITA

Name	: Mr. Jirapat Kaewkam
Date of Birth	$: 19$ May 1996
Place of Birth	$:$ Phitsanulok, Thailand
Education	: B.Sc. (Mathematics), Chulalongkorn University, 2017
Scholarship	$:$ The Science Archievement Scholarship of Thailand Project

