ADIPONITRILE HYDROGENATION OVER NICKEL SUPPORTED ON CERIA-ZIRCONIA AND CERIA-ZIRCONIA-MAGNESIA MIXED OXIDE CATALYSTS

Kantapong Mongkolhattee

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University, and Institut Français du Pétrole

2014

Thesis Title:	Adiponitrile Hydrogenation over Nickel Supported	
	on Ceria-Zirconia and Ceria-Zirconia-Magnesia	
	Mixed Oxide Catalyst	
By:	Kantapong Mongkolhattee	
Program:	Petroleum Technology	
Thesis Advisors:	Assoc.Prof. Thirasak Rirksomboon	
0.=0.	Assoc.Prof. Vissanu Meeyoo	

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

... College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

Sullt

(Assoc.Prof. Thirasak Rirksomboon)

(Assoc.Prof. Vissanu Meeyoo)

macha

(Assoc.Prof. Pramoch Rangsunvigit)

S. Pengparich

(Asst.Prof. Sitthiphong Pengpanich)

ABSTRACT

 5573011063: Petroleum Technology Program Kantapong Mongkolhattee: Adiponitrile Hydrogenation over Nickel Supported on Ceria-Zirconia and Ceria-Zirconia-Magnesia Mixed Oxide Catalysts Thesis Advisors: Assoc. Prof. Thirasak Rirksomboon, and Assoc. Prof. Vissanu Meeyoo 48 pp.
Keywords: Adiponitrile Hydrogenation/ Nickel Supported Catalyst/ Ceria-Zirconia

The phase hydrogenation of adiponitrile (ADN) gas 1,6to hexamethylenediamine (HMDA) over nickel supported on ceria-zirconia and ceriazirconia-magnesia mixed oxide catalysts was studied at atmospheric pressure. The catalysts, Ni/Ce_{0.75}Zr_{0.25}O₂ and Ni/Ce_{0.75}Zr_{0.15}Mg_{0.20}O₂, were prepared via coprecipitation, followed by 15 %wt. Ni impregnation. The catalysts were characterized by several techniques, i.e., N₂-physisorption, H₂-TPR, XRD, and NH₃-TPD. The reaction was carried out using a continuous flow fixed-bed reactor by varying temperature, hydrogen-to-adiponitrile mol ratio (H₂/ADN), gas hourly space velocity (GHSV), and acidity of the supports. The main product produced via partial hydrogenation was observed to be 6-aminohexanenitrile. The catalyst with less support acidity can enhance the production of HMDA.

iii

บทคัดย่อ

กันตพงส์ มงคลหัตถึ : ปฏิกิริยาไฮโครจิเนชันของอะไคโพไนไตรล์โดยใช้ตัวเร่ง ปฏิกิริยานิกเกิลบนตัวรองรับออกไซค์ผสมของซีเรียเซอร์โคเนียและของซีเรียเซอร์โคเนีย แมกนีเซียม (Adiponitrile Hydrogenation over Nickel Supported on Ceria-Zirconia and Ceria-Zirconia-Magnesia Mixed Oxide Catalysts) อ. ที่ปรึกษา : - รศ.คร. ธีรศักดิ์ ฤกษ์สมบูรณ์ และ รศ.คร. วิษณุ มีอยู่ 48 หน้า

การศึกษาปฏิกิริยาไฮโดนจิเนชันของอะไดโพในไตรล์ในสถานะก๊าซโดยใช้ด้วเร่ง ปฏิกิริยานิกเกิลบนด้วรองรับออกไซด์ผสมของซีเรียเซอร์โกเนียและของซีเรีย เซอร์โกเนีย แมกนีเซียมที่ความคันบรรยากาศ ตัวเร่งปฏิกิริยาเตรียมถูกโดยวิธีการตกตะกอนร่วมของตัวรองรับ ตามด้วยการเติมนิกเกิลลงบนตัวรองรับโดยวิธีการทำให้ชุ่ม โดยปริมาณโลหะนิกเกิลคงที่ร้อยละ 15 ของน้ำหนักตัวเร่งปฏิกิริยา จากนั้นได้ศึกษาคุณลักษณะสมบัติของตัวเร่งปฏิกิริยาที่เตรียมได้ โดยวิธี XRF, BET surface area, H2-TPR, XRD, และ NH3-TPD รวมทั้งศึกษาถึงสภาวะ ต่างๆ ที่มีผลต่อความสามารถในการเกิดปฏิกิริยา ทั้งอุณหภูมิ อัตราส่วนโดยโมลระหว่าง ไฮโครเจนต่ออะไดโพไนไตรล์ ความเร็วในการทำปฏิกิริยา และความเป็นกรดของตัวเร่งปฏิกิริยา ซึ่งจากการทดลองพบว่าผลิตภัณฑ์หลักของปฏิกิริยาคือ AHN ซึ่งเกิดจากการไฮโครจิเนชันเพียง บางส่วนของอะไดโพไนไตรล์ และสภาวะทุกสภาวะมีผลต่อ ADN conversion โดย ADN conversion มีผลอย่างมากต่อปริมาณของผลิตภัณฑ์ที่เกิดขึ้น สำหรับตัวเร่งปฏิกิริยาที่มีการเติม แมกนีเซียม พบว่าความเป็นกรดของตัวเร่งปฏิกิริยาลดลง ซึ่งสามารถยับยั้งการเกิดปฏิกิริยาการ กำจัดแอมโมเนีย จึงทำให้สามารถผลิต HMDA ซึ่งเป็นผลิตภัณฑ์ที่ด้องการได้มากขึ้น

iv

ACKNOWLEDGEMENTS

Above all, I would like to acknowledge my advisors, Assoc. Prof. Thirasak Rirksomboon and Assoc. Prof. Vissanu Meeyoo who gave me an opportunity, motivation, encouragement, knowledge, recommendations and comments and also acknowledge to Assoc. Prof. Pramoch Rangsunvigit and Asst. Prof. Sitthiphong Pengpanich for being the thesis committee.

This thesis work is funded by the Petroleum and Petrochemical College, the National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, Thailand; and Centre for Advanced Materials and Environmental Research, Mahanakorn University of Technology.

Finally, I would like to thank my family and friend for their love, help and understanding.

TABLE OF CONTENTS

		PAGE	
Title	Page	i	
Abst	Abstract (in English)		
Abst	ract (in Thai)	iv	
Ackı	nowledgements	- V	
Tabl	e of Contents	vi	
List	of Tables -	viii	
List	of Figures	ix	
CHAPTE	R		
Ι	INTRODUCTION	1	
Ш	THEORETICAL BACKGROUND AND		
	LITERATURE REVIEW	3	
	2.1 Theoretical Background	3	
	2.2 Literature Review	14	
III	EXPERIMENTAL	23	
	3.1 Materials	23	
	3.1.1 Gases	23	
	3.1.2 Chemicals	23	
	3.2 Equipment	23	
	3.2.1 Catalyst Characterization	23	
	3.3 Methodology	26	
	3.3.1 Catalyst Preparation	26	
	3.3.2 Catalytic Activity Testing	27	
IV	RESULTS AND DISCUSSION	29	
	4.1 Catalyst Characterization	29	

.

į,

.

-

-

 \mathbf{V}

-

	4.1.1	Elemental Analysis by XRF	29
	4.1.2	BET Surface Areas	31
	4.1.3	H ₂ -Chemisorption	31
	4.1.4	X-ray Diffraction (XRD)	32
	4.1.5	Temperature Programmed Reduction of	
		Hydrogen (H ₂ -TPR)	33
	4.1.6	Femperature Programmed Desorption of	
		Ammonia (NH ₃ -TPD)	34
	4.1.7	Scanning Electron Microscopy (SEM)	- 35
4.2	Catal	lytic Activity Testing -	36
	4.2.1	Effect of Temperature	36
	4.2.2	Effect of Hydrogen to Adiponitrile Mol Ratio	37
	4.2.3	Effect of Gas Hourly Space Velocity (GHSV)	38
	4.2.4	Effect of Catalyst Acidity	39
CO	NCLU	USIONS AND RECOMMENDATIONS	41
5.1	Conc	clusions	41
5.2	5.2 Recommendations		41
			-
RE	FERE	ENCES	42
AP	PEND	DIX	45
Арј	pendix	x A Experimental Data of Flow Meter Gas Calibra	tion
		of Brooks 5850E Mass Flow Controllers	45
Ар	pendix	x B Experimental Data of flow Meter Liquid	
		Calibration of Eldex HPLC Pump	47
Apj	pendix	x C Experimental Data of Gas Calibration of GC	48
Арј	pendix	x D Experimental Data of Catalytic Activity Testir	ng 50
-			

1

CURRICULUM VITAE

51

LIST OF TABLES

TABLE		PAGE
2.1	Properties of adiponitrile	5
2.2	Properties of hexamethylenediamine	6
2.3	Substrates and products of hydrogenation	7
2.4	The comparison of the monometallic catalysts in	
	The catalytic hydrogenation of adiponitrile	14
2.5	Degree of Ni dispersion of the Ni supported catalysts	16
2.6	Review of the patents	21
4.1	Elemental analysis results of $Ce_{0.75}Zr_{0.25}O_2$	-29
4.2	Elemental analysis results of $Ce_{0.75}Zr_{0.15}Mg_{0.20}O_2$	29
4.3	Elemental analysis results of Ni/Ce _{0.75} Zr _{0.25} O ₂	30
4.4	Elemental analysis results of Ni/Ce _{0.75} Zr _{0.15} Mg _{0.20} O ₂	30
4.5	BET surface areas and pore volume of the supports	
	and catalysts	31
4.6	Degree of Ni dispersion of the Ni supported catalysts	31
Dl	Catalytic activity testing of Ni/Ce0.75Z0.25O2 and	
	$Ni/Ce_{0.75}Z_{0.15}Mg_{0.20}O_2$	50

-

-

-

÷.

-

LIST OF FIGURES

FIGUE	FIGURE	
2.1	Chemical structure of adiponitrile	4
2.2	Chemical structure of hexamethylenediamine	5
2.3	Scheme of possible product obtained by catalytic hydrogenation	
	of adiponitrile	9
2.4	Equilibrium of amine, imine, azomethine and ammonia	10
2.5	Addition of ammonia to the double bond of the imine	
	and hydrogenolysis of the 1-aminoamine	10
2.6	Yield of HMDA and HMI for the hydrogenation of adiponitrile	
	over various catalysts at 200°C, ratio = 5000	15
2.7	Yield of HMDA and HMI for the hydrogenation of adiponitrile	
	over various catalysts at 200°C, ratio = 17000	15
2.8	Selectivity in the hydrogenation of acetonitrile at 125 °C for	
	several nickel catalysts containing supports of different basicity	18
2.9	TPD profiles of CO_2 adsorbed on the supports	19
3.1	Schematic of experimental setup	27
4.1	XRD patterns of supports and catalysts: (A) Ce _{0.75} Zr _{0.25} O ₂ ,	
	(B) $Ce_{0.75}Z_{0.15}Mg_{0.20}O_2$, (C) Ni/Ce _{0.75} Zr _{0.25} O ₂ and	
	(D) Ni/Ce _{0.75} $Z_{0.15}Mg_{0.20}O_2$	32
4.2	H ₂ -TPR profiles of supports and catalysts: (A) $Ce_{0.75}Zr_{0.25}O_2$,	
	(B) $Ce_{0.75}Z_{0.15}Mg_{0.20}O_2$, (C) Ni/Ce _{0.75} Zr _{0.25} O ₂ and	
	(D) Ni/Ce _{0.75} Z _{0.15} Mg _{0.20} O ₂	33
4.3	NH ₃ -TPD profiles of (A) $Ce_{0.75}Zr_{0.25}O_2$ and	
	(B) $Ce_{0.75}Z_{0.15}Mg_{0.20}O_2$	34
4.4	SEM images of A) Ce _{0.75} Zr _{0.25} O ₂ , B) Ni/Ce _{0.75} Zr _{0.25} O ₂ ,	
	C) $Ce_{0.75}Z_{0.15}Mg_{0.20}O_2$ and D) Ni/ $Ce_{0.75}Z_{0.15}Mg_{0.20}O_2$	35
4.5 =	ADN conversion and yield of HMDA, AHN and HMI as	
	a function of reaction temperature over the catalysts investigated	
	at $H_2/ADN = 120$ and 83925 h ⁻¹	36

-

-

-

4.6	ADN conversion and yield of HMDA, AHN and HMI at		
	different H ₂ /ADN ratio over the catalysts investigated at 200 $^{\circ}\mathrm{C}$		
	and 93368 h ⁻¹		37
4.7	ADN conversion and yield of HMDA, AHN and HMI at		
	different GHSV over the catalysts investigated at 200 $^{\circ}$ C	-	
	and $H_2/ADN = 50$		38
4.8	ADN conversion and yield of HMDA, AHN and HMI at		
	different catalysts basicity over the catalysts investigated at		
	200 °C, $H_2/ADN = 50$ and 93368 h ⁻¹		39
Al	Relationship between set point and hydrogen flow rate		45
A2	Relationship between set point and nitrogen flow rate		46
Bl	Relationship between set point and liquid adiponitrile		
	flow rate		47
C1	Relationship between GC area and ADN concentration		48
C2	Relationship between GC area and HMDA concentration		48
C3	Relationship between GC area and AHN concentration		49
C4	Relationship between GC area and HMI concentration		49

Х