CHAPTER V CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

The gas phase adiponitrile (ADN) hydrogenation over ceria-zirconia mixed oxide supported nickel (Ni/Ce_{0.75}Zr_{0.25}O₂) and ceria-zirconia-magnesia mixed oxide supported nickel catalysts (Ni/Ce_{0.75}Zr_{0.15}Mg_{0.20}O₂) under various reaction conditions was investigated at atmospheric pressure. The main product obtained from partial hydrogenation was observed to be 6-aminohexanenitrile (AHN). For Ni/Ce_{0.75}Zr_{0.25}O₂ catalyst, increasing both reaction temperature and GHSV resulted in increasing the product selectivity, yet decreasing the conversion of ADN. In contrast, the opposite results were obtained with increasing the H₂/ADN ratio. The incorporation of Mg into the ceria-zirconia support could weaken the support acidity; as a consequence, the Ni/Ce_{0.75}Zr_{0.15}Mg_{0.20}O₂ catalyst could provide a less selectivity of AHN to HMI which is the undesired product.

5.2 Recommendations

In the presence work, adiponitrile was partially hydrogenated to 6-aminohexanenitrile (AHN), main product. The route of deeper hydrogenation from AHN should be further investigated. To increase the production of AHN, AHN-will be separated from the product mixture and returned the other product to the process.