PRODUCTION OF BIOJET FROM HYDROGENATED BIODIESEL OVER Pt/HY CATALYSTS: EFFECT OF ZEOLITE CRYSTAL SIZE

Nik Jadpon

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University, and Institut Français du Pétrole

2014

Thesis Title:	Production of Biojet from Hydrogenated Biodiesel over	
	Pt/HY Catalysts: Effect of Zeolite Crystal Size	
By:	Nik Jadpon	
Program:	Petroleum Technology	
Thesis Advisors:	Asst. Prof. Siriporn Jongpatiwut	
	Assoc. Prof. Metta Chareonpanich	

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

(Asst. Prof. Siriporn Jongpatiwut)

Noth amigi

(Assoc. Prof. Metta Chareonpanich)

Faimily>

(Assoc. Prof. Thirasak Rirksomboon)

SK-BL

(Dr. Suchada Butnark)

ABSTRACT

5573017063: Petroleum Technology Program

Nik Jadpon: Production of Biojet from Hydrogenated Biodiesel over Pt/HY Catalysts: Effect of Zeolite Crystal Size.

Thesis Advisors: Asst. Prof. Siriporn Jongpatiwut and Assoc. Prof. Metta Chareonpanich 83 pp.

Keywords: Hydrocracking/ Jet fuel/ Y zeolite/ Small crystallite size/ Jatrophaoil/ Hydrogenated biodiesel

The use of biojet fuel in commercial aviation has received considerable attention in recent years because it can solve the problems associated with petroleumbased fuels such as unstable prices and environmental issues. In this research, the effect of different crystallite sizes of Pt/HY catalysts were studied for producing hydrotreated renewable jet (HRJ) fuel. The smaller Y zeolite of catalyst results in shorter pore length, thus reducing the diffusion limitation. HY zeolite and Pt/HY catalysts were prepared by using microwave-hydrothermal (M-H) and incipient wetness impregnation (IWI) method, respectively. In order to prepare the different crystallite sizes, aging time, crystallization temperature, and alkalinity were adjusted. The catalysts were tested in a continuous flow packed-bed reactor at 450 °C, 500 psig, liquid hourly space velocity of 1.0 h^{-1} , and H₂/feed molar ratio of 30. The XRD results showed that NaY zeolite was successfully synthesized after hydrothermal reaction at 100 °C for 2 h by using the microwave technique. The lower crystallization temperature, longer aging time, and higher Na₂O contents resulted in small crystal size zeolite because the conditions allow an increase in number of nuclei precursors and reduce the growth rate of crystallization. In comparison with the three different crystal sizes, the results showed a good correlation between the crystal size of zeolites and conversion in which the smaller crystal size of synthesized Y zeolite exhibited higher catalytic activity and higher selectivity of jet fuel.

บทคัดย่อ

นิกซ์ จัดพล : การผลิตน้ำมันไบโอเจ็ทจากน้ำมันไฮโครจีเนตเต็คไบโอคีเซลโดยใช้ ตัวเร่งปฏิกิริยา Pt บนตัวรองรับ HY: ผลของขนาคผลึกซีโอไลต์ (Production of Biojet from Hydrogenated Biodiesel over Pt/HY Catalysts: Effect of Zeolite Crystal Size) อ. ที่ปรึกษา : ผศ. คร. ศิริพร จงผาติวุฒิ และ รศ. คร. เมตตา เจริญพานิช 83 หน้า

ุภารใช้น้ำมันเจ็ทที่มาจากพลังงานหมุนเวียนที่ผลิตจากชีวมวลในเชิงการบินพาณิชย์มี ้ความน่าสนใจอย่างมากเมื่อไม่นานมานี้เพราะว่าสามารถแก้ปัญหาที่เกี่ยวเนื่องจากปิโตรเลียม เช่น ้ความไม่เสถียรของราคา และ ปัญหาทางสิ่งแวคล้อมได้ งานวิจัยนี้เป็นการศึกษาการผลิตน้ำมันเจ็ท ที่มาจากพลังงานหมุนเวียนโดยใช้ตัวเร่งปฏิกิริยา Pt บนตัวรองรับ HY ที่มีขนาดที่แตกต่างกัน ตัวเร่งปฏิกิริยาที่มีขนาดเล็กลงจะทำให้ระยะทางของรูพรุนลดลงและยังสามารถลดข้อจำกัดการ แพร่ของสารตั้งต้นซึ่งจะส่งผลต่อความว่องไวและความคัดสรรของตัวเร่งปฏิกิริยาได้อีกด้วย ใน งานวิจัยนี้ตัวเร่งปฏิกริยา HY และ Pt/HY เตรียมโดยใช้เทคนิคไมโครเวฟและวิธีการฝังแบบชื้น ตามลำคับ อีกทั้งตัวแปรที่ใช้ในการศึกษาการเตรียมตัวเร่งปฏิกิริยาที่มีขนาคผลึกที่แตกต่างกัน ้ได้แก่ เวลาที่ใช้ในการบ่ม อุณหภูมิในการตกผลึก และความเป็นเบสในขั้นตอนการเตรียม สารละลาย ตัวเร่งปฏิกิริยาที่เตรียมขึ้นจะถูกนำมาทคสอบ โคยใช้เครื่องปฏิกรณ์แบบเบคนิ่งชนิค ใหลต่อเนื่อง ที่อุณหภูมิ 450 องศาเซลเซียส ความคัน 500 ปอนค์ต่อตารางนิ้ว สัคส่วนสารป้อนต่อ ปริมาณตัวเร่งปฏิกิริยา 1 ต่อชั่วโมง และสัคส่วนโคยโมลของไฮโครเจนต่อสารป้อนที่ 30 จากผล การทดลองแสดงให้เห็นว่า ตัวเร่งปฏิกิริยาชนิด NaY สามารถสังเคราะห์ได้อย่างสมบรณ์ที่ 100 ้องศาเซลเซียส เป็นระยะเวลา 2 ชั่วโมง โดยใช้เครื่องไมโครเวฟเป็นตัวให้พลังงานความร้อน การ ลคลงของอุณหภูมิในการตกผลึก การเพิ่มขึ้นของเวลาที่ใช้ในการบ่มและปริมาณNa,O จะส่งผลให้ ขนาดผลึกของตัวเร่งปฏิกิริยาที่สังคราะห์ได้มีขนาดเล็กลง เนื่องจากจะส่งผลต่อการเพิ่มของสารตั้ง ต้นนิวคลีไอค์ และการลคลงของอัตราการโตของผลึก นอกจากนี้เมื่อเปรียบเทียบของขนาคผลึกซี โอไลต์ที่แตกต่างกัน พบว่าขนาดผลึกที่เล็กกว่าจะทำให้ความว่องไวในการเกิดปฏิกิริยาสูงขึ้น และ การคัดสรรเป็นผลิตภัณฑ์เจ็ทก็มีมากขึ้นเช่นกัน

ACKNOWLEDGEMENTS

For the success of this thesis, I would like to thank many people and organization who have contributed to my thesis work.

First of all, I would like to take this chance to sincerely thank my advisor, Asst. Prof. Siriporn Jongpatiwut, for her helpful suggestions, discussions, and supervision from the very early stage of this research.

I would also like to thank my co-advisor, Assoc. Prof. Metta Chareonpanich, for her support, suggestion, and discussion through this research work.

I would like to thank Assoc. Prof. Thirasak Rirksomboon and Dr. Suchada Butnark for kindly serving as my thesis committee. Their suggestions are certainly important and helpful for completion of this thesis.

I would like to thank all faculty and staff at The Petroleum and Petrochemical College, Chulalongkorn University for their kind assistance and cooperation.

This thesis work is funded by The Petroleum and Petrochemical College (PPC); Center of Excellence on Petrochemical and Materials Technology; and PTT Public Company Limited, Thailand. Therefore, I would like to acknowledge for their support.

A lot of thanks to all of friends, brothers, and sisters at PPC especially, Ms. Tepin Hengsawad, Mr. Chanon Kritsanakun, and friends in rooms 611, 612 and 614, who give me a friendly support, encouragement, cheerfulness, and assistance. Without them, two years in PPC would have been meaningless for me. I had the most enjoyable time working with all of them.

Finally, I would like to express my sincere gratitude to thank my family, for showing me the joy of intellectual pursuit ever since I was a child, for standing by me and for understanding every single part of my mind.

TABLE OF CONTENTS

PAC	ЭE	
-----	----	--

×.....

CHAPTER	
	- XI
List of Figures	vi
List of Tables	_ ix
Table of Contents	vi
Acknowledgements	v
Abstract (in Thai)	iv
Abstract (in English)	iii
Title Page	i

I	INTRODUCTION	I
11	LITERATURE REVIEW	3
	2.1 Environmental Issues of Jet Fuel	3
	2.2 Biojet Fuel	5
	2.2.1 Raw Material in Hydrotreated Renewable	
	Jet Production	5
	2.2.2 Biojet Fuel Production	8
	2.3 Catalyst for Biojet Production	- 12
	2.4 HY Zeolite	14
	2.4.1 Synthesis of Y zeolite	18
	2.4.2 Control of Zeolite Crystal Size	21
	2.5 Effecting of Small Crystal Size Zeolite	25
III	EXPERIMENTAL	27
	3.1 Materials	27
	3.1.1 Feedstocks	27
	3.1.2 Chemical for Catalyst Preparation	27
	3.1.3 Standard Chemicals and Others	27
	3.1.4 Gases	27

-

-

-

-

1.1

	3.2 Equipment	28
	3.2.1 Preparation and Characterization of Pt/HY Catalyst	28
	3.2.2 Catalyst Performance Testing	28
	3.3 Methodology	29
	3.3.1 Synthesis of NaY Zeolite Catalyst in Different	
	Crystal Size (4Na ₂ O: 1Al ₂ O ₃ : 10SiO ₂ : 180H ₂ O)	29
	3.3.2 Preparation of the Proton-Type Y (HY Zeolite)	29
	3.3.3 Preparation of Pt/HY Catalyst by Incipient	
	Wetness Imprengnation(IWI)	30
	3.4 Characterization of Synthesized HY Zeolite	30
	3.4.1 X-ray Diffractometer (XRD)	30
	3.4.2 X-ray Fluorescence Spectrometer (XRF)	31
	3.4.3 Scanning Electron Microscopy (SEM)	31
	3.4.4 Brunauer-Emmett-Teller Method (BET)	31
	3.4.5 Temperature Programmed Desorption (TPD)	
	of Isopropylamine	32
	3.4.6 Temperature Programmed Oxidation (TPO)	32
	3.5 Catalyst Activity Testing	33
	3.5.1 Liquid Product Analysis	35
	3.5.2 Gas Product Analysis	36
IV	RESULTS AND DISCUSSION	38
	4.1 Synthesis of NaY Zeolite	38
	4.1.1 Optimization of the Crystallization Time	
	on Crystallinity	40
	4.1.2 Effect of Crystallization Temperature on	
	Crystallite Sizes of NaY Zeolite	42
	4.1.3 Effect of Aging Time on Crystal Size of NaY Zeolite	45
	4.1.4 Effect of Alkalinity (Na2O/Al2O3 Molar Ratio) on	
	Crystal Size of NaY Zeolite	49

•

	4.2 Preparation of HY Zeolite from NaY Zeolite	51
	4.3 Activity Testing	54
	4.3.1 Feed and Standard Analysis	54
	4.3.2 Effect of Reaction Temperature on Hydrogenated	
	Diesel Cracking	59
	4.3.3 Effect of Crystallite Size of Y Zeolite on Activity	
	and Selectivity	61
	4.3.4 Effect of LHSV	65
	4.3.5 Characterization of Spent Catalysts	67
V	CONCLUSIONS	69
	REFFERENCES	71
	APPENDIX	75
	Appendix A Gel Batch Composition Calculations	75
	Appendix B Atlas and Simulated XRD Power Patters of	
	Zeolite Structure Types	77
	Appendix C Products Obtained over Tested Catalyst in	
	Different Crystallite Sizes	80

CURRICULUM VITAE

.

83

LIST OF TABLES

TABLE	
2.1 Selected properties of some common fatty acids	7
2.2 Fatty acid composition in vegetable oils	8
3.1 The reaction condition for hydrocracking of hydrogenated	
biodiesel derived from jatropha oil	34
3.2 The chromatographic temperature program for liquid	
product analysis	35
3.3 The chromatographic temperature program for gas-phase	
product analysis	36
4.1 Physical and chemical properties of the synthesis NaY	
zeolite	38
4.2 Relationship between the quantities of Na ion and acidity in	
number of exchanged treatment and type of ammonium	
precursor	52
4.3 Retention times of standard chemicals and standard gas	
mixture analyzed by a GC/FID	55
4.4 Retention times of standard chemicals and standard gas	
mixture analyzed by a GC/FID (Agilent GC 7890 and	
Shimadzu GC-17A, respectively)	57
4.5 BET surface area, external surface area, and pore volume of	
the synthesized Y zeolite with different crystallite sizes	61
4.6 Conversion, liquild product yield (Reaction condition:	
450 °C, 500 psig, LHSV of 1 h-1, H2/ feed molar ratio of 30,	
and TOS of 2 h)	64
4.7 Amount of carbon deposit on 0.3Pt/HY catalyst after	
reaction with different crystallite size zeolites	68

LIST OF FIGURES

FIGURE

PAGE

-

Inter-quartile meta-estimates for global aviation CO ₂	
emissions, IOM, O1 and O3 are the proposed mid, low and	
high global aviation CO2 meta estimates adjusted to exclude	
military aviation.	4
Typical biojetfuel yields from different feedstock.	5
Schematic of hydrocracking reaction.	9
Reaction scheme for the formation of feed isomers and	
cracked products.	10
Schematic of hydrogenolysis reaction.	12
Bifunctional reaction mechanism of hydroconversion.	13
Yield of cracked product fractions per carbon number at	
25%cracking yield of n-C17 on Pt/HY and Pt/H-ZSM-22.	14
(a) Primary building blocks of zeolites, (b) simplified	
surface structure of zeolite.	16
Perspective view of Y zeolite structure. The silicon or	
aluminum ions are located at the corners and the oxygen ions	
near the edges.	17
Molar distribution in the cracked products on Pt/HY during	
n-hexadecane isomerization at 350 °C and 103 bar.	18
Effect of ageing of starting gel on the synthesis of zeolite	
NaY; wt% of NaY in the solid phase isolated from synthesis	
gels as a function of heating time for aging time up to 12 h	
as determined by powder X-ray diffraction.	23
Schematic of reactor system.	34
XRD pattern of synthesized NaY zeolite.	39
SEM image of synthesized NaY zeolite	40
	 Inter-quartile meta-estimates for global aviation CO₂ emissions. IQM, Q1 and Q3 are the proposed mid, low and high global aviation CO2 meta estimates adjusted to exclude military aviation. Typical biojetfuel yields from different feedstock. Schematic of hydrocracking reaction. Reaction scheme for the formation of feed isomers and cracked products. Schematic of hydrogenolysis reaction. Bifunctional reaction mechanism of hydroconversion. Yield of cracked product fractions per carbon number at 25%cracking yield of n-C17 on Pt/HY and Pt/H–ZSM-22. (a) Primary building blocks of zeolites, (b) simplified surface structure of zeolite. Perspective view of Y zeolite structure. The silicon or aluminum ions are located at the corners and the oxygen ions near the edges. Molar distribution in the cracked products on Pt/HY during n-hexadecane isomerization at 350 °C and 103 bar. Effect of ageing of starting gel on the synthesis of zeolite NaY; wt% of NaY in the solid phase isolated from synthesis gels as a function of heating time for aging time up to 12 h as determined by powder X-ray diffraction. Schematic of reactor system. XRD pattern of synthesized NaY zeolite.

1

. .

FIGURE

1.1

.

PAGE

-

.

4.3		XRD pattern of synthesized zeolite NaY at different	
		crystallization times.	41
4.4		Crystallite size of the prepared NaY zeolite at different	
		crystallization temperatures (90, 100, 110 °C).	42
4.5		Scaning electron micrographs of prepared NaY zeolite at	
		different crystallization temperatures (a) 90, (b) 100, (c)	
		110 °C.	43
4.6		XRD pattern of synthesized zeolite NaY at different	
		crystallization temperatures (a) 90, (b) 100, (c) 110 °C	44
4.7	-	Crystallite size of the prepared NaY zeolite at different	
		aging times (day).	45
4.8		Scaning electron micrographs of prepared NaY zeolite in	
		different aging times (a) 1, (b) 2, (c) 4, (d) 6 days at	
		crystallization time 110 °C.	46
4.9		Scaning electron micrographs of prepared NaY zeolite in	
		different aging times (a) 1, (b) 2, (c) 4, (d) 6 days at	
		crystallization time 100 °C.	47
4.10		Scaning electron micrographs of prepared NaY zeolite in	
		different aging times (a) 1, (b) 2, (c) 4, (d) 6 days at	
		crystallization time 90 °C.	47
4.11		Crystallite size of the prepared NaY zeolite at different	
		Na_2O/Al_2O_3 molar ratios.	49
4.12		Scaning electron micrographs of prepared NaY zeolite in	
		different Na2O/Al2O3 molar ratio obtained from xNa2O:	
		1Al2O3: 10SiO2: 180H2O molar ratio: (a) 4, (b) 5.5, (c)	
		6.5 and (d) 7 moles, respectively.	50

xiv

FIGURE

-

PAGE

4.13	XRD pattern of HY with after ammonium nitate (left),	
	ammonium hydroxide (right) exchanged: (a) 1st stage, (b)	
	2nd stage, (c)3rd stage.	51
4.14	TPD of isopropylamine (IPA) of HY with different stage	
	of ion exchanged with NH4OH: $m/z = 41$,	
	propylene/isopropylene.	54
4.15	Chromatogram of hydrogenated biodiesel derived from	
	jatropha oil analyzed by a GC/FID.	55
4.16	Chromatograms of standard chemicals including	-
	n-pentane (n-C5), n-hexane (n-C6), n-heptane (n-C7),	
	n-octane (n-C8), n-nonane (n-C9), n-decane (n-C10),	
-	n-dodecane (n-C12), n-pentadecane (n-C15),	
	n-hexadecane (n-C16), n-heptadecane (n-C17),	
	n-octadecane (n-C18) analyzed by a GC/FID.	56
4.17	Chromatogram of the standard gases, (a) methane, ethane,	
	propane and butane, (b) pentane, hexane, heptane, octane	
	and nonane.	56
4.18	Typical chromatogram of (a) liquid products and (b) gas	
	products over Pt/HY (Si/Al ratio of 3.8) operated at	-
-	operating conditions: 450 °C, 500 psig, LHSV of 1.0 h ⁻¹ ,	
-	H_2 /feed molar ratio of 30, and TOS of 2 h.	58
4.19	Yield of each product obtained over different reaction	
	temperature of 0.3Pt/HY zeolite (Reaction condition:, 500	
	psig, LHSV of 1 h^{-1} , H ₂ /feed molar ratio of 30).	59
4.20	Yield of each product obtained over different crystallite	
	size of 0.3Pt/HY zeolite (Reaction condition: 450 °C, 500	
	psig, LHSV of 1 h^{-1} , H ₂ /feed molar ratio of 30 and TOS	
	of 2 h).	62

.

FIGURE

.

4.21	Product distribution (% selectivity) obtained over	
	different crystallite size of 0.3Pt/HY zeolite (Reaction	
	condition: 450 °C, 500 psig, LHSV of 1 h^{-1} , H ₂ /feed	
	molar ratio of 30 and TOS of 2 h).	63
4.22	Yield of each product obtained over different liquid	
	hourly space velocity (LHSV) of 0.3Pt/HY zeolite	
	(Reaction condition: 450 °C, 500 psig, $H_2/feed$ molar	
	ratio of 30).	66
4.23	Product distribution (% selectivity) obtained over	
	different liquid hourly space velocity (LHSV) of	-
	0.3Pt/HY zeolite (Reaction condition: 450 °C, 500 psig,	
	H_2 /feed molar ratio of 30).	66
4.24	TPO profiles of coke deposits left over the different	
	crystallite size catalysts. Reaction conditions: temperature	
	450 °C, LHSV of 1 h-1 and H2/feed ratio of 30.	67

-

-

PAGE