REFERENCES

- Abbot, J., Corma, A. and Wojciechowski, B.W. (1985) The catalytic isomerization of 1-hexene on H-ZSM-5 zeolite: The effects of a shape-selective catalyst. Journal of Catalysis, 92(2), 398-408.
- Aguiar, E.F.S., Murta, Valle, M.L., Silva, M.P, and Silva, D.F. (1995) Influence of external surface area of rare-earth containing Y zeolites on the cracking of 1,3,5-triisopropylbenzene. Zeolites, 15(7), 620-623.
- Addison K. (2001) "Handmade Projects". UCEEL. 23 April 2013 <http://diglib.uce.ac.uk>
 - Arafat, A., Jansen, J.C., Ebaid, A.R, and van Bekkum, H. (1993) Microwave preparation of zeolite Y and ZSM-5. Zeolites, 13(3), 162-165.
 - Arroyo, J.A.M., Martens, G.G., Froment, G.F., Marin, G.B., Jacobs, P.A, and Martens, J.A. (2000) Hydrocracking and isomerization of n-paraffin mixtures and a hydrotreated gasoil on Pt/ZSM-22: confirmation of pore mouth and key–lock catalysis in liquid phase. <u>Applied Catalysis A:</u> General 192(1), 9-22.
 - Berchmans, H.J, and Hirata, S. (2008) Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. <u>Bioresource Technology</u> 99(6), 1716-1721.
 - Boskovic, G., Micic, R., Pavlovic, P, and Putanov, P. (2001) n-Hexane isomerization over Pt-Na(H)Y catalysts obtained by different preparation methods. <u>Catalysis Today</u> 65(2-4), 123-128.
 - Calemma, V., Peratello, S, and Perego, C. (2000) Hydroisomerization and hydrocracking of long chain n-alkanes on Pt/amorphous SiO₂-Al₂O₃ catalyst. Applied Catalysis A: General 190(1–2), 207-218.
 - Camblor, M.A., Corma, A., Martínez, A., Mocholí, F.A, and Pariente, J.P. (1989)
 Catalytic cracking of gasoil: Benefits in activity and selectivity of small Y zeolite crystallites stabilized by a higher silicon-to-aluminium ratio by synthesis. <u>Applied Catalysis</u> 55(1), 65-74.
 - Corma, A., Wojciechowski, B. W. (1985) The chemistry of catalytic cracking. Catalysis Reviews: Science and Engineering, 27 (1), 29-149.

- Di Renzo, F. (1998) Zeolites as tailor-made catalysts: Control of the crystal size. <u>Catalysis Today</u>, 41(1-3), 37-40.
- Ginter, D.M., Bell, A.T, and Radke, C.J. (1992) The effects of gel aging on the synthesis of NaY zeolite from colloidal silica. <u>Zeolites</u> 12(6), 742-749.
- Guerin, M., Kappenstein, C., Alvarez, F., Giannetto, G, and Guisnet, M. (1988)
 Preparation of PtHY catalysts: Influence on the catalytic properties of the complexes used as platinum precursors. <u>Applied Catalysis 45(2)</u>, 325-333.
- Gutiérrez, A., Arandes, J.M., Castaño, P., Olazar, M., Barona, A, and Bilbao, J.
 (2012) Effect of space velocity on the hydrocracking of Light Cycle Oil over a Pt-Pd/HY zeolite catalyst. <u>Fuel Processing Technology</u> 95(0), 8-15.
- Gudmundsson, S. V and Anger, A. (2012) Global carbon dioxide emissions
 scenarios for aviation derived from IPCC storylines. <u>A meta-analysis</u>
 <u>Transportation Research Part D: Transport and Environment 17 (1), 61-65.</u>
- Htay, M., Oo, M. (2008) Preparation of Zeolite Y Catalyst for Petroleum
 Cracking. <u>World Academy of Science, Engineering and Technology</u> 24(1), 48.
- Huang, A. and Yang, W. (2008) Enhancement of NaA zeolite membrane properties through organic cation addition. <u>Separation and Purification Technology</u> 61(2), 175-181.
- Huber, G.W. and Corma, A. (2007) Synergies between Bio- and Oil Refineries for the Production of Fuels from Biomass. <u>Angewandte Chemie</u> 46(38), 7184-7201.
- Jafari, M., Nouri, A., Kazemimoghadam, M, and Mohammadi, T. (2013) Investigations on hydrothermal synthesis parameters in preparation of nanoparticles of LTA zeolite with the aid of TMAOH. <u>Powder Technology</u> 237(0), 442-449.
- Jitkarnka, S. (2012) Heterogeneous Catalyst 2012. Bangkok: The Petroleum and Petrochemical College (pp.143).
- Jovanović, D., Čupić, Ž., Stanković, M., Rožić, L, and Marković, B. (2000) The influene of the isomerization reactions on the soybean oil hydrogenation process. Journal of Molecular Catalysis A: Chemical 159(2), 353-357.

- Jülide Köroğlu, H., Sarıoğlan, A., Tatlıer, M., Erdem-Şenatalar, A, and Tunç Savaşçı, Ö. (2002) Effects of low-temperature gel aging on the synthesis of zeolite Y at different alkalinities. <u>Journal of Crystal Growth</u> 241(4), 481-488.
- Katsuki, H., Furuta, S, and Komarneni, S. (2001) Microwave Versus Conventional-Hydrothermal Synthesis of NaY Zeolite. Journal of Porous Materials 8(1), 5-12.
- Kim, Y., Jeong, J., Hwang, J., Kim, S, and Kim, W. (2009) Influencing factors on rapid crystallization of high silica nano-sized zeolite Y-without organic template under atmospheric pressure. <u>Journal of Porous Materials</u> 16(3), 299-306.
- Kuznetsov, P.N. (2003) Study of n-octane hydrocracking and hydroisomerization over Pt/HY zeolites using the reactors of different configurations. <u>Journal</u> <u>of Catalysis</u> 218(1), 12-23.
- Larlus, O. and Valtchev, V.P. (2004) Crystal Morphology Control of LTL-Type Zeolite Crystals. <u>Chemistry of Materials</u> 16(17), 3381-3389.
- Meng, T., Mao, D., Guo, Q, and Lu, G. (2012) The effect of crystal sizes of HZSM-5 zeolites in ethanol conversion to propylene. <u>Catalysis Communications</u> 21(0), 52-57.
- Park, K.-C. and Ihm, S.-K. (2000) Comparison of Pt/zeolite catalysts for nhexadecane hydroisomerization. <u>Applied Catalysis A: General</u> 203(2), 201-209.
- P.A. Jacobs, E.M. Flanigen, J.C. Jansen, and Herman van Bekkum. (2001) Introduction to Zeolite Science and Practice. Netherlands: ELSVIER.
- Rajeev, G., William, H. and Gavin, P(2008). U.S. Patent 7,837,857 B2.
- Rosillo-Calle, F and Johnson F. (2010) The Food versus Fuel Debate: An Informed Introduction to Biofuels, London:Zed Books.
- Sang, S., Liu, Z., Tian, P., Liu, Z., Qu, L, and Zhang, Y. (2006) Synthesis of small crystals zeolite NaY. <u>Materials Letters</u> 60(9–10), 1131-1133.
- Satterfield, C.N., (1996) <u>Heterogeneous Catalysis in Industrial Practice</u>,2 nd ed., New York: McGraw-Hill, 259, 226.

- Song, W., Li, G., Grassian, V.H, and Larsen, S.C. (2005) Development of Improved Materials for Environmental Applications: □ Nanocrystalline NaY Zeolites. <u>Environmental Science & Technology</u> 39(5), 1214-1220.
- Soualah, A., Lemberton, J.L., Pinard, L., Chater, M., Magnoux, P, and Moljord, K.
 (2008) Hydroisomerization of long-chain n-alkanes on bifunctional Pt/zeolite catalysts: Effect of the zeolite structure on the product selectivity and on the reaction mechanism. <u>Applied Catalysis A: General</u> 336(1–2), 23-28.
- Souverijns, W., Martens, J.A., Froment, G.F, and Jacobs, P.A. (1998) Hydrocracking of Isoheptadecanes on Pt/H–ZSM-22: An Example of Pore Mouth Catalysis. Journal of Catalysis 174(2), 177-184.
- van den Broek, A.C.M., van Grondelle, J, and van Santen, R.A. (1997) Preparation of Highly Dispersed Platinum Particles in HZSM-5 Zeolite: A Study of the Pretreatment Process of [Pt(NH3)4]2+. Journal of Catalysis 167(2), 417-424.
- Vuong, G.-T., Hoang, V.-T., Nguyen, D.-T, and Do, T.-O. (2010) Synthesis of nanozeolites and nanozeolite-based FCC catalysts, and their catalytic activity in gas oil cracking reaction. <u>Applied Catalysis A: General</u> 382(2), 231-239.

Weitkamp, J., (1999) Zeolites and catalysis. Solid State Ionics, 131(1000), 175-188.

APPENDICES

Appendix A Gel Batch Composition Calculations

As mentioned previously in Chapter 3, Na-Y zeolite was prepared by using the recipe $4Na_2O$: $1Al_2O_3$: $10SiO_2$: $180H_2O$. The calculations to estimate the required weights of gel as follows:

The Composition of desired NaY Zeolite is

So

$$-\frac{\text{SiO}_2}{\text{Al}_2\text{O}_3} \quad \text{molar ratio} = 10$$
$$-\frac{\text{Na}_2\text{O}}{\text{SiO}_2} \quad \text{molar ratio} = 0.4$$
$$-\frac{\text{H}_2\text{O}}{\text{SiO}_2} \quad \text{molar ratio} = 18$$

Basis; The initial mole of SiO₂ which I want to synthesis equal to 10 g or 0.1664 mole

So; Ludox HS-40 =
$$0.1664$$
 mole
= 9.9992 g
- 40% Ludox = $9.9992/0.4$ = 24.9982 g = 19.2293 mL

= 40% Ludox consist of water $24.9982 \times 0.6 = 14.9989 \text{ g} = 14.9989 \text{ mL}$

Al Content: Fro

From $\frac{SiO_2}{Al_2O_3} = 10$ So; $Al_2O_3 = \text{mole of SiO}_2/10$ = 0.1664/10 = 0.01664 mole

Since NaAlO₂ is used for Al source, Mole of NaAlO₂ be used equal to 0.01664×2 mole

=
$$0.0333$$
 mole
= $0.0333 \times 81.97 = 2.729$ g

And NaAlO₂ consist of Al, Na equal to 53.5 and 45% respectively, So the real content of Al that will be used equal to 2.729/0.535 = 5.1 g and have a Na content equal to 2.2949

-

Na Content: From
$$\frac{Na_2 O}{SiO_2} = 0.4$$

So; Na₂O = mole of SiO₂ × 0.4
= 0.1664 × 0.4 = 0.067mole

Since NaOH is used for Na source, Mole of NaOH be used equal to 0.067×2

Since assay percentage of NaOH = 99.17%, the content of Na that will be used for synthesis equal to 5.3244/0.9917 = 5.369 g and the content of Na in NaAlO₂ equal to 2.2949, So the real content of NaOH equal to 5.369 - 2.2949 = 3.0741 g

<u>H₂O Content</u>; From $\frac{H_2O}{SiO_2} = 18$

So ; Mole of $H_2O =$ mole of $SiO_2 \times 18$

 $= 0.1664 \times 18 = 2.9952$ mole

= 53.9136 g or <u>53.9136 mL</u>

g

The real content of water that we want equal to 53.9136 - 14.9989 = 38.9147 ml (14.9989 mL of water is found in Ludox).

Table A1 Molecular weight of each used chemical as follow in the table A1

Component	MW
40% Ludox	60.08
NaAlO2	81.97
SiO ₂	60.08
Al ₂ O ₃	101.9
NaOH	39.9
H ₂ O	18.01

Appendix B Atlas and Simulated XRD Power Patters of Zeolite Structure Types

Framework Type: FAU

Figure B1 Framework viewed along [111] (upper right: projection down [110])

Cell Parameters:

	<i>a</i> = 24.345 Å	<i>b</i> = 24.345 Å	<i>c</i> = 24.345 Å				
	$\alpha=90.000^{\text{o}}$	$\beta = 90.000^{\circ}$	$\gamma=90.000^{\circ}$				
	Volume =	14428.77 Å ³					
	$R_{DLS} =$	0.0009					
Framework density (FD _{Si}):	13.3 T/1000	Å ³					
Topological density:	$TD_{10} = 579$	$TD_{10} = 579$ $TD = 0.476190$					
Ring sizes (# T-atom	s): 12 6 4						
Channel system:	3-dimensiona	al					
Maximum diameter	of a sphere:						
	that can be i	ncluded 11.24	4 Å				
	that can diff	use along					

Accessible volume: 27.6 %

Composite Building Units:

FAU

.

Na-Y, Siliceous

CHEMICAL COMPOSITION: [Si192O381]

REFINED COMPOSITION: [Si188.16O384]

2

CRYSTAL DATA: Fd3m (No. 227) origin at centre (3m) $\begin{array}{l} a = 24.2576 \ \text{\AA} \quad b = 24.2576 \ \text{\AA} \quad c = 24.2576 \ \text{\AA} \\ \alpha = 90^{\circ} \qquad \beta = 90^{\circ} \qquad \gamma = 90^{\circ} \\ \text{Neutron Rietveld refinement, } R_{\text{exp}} = 0.022, R_{\text{wp}} = 0.031 \end{array}$

REFERENCE: J. J. Hriljac, M. M. Eddy, A. K. Cheetham, J. A. Donohue and G. J. Ray, J. Solid State Chem. 106 66-72 (1993).

-

h	k	1	20	đ	M	Irel	h	k	1	29	d	M	Irel	h	k	1	20	d	M	I rol	
1	1	1	6.31	14.005	S	100.0	7	3	1	28.26	3.158	18	0.2	5	G	4	40.03	2.252	48	0.2	
2	2	0	10.31	8.576	12	13.6	7	3	3	30.16	2.964	21	1.5	11	1	1	41.28	2.187	24	0.4	
3	1	1	1210	7.314	24	12.5	8	2	2	31.29	2.859	24	0.7	7	7	5	41.28	2.187	24	0.2	
4	0	0	14.61	6.061	G	0.3	6	6	0	31.29	2.859	12	1.9	8	8	0	42.14	2.144	12	0.6	
3	3	1	15.92	5.565	24	16.0	7	5	1	31.95	2 801	-18	0.5	9	7	1	42.66	2.119	-48	0.1	
4	2	2	17.91	4.952	24	0.1	5	5	5	31.95	2.501	8	1.1	10	6	0	43.51	2.680	24	0.1	
5	1	1	19.01	4.668	24	4.3	8	4	ŋ	33.03	2.712	24	1.2	9	7	3	44.01	2.058	48	0.1	
3	3	3	19.01	4.668	8	0.2	7	5	3	33.66	2.663	-18	0.5	11	3	3	44.01	2.058	24	0.5	
4	4	0	20.71	4.288	12	6.1	8	-1	2	33.87	2.647	-18	0.1	10	6	2	44.18	2.050	48	0.2	
5	3	1	21.67	4.100	48	0.3	6	6	-4	34.69	2.586	21	24	12	Ð	0	44.84	2.021	6	0.3	
4	1	2	21.98	4.043	24	0.1	9	3	1	35.29	2.543	48	1.0	8	8	4	44.84	2.021	24	0.7	
6	2	0	23.19	3.835	21	1.3	8	4	-1	36.28	2.476	24	û. 3	9	7	5	46.61	1.948	48	0.1	
5	3	3	24.06	3.699	24	7.6	7	5	5	36.87	2.438	24	0.2	12	4	2	48.03	1.894	48	0.1	
4	-4	2	25.44	3.501	8	0.3	8	6	2	37.82	2.379	48	0.2	8	8	6	48.03	1.894	24	0.2	
5	5	1	26.24	3.397	24	1.2	9	5	1	38.38	2.345	48	Q 1	10	8	2	48.65	1.872	48	1.1	
6	4	2	27.52	3.242	18	4.6	6	6	6	38.57	2 3 3 4	8	1.1								

Figure B2 XRD power patterns of zeolite structure types.

- -

Fable B1 Physical and chemica	properties of co	ommercial HY zeolite
--------------------------------------	------------------	----------------------

Zeolite	Surface area	Crystal size	Na ₂ O	SiO ₂ /Al ₂ O ₃		
	(m ² /g)	(μm)	(%)			
Commercial HY	696.7	1.1	0.203	103.94		

78

14

Figure C1 Conversion and selectivity of products obtained over Y-100A3 sample (Reaction condition: 450 °C, 500 psig, LHSV of 1.0 h^{-1} , H₂/ feed molar ratio of 30).

Figure C3 Conversion and selectivity of products obtained over Y-110A1 sample (Reaction condition: 450 °C, 500 psig, LHSV of 1.0 h-1, H2/ feed molar ratio of 30).

Figure C4 Conversion and yield of products obtained over Y-100A3 sample (Reaction condition: 450 °C, 500 psig, LHSV of 1.0 h-1, H2/ feed molar ratio of 30).

Figure C5 Conversion and yield of products obtained over Y-110A2 sample (Reaction condition: 450 °C, 500 psig, LHSV of 1.0 h-1, H2/ feed molar ratio of 30).

Figure C6 Conversion and yield of products obtained over Y-110A1 sample (Reaction condition: 450 °C, 500 psig, LHSV of 1.0 h-1, H2/ feed molar ratio of 30).

- 2

CURRICULUM VITAE

Name: Mr. NikJadpon

Date of Birth: November30, 1989

Nationality: Thai

University Education:

2008 – 2011 Bachelor Degree of Engineering in Petrochemical and Polymeric Material, Faculty of Engineering and Industrial Technology, Sipakorn University, Nakornpathom, Thailand

Work Experience:

2011	Position:	Trainee Engineer
	Company name:	PTT Research & Technology Institute

Presentations:

- Jadpon, N.;Hengsawad, T.;Jongpatiwut, S.;ChareonpanichM., andButnark, S. (2014, March 10-12)Production of Biojet from Hydrogenated Biodiesel over Pt/HY Catalysts: Effect of Zeolite Crystals Size.Paper presented at<u>NCCC XVth:</u> <u>Netherlands' Catalysis and Chemistry Conference 2014</u>, Noordwijkerhout, Netherlands.
- Jadpon, N.; Hengsawad, T.; Jongpatiwut, S.; Chareonpanich M., and Butnark, S. (2014, April 22)Microwave Hydrothermal (M-H) Synthesis of Small Crystal Sizes of Y Zeolite for Producing Hydrotreated Renewable Jet Fuel from Hydrogenated Biodiesel. Paper presented at<u>The 5th Research Symposium on</u> <u>Petrochemical and Materials Technology and The20th PPC Symposium on</u> <u>Petroleum, Petrochemicals, and Polymers</u>, Bangkok, Thailand.