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CHAPTER 1
INTRODUCTIONS

1.1 General

The theory of elasticity has long been used in geomechanics to estimate
settlements and stresses of soil-structure interaction problems under static working
loads. Although soils are not ideally elastic materials, they behave in a reasonably
elastic manner when subjected to shearing strains of the magnitude ordinarily
developed under machine, offshore and other foundations. The linear theory of
elasticity has also been used to study the time-harmonic dynamic response of
foundations in layered soils under small strains. One of key quantities in dynamic
analysis of foundations is the amplitude of vibration of foundation. Richart (1962)
developed a set of curves to demonstrate general limits of displacement amplitude for
a given frequency as shown in Figure 1.1. These limits range from not noticeable to
people to the extreme danger to structures. The amplitude of vibration and the

maximum force transferred to soil are two key elements of foundation design.

Early studies on soil-structure interaction problems based on classical
elasticity theory considered soils as homogenous isotropic elastic solids. However,
geo-materials are often two-phase materials consisting of elastic solid skeleton with
voids filled with water, commonly known as poroelastic materials. In addition, natural
soils and rocks normally exhibit some degrees of anisotropy owing to various effects
such as deposition or overburden. A simplified form of anisotropic properties, called
transversely isotropic, has widely been accepted for the study of wave propagations in
anisotropic materials including soils and rocks. The consideration of both anisotropic
and two-phased properties of geo-materials is thus important in the study of dynamic
interaction between foundations and soils. The theory of elastic wave propagations in
poroelastic materials was proposed by Biot (1956) by adding the inertia terms to his
three-dimensional consolidation theory (Biot 1941), in which the coupling between
the solid and fluid stresses and strains are taken into account based on the classical
theory of linear elastic and Darcy’s law. To consider the effects of both anisotropy

and poroelasticity, Biot proposed the constitutive model for anisotropic poroelastic



materials (Biot 1955), and later presented governing equations for wave propagations

in transversely isotropic poroelastic media (Biot 1962).

In this dissertation, poroelastodynamics theory given by Biot (1962) is
employed to obtain the fundamental solutions of transversely isotropic poroelastic
media under plane strain and axisymmetric deformations by using the techniques of
Fourier and Hankel integral transforms respectively. For homogeneous media,
boundary-value problems corresponding to a transversely isotropic poroelastic half-
space subjected to time-harmonic buried loading are established, and the plane strain
and axisymmetric fundamental solutions are presented explicitly. For multi-layered
media, an exact stiffness approach is employed to obtain the fundamental solutions
for both cases. The obtained fundamental solutions are then employed as the influence
foundations required in the formulation of various dynamic interaction problems
between foundations and transversely isotopic poroelastic media. In addition, the
influence of anisotropic and poroelastic material properties on foundation responses is

also discussed.

1.2 Objectives of Present Study

The main objectives of the present study are given as follows:

i.  To obtain the analytical general solutions of transversely isotropic poroelastic
materials under plane strain and axisymmetric deformations by using the
techniques of Fourier and Hankel integral transforms respectively.

ii. To obtain the fundamental solutions of homogeneous transversely isotropic
poroelastic half-spaces under plane-strain and axisymmetric deformations.

ilii.  To obtain the fundamental solutions of multi-layered transversely isotropic
poroelastic media under plane-strain and axisymmetric deformations by
adopting the exact stiffness matrix method.

iv.  To present numerical solutions of several boundary value problems based on
the obtained fundamental solutions to demonstrate the influence of anisotropic
and poroelastic material properties and other relevant parameters on dynamic

response of transversely isotropic poroelastic media.



To investigate several dynamic interaction problems between strip and circular
foundations and transversely isotropic poroelastic soils by employing a semi-
analytical discretization technique based on the obtained fundamental

solutions.
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Figure 1.1 Amplitude versus frequency relations for vertical oscillation of a rigid
circular footing on an elastic half-space (After Richart 1962)



CHAPTER 2
LITERATURE REVIEWS

2.1 Literature Reviews of Fundamental Solutions

Geo-materials such as rocks and soils often consists of a two-phase material
consisting of an elastic solid skeleton with voids saturated with water commonly
known as poroelastic materials. A salient feature of poroelastic materials is generation
and dissipation of excess pore water pressure under applied loading. The study of
wave propagations in poroelastic materials is of considerable importance in various
disciplines such as civil engineering, earthquake engineering, and offshore
engineering. The theory of elastic wave propagations in poroelastic materials was
proposed by Biot (1956). Several researchers have employed Biot’s
poroelastodynamics theory to study a variety of problems related to poroelastic media.
For example, dynamic response of homogeneous isotropic poroelastic media
subjected to time harmonic loading under plane strain (Paul 1976; Philippacopoulos
1988; Senjuntichai and Rajapakse 1994); and axisymmetric (Philippacopoulos 1989;
Zeng and Rajapakse 1999) deformations; and for three-dimensional response
(Halpern and Christiano 1986a). For studies related to multi-layered poroelastic media
under time harmonic loading, Lu and Hanyga (2005) and Zheng et al. (2013) adopted
the transmission and reflection matrix (TRM) approach to investigate the response of
multi-layered media under axisymmetric and asymmetric deformations respectively.
The exact stiffness matrix approach was employed by Rajapakse and Senjuntichai
(1995) to investigate dynamic response of a multi-layeredi isotropic poroelastic half-
plane. The similar technique was used by Liu et al. (2015) and Ai and Wang (2017) to
present dynamic response of a multi-layered isotropic poroelastic half-space under
axisymmetric deformation. In addition, Senjuntichai et al. (2018) presented the
dynamic response of multi-layered poroelastic media in three-dimensional Cartesian

coordinate by using the exact stiffness matrix approach.

Geo-materials generally exhibit certain degrees of anisotropic properties that
occur from deposition or sedimentation processes. As a result, the mechanical



properties of natural soils and rocks in their vertical and horizontal directions are
different, and these materials are commonly known as transversely isotropic elastic
materials. The theory of wave propagations in transversely isotropic elastic materials
was presented by Stoneley (1949). Rajapakse and Wang (1991, 1993) derived Green’s
functions for a homogeneous transversely isotropic elastic half-space subjected to
time-harmonic loading under plane-strain and axisymmetric conditions respectively.
Subsequently, several studies on axisymmetric wave propagation problems involving
homogeneous transversely isotropic elastic media were carried out by Liu (1997) and
Wang and Liao (1999). In addition, Shodja and Eskandari-Ghadi (2007) presented a
study on dynamic response of two-layered transversely isotropic elastic media under
axisymmetric deformation. By using the elastodynamic potential method (Rahimian et
al. 2007), asymmetric dynamic Green’s functions for transversely isotropic elastic
media were derived for single-layered (Khojasteh et al. 2008a) and two-layered
(Khojasteh et al. 2008b) half-spaces. For studies on multi-layered transversely
isotropic elastic media under time harmonic loading, Khojasteh et al. (2011) adopted
the transmission and reflection matrix (TRM) approach to investigate dynamic
response of multi-layered media under asymmetric deformations. The exact stiffness
method was used by Wang and Rajapakse (1994) to obtain fundamental solutions of a
multi-layered transversely isotropic elastic half-plane. The similar method was
employed by Ai and Li (2014), Ai et al. (2014) and Ai and Zhang (2015) to
investigate the response of multi-layered media under time-harmonic loading for

asymmetric, axisymmetric and plane strain deformations respectively.

In order to combine the effects of anisotropy and poroelasticity, Biot (1955)
proposed the constitutive relations for transversely isotropic and orthotropic
poroelastic materials. Biot (1962) later extended his poroelastodynamics theory (Biot
1956) to study wave propagations in transversely isotropic and anisotropic poroelastic
media. Based on Biot’s constitutive models (Biot 1955), Kumar et al. (2003; 2004)
obtained the time-harmonic response of a homogeneous transversely isotropic
poroelatic full-space subjected to vertical concentrated forces under axisymmetric and
plane strain deformations. The material parameters in Biot’s models were later

reformulated by Cheng (1997) to be more easily identifiable from the laboratory



measurement. Sahebkar and Eskandari-Ghadi (2016) employed the parameters
proposed by Cheng (1997) to study dynamic response of a transversely isotropic
poroelastic half-space subjected to asymmetric time-harmonic surface loading.
Pooladi et al. (2017) then revisited the problem by Sahebkar and Eskandari-Ghadi
(2016) to investigate the influence of permeable and impermeable surfaces of the
asymmetric half-space under surface loading. The exact stiffness method was adopted
by Ba et al. (2017) to study dynamic response of a multi-layered transversely isotropic
poroelastic half-plane. To the best of the authors’ knowledge, the fundamental
solutions of a transversely isotropic poroelastic medium subjected to time-harmonic
buried loads and fluid sources have never been presented explicitly in the literature
even for the case of plane strain or axisymmetric deformation. In addition, the
fundamental solutions of a multi-layered transversely isotropic poroelastic medium
under axisymmetric deformations have never been reported in the literature. These
fundamental solutions can be employed as influence functions in the development of
numerical solution scheme in the analysis of a variety of problems related to
transversely isotropic poroelastic soils such as embedded foundations, anchors, and

underground structures, etc.

2.2 Literature Reviews of Soil-Structure Interaction Problems

For soil-structure interaction problems between foundations and homogeneous
isotropic poroelastic media, several previous works on the dynamic response of
foundations subjected to time-harmonic loading were presented for rigid rectangular
(Halpern and Christiano 1986b), circular (Kassir et al. 1989; Bougacha et al. 1993; Jin
and Liu 1999; Zeng and Rajapakse 1999), and strip (Kassir and Xu 1988; Bougacha et
al. 1993). In addition, Philippacopoulos (1989) also presented the study of a rigid
circular foundation resting on two layered isotropic poroelastic half-space. For soil-
structure interaction problems between foundations and multi-layered isotropic
poroelastic media, Senjuntichai and Rajapakse (1996) proposed the solutions of a
rigid strip foundation on a multi-layered isotropic poroelastic half-plane. In addition,

Senjuntichai and Sapsathiarn (2003) and Senjuntichai and Kaewjuea (2008)



investigated dynamic interaction between flexible circular and strip foundations

respectively and a multi-layered isotropic poroelastic medium.

In the context of transversely isotropic elastic media, the dynamic response of
a rigid strip foundation bonded to a homogeneous half-plane was studied by Gazetas
(1981). Later, Kirkner (1982), Eskandri-Ghadi et al. (2010) and Eskandri-Ghadi and
Ardeshir-Behrestaghi  (2010) developed semi-analytical solutions for vertical
vibrations of a rigid circular foundation on a transversely isotropic elastic half-space.
For multi-layered problems, vertical vibration of a circular foundation embedded in a
multi-layered transversely isotropic elastic half-space was studied by Eskandri-Ghadi
et al. (2014), and Ai et al. (2016). In addition, dynamic response of a rigid strip
foundation on a multi-layered transversely isotropic elastic half-plane was
investigated by Ai and Zhang (2016). For a study on flexible foundations, Ai and Liu
(2014) and Ai et al. (2017) respectively presented an investigation on the dynamic
response of a flexible circular foundation and a flexible strip foundation on a
transversely isotropic multi-layered half-space and half plane. A rigid rectangular
foundation on a transversely isotropic multi-layered half-space was also studied by
Amiri-Hezaveh et al. (2013), where the required influence functions used in the

analysis were based on the asymmetric coordinate system.



CHAPTER 3
BASIC EQUATIONS AND GENERAL SOLUTIONS

In this chapter, basic equations of a transversely isotropic poroelastic medium
are presented. The general solutions for problems under plane strain and axisymmetric
deformations are then obtained by using the techniques of Fourier and Hankel integral
transforms respectively. These general solutions are later used to derive the
fundamental solutions of homogeneous and multi-layered transversely isotropic

poroelastic media in the subsequent chapters.

3.1 Basic Equations

Consider a transversely isotropic poroelastic material, where the x- and y-
planes are chosen as the plane of isotropy, and the z-axis is thus perpendicular to the
isotropic plane (see Figure 3.1). According to Cheng (1997), the constitutive relations

of a transversely isotropic poroelastic medium can be expressed as,

Oxx =Cp1Exx +C €y +C3E7 — 4, P (3.1a)
Oy =Cr&xx +C1Eyy +Ci3E7 — 4, P (3.1b)
O =Ci3Exx +C3Eyy +C33E7, — 4, P (3.1¢c)
Oxy =(C; —C)(exy +Eyx) /2 (3.1d)
Oyz =Cuy(Exz +Ex) (3.1e)
Oy =Cyy(Ey; +E2y) (3.1f)

P=—M (o &xx+XEy +tEZ — W), i=X%y,2 (319)
&= (U ;+u;;)/2, i,j=xy,2 (3.1h)

In the above equations, o, (i = j = X, Y, z) is the total stress component of the bulk
material; &; (i =] =X, Y, z) is the strain component, which is related to the solid

displacement ui (i = X, y, z); p is the excess pore fluid pressure (suction is considered
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negative); wi (i = X, y, z) is the fluid displacement relative to the solid matrix); ai (i =
v, h) and M are Biot's parameters accounting for compressibility of the two-phased
material, where on and av are Biot's coefficients of effective stress in the plane of
isotropy (x-y plane) and in the plane normal to the plane of isotropy (z-direction),
respectively. In addition, ci1, Ci2, C13, C33 and cas are elastic moduli of solid skeleton

being held for a transversely isotropic medium in the following manner.

c E.(E,—Ev2) -
4T v )(E, —Ev, —2E2) (3.22)
E.(Ev, +Ev
= ( h vh) (32b)
A+v,)E, —E,v, —2Ev>)
E,EVv,
C= v (3.2¢)
 E,—Ewv, —2EV2
E (1-vi)
c v 2
STE Ey 2E)2 (3.20)
c,=G (3.2¢)

In the above equations, En and Ev are drained Young’s modulus in the plane of
isotropy (x-y plane) and in the plane normal to the plane of isotropy (z-direction),
respectively; G is the shear modulus; w is the Poisson's ratio characterizing the lateral
strain response in the plane of transverse isotropy to a stress acting parallel to it; wn is
the Poisson's characterizing the lateral strain response in the plane of transverse

isotropy to a stress acting normal to it.

The equations of motions of a transversely isotropic poroelastic medium, in

absence of body forces and a fluid source, can be expressed as,

Uy | (€3 -Cpp) 22Uy . 2°Uy (G +Cpp) O°Uy

Cu7e 2 ay? | 44T z2 2 BYGY, (3.33)
U, _ P _ 8%y Wy
HC3+C) F5 "% e =P o TP A
( ) &°U 1+C,) a2u
1253275 e, 57 +Caq L8 11>z o (3.3b)
+(C 3 +Cuu) 5 % Uz _ g 9P _ Uy Wy

oyoz hE_p oz Pt o
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o°u Uy o 07U, 8°Uy

Csa 8—22+C44 oy? 33 5,2 +('313+C44)m (3.3¢)

+(Cy5 +C44) ayéz v ZE) =P a;tuzz + P+ G;V;lz

_aa_g =P, a;t-‘Zx +m, aavgx _|_b a\a/tvx (3.3d)

—% = p; a;'lzy +m, aa\’\zly +b, a\é\tly (3.3e)
ap D —p, T4z h/a (3.3f)

where p and pr are the mass densities of the bulk material and the pore fluid,
respectively; mi (i = v, h) is a density-like parameter that depends on or and the
geometry of the pores; bi (i = v, h) is a parameter accounting for the internal friction
due to the relative motion between the solid matrix and the pore fluid.

A homogeneous transversely isotropic poroelastic material is defined with a
cylindrical coordinate system (r, 6, z) as shown in Figure 3.1. In the present study, the
ré plane is chosen as the plane of isotropy, and the z-axis is thus perpendicular to the
isotropic plane. The constitutive relations of a transversely isotropic poroelastic

medium can be expressed in the cylindrical coordinate system as,

_ . ou, u 1ou, au,
ou, u lou ou,
G&GZQZW+Q1(T+FG_;J+Q3E_ahp (3.4b)
0,,=Cis 6i+u_r+18u9 +C N, p 3.4
R T A (3.40)
ou, ou,
GrZ:C44 E‘I‘ 82 (34d)

1ay, 8u9
O'QZ_C 89 E (348)
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Cy—Cp(Lldu, Uy Uy
= — + [
=T ( rog or r (3.49)

ou. u. 1lou
=M ry=-r =---0
P ah[ o 86]
ou, ow, w, 1ow, 8w
-M| e, + L4y
0z or r r 89 oz

(3.49)

In the above equations, orr, cws, 0z ore, oa and ore denote the total stress components
of the bulk material; ui and wi denote the displacement of the solid matrix and fluid

displacement relative to the solid matrix respectively in the i-direction (i=r, 6, 2).

The equations of motions of a transversely isotropic poroelastic medium can

be expressed in the cylindrical coordinate, in absence of body forces and a fluid

source as,
. ou, Lou U +(cn—cuj o’u, (c +C, j L,
or* ror r? 2 Jvoe " Cu rarae r’oo
i (3.5a)
ou ou 8p u
-2c ¢ 1+(c.,+¢C L _—q —
“(rzaej (@ oroz " or ot? at

(cn— j o’u, PGSR B o’u, s 82u6+(cn+clzj o’u,  au,
ot ror r*) Urloet Y ar’ 2 roroe  r’oo
(3.5b)

o’u, op o o*w,
+2C, ( j"'(u Cut) — & =P 2€+pf ’

ro6oz roé ot ot’
( o, j+c ﬂJr(c +C,,)
60 33 8 2 13 44
r r r z (3.50)
+%+6u G azuZ+ o'w,
ooz ror roeez) e T U ar
op o du, dw o ow,
or = P e +m, o +bhE (3.5d)
op du ow, . ow
R T Y (3:5¢)
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op  ou, _ow, _ ow
_E:pf o +m, e +bv§ (3.51)

3.2 General Solutions for Plane Strain Deformations

Consider a homogeneous transversely isotropic poroelastic material with a
Cartesian coordinate system (x, y, z). Let assume that the deformations are plane strain
in the xz-plane, i.e. &y = &y = &z = 0. In addition, the xy-plane is chosen as the plane
of isotropy, and the z-axis is thus perpendicular to the isotropic plane. Thus, the
constitutive relations for a transversely isotropic poroelastic material, given by Eq.

(3.1), can be expressed as,

Oxx =C11Exx TG 3872z =4, P (3.69)
Oyy =C ,Exx +C3E27 — X, P (3.6b)

22 =C3Exx + G338z — 4y P (3.6¢)
Oy, = Cyy(Exy T E0) (3.6d)
P=—M (, &xx +Ez; +% GWZ ) (3.6e)

The equations of motions of a transversely isotropic poroelastic material,

given by Eq. (3.3), can be expressed for plane strain deformations as,

Ciy a;)l;lx Caa a;;lx +(Ci3+Cyp) gjg; a, 5_5 P— azux + 04 aZV\ZI (3.73)

Cus o+ (G e G P p Tt T T
_@ P a;tjzx +m, a;\tlyx +D, 8\(;\: (3.7¢)
—@—pf azuzermvawszbvaw .70

Let the motion under consideration be assumed to be time-harmonic of the

form e'”, where o is the frequency of the motion and i =+/—1. The term e'“ is
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omitted hereafter. The Fourier integral transform of a function with respect to the x-
coordinate and its inverse relationship are defined respectively as (Sneddon 1951),

f(&2)= %_T f (x,z)e "*dx (3.8a)
f _ 1 7+¢ iEx
(x,2) _EJ f(&,2)e%de (3.8b)

where £ is the Fourier transform parameter.

With the aid of Egs. (3.6e) and (3.8a), the equations of motions, Eq. (3.7), can

be reduced to three equations expressed in terms of Fourier transforms of the three

unknowns Ux, U, and p as,

[sl +c44dd—222]6x+[(013+c44)i§%]62_(igAh)ﬁzo (3.9a)
[(013 +C44)i§%jax +[s2 +Ca5 5 22 JGZ —(A\, %]3 -0 (3.9b)
_ _ 2\ _
_(iéAh)Ux—(Av %jUZ +[—S3—,8V%Jpzo (39C)
where
s, =—C,&2 = p2awtf + pw? (3.10a)
S, =—C,,&2 — p2w? B, + pw? (3.10b)
S,=—E23 +% (3.10¢)
ANj=aj—po?B; (j=hv) (3.10d)
Vit 1 (i=hv) (3.10€)

To solve for the analytical solution of Eq. (3.9), a potential function F¢,z) is

introduced, and the function F s related to Ux, U, and p in the following

manner:
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= 3.11a
Gx=ig{—(c13+c44)[33+,6’Vdd222]—AvAh:l%|Z: ( )
_ 3.11b
GZ:{[33+/8VCC|1_222J[51_(013+C44)—(?222]_A§‘§2}F ( )
— 2 = (3.11¢)
P z{_AV [Sl +Cas %J_(Cls +Ca) N, 52} C(ile:

Substitution of Eq. (3.11) into Eq. (3.9) leads to the following governing equation to

determine F ,
dF d*F d2E _
7/1 dZG +7/2 dZ4 +7/3 d22 +}/4F:0 (312)
where
71 = C33C4 (3.13a)

Vo= (52044 +8,C33 +(Ci3 +€0)2E2) A, +(53c33 +AZ)c,,  (313b)

V3= (Szﬁv +A? )31 +(S5C4 + 81C55 + (Ci3 +C4y )2 &2)S5 (3.13c¢)
_(2(013 +Cu) AV AL +A ﬁC33)§2

Vo =(88-ARE s, (3.13d)
The general solution to Eq. (3.12) can be obtained as follows:
Fen=Ae"+Be™ (j=123) (3.14)

where Ajand Bj(j =1, 2, 3) are the arbitrary functions, and

= 7, = Y 7, A0 Y. NS (3-153-)
A \/93 3Q, 3y % \/AQ3 300, 3y, % \/ ° 3a2, 3y

2 3 1/3
__ V2 Vs, 2 3Vs Va,, | 1, 1], 497 (3.15b)
g2y T e Ty 9T 2
A:_l—_f" (3.15c)

In addition, A1, A2 and As are the dimensionless complex wave numbers associated
with the three kinds of dispersive and dissipative body waves. For an isotropic
poroelastic material under plane strain condition, there also exists three body waves,

which are identified as two dilatation (fast and slow) waves and one rotational wave.
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However, the motion associated with the wave numbers Ai (i = 1, 2, 3) is neither

purely dilatational nor purely rotational. In the case of transversely isotropic elastic
materials, Eq. (3.11) is reduced to two equations for the two unknowns Uxand U,
expressed in term of a potential function F , Which is governed by a fourth-order

differential equation. The general solution of F involves two complex wave
numbers that are identified as quasi-dilatational and quasi-distortional waves.
Therefore, the three body waves propagating in transversely isotropic poroelastic
materials under plane strain condition can be considered as two quasi-dilatation (fast

and slow) waves and one quasi-distortional wave.

In view of Egs. (3.11) and (3.14), the general solutions of Ux, Uz, P, W,

ox and oz can be written as,

Ux =z A" — zBje I (3.16a)
Uz =y A +y;Be (3.16h)
p=¢Ae" ¢ B (3.16¢)
W, = A" +a,Be (3.16d)
o= AeT +pBe (3.16¢)
ou=n,Ae" ~1,Be” (3.16f)

where

xj=i&4, [—(013 +Ca0)( S5+ AAL | FAVA, } (3.172)
vi=(8+ BAT) (8 +Cudf ) - ARE (3.17h)
&y =2 ~A (8002 ) (Ca oA, 2] G170
@ =(ﬂjé~” |~ POy )ﬂv (3.172)

05 =Chq(Ai2; +iSy;) (3.17b)
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77 :i§C13Zj +033/1jo _avé/j (3.17¢)

The above general solutions are used in the derivation of fundamental solutions for
transversely isotropic poroelastic media under plane strain deformations presented in
Chapter 4.

3.3 General Solutions for Axisymmetric Deformations

The constitutive relations of a transversely isotropic poroelastic medium

undergoing axisymmetric deformations can be reduced from Eqg. (3.4) as follows:

ou, u, ou,
Urr—CuEJFCuTJFCle pe (3.183)
Ogo =Cip ar +Cyy r+cl3 82 (3.18b)
o, =C {au u—rj‘i-c %—0[ p
B oy By (3.18¢)
{2 2) d
"Mlor oz (3.18d)

3 M 4 Ur | Uy | OW  We  OW; ) (3 18e
b= M“h[ar+rJM[“Vaz o T azj( )

The equations of motions of a transversely isotropic poroelastic medium can

be written for axisymmetric deformations as,

, 1 o%u, o, dp_ d, o'W,
Cy|V -3 ur+c44?+(c13+044)——a =p—L4p (3.19a)

oroz o ot T oot

o 0 &*u, op_ o, dw,
(Cs+ 44)[&’82 Ejur_“:% 072 L+C, ViU, —a, E_P o +Pf? (3.19b)

op  ou  w . ow
g e, +b, - (3.19¢)
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op_ du, dw, | ow,
_82 e Lim, pe +h, P (3.19d)

10( 0
V= r—
h Or[ 8rj (3.19)

The Hankel integral transform of a relevant variables with respect to the radial

coordinate, and their inverse transforms can be expressed as follows:

=Iur(r,z)Jl(e:r) rdr (3.200)

0 (£.0)=fur e or (3.200)

b (&.2) :I p(r,2)J,(Er) rdr (3.200)

W (£,2)= ! w, (r, 2)J,(Er) rdr (3.20d)

G (§,z)=Ian(r,z)Jo(5r) rdr (3.200)

G (£,2)=[ 0, (1, D3N (3.20

and 0

ur<r,z>:zﬂr (£.2)3,(¢r) éde (3200)
uz<r,z>=Iﬁz(§,z)Jo(ér)§d§ (3.200)

p(r,z>=°f‘p (£,2)3(EnEde (3.20)

w,(r,2) = [W: (£,2) J,(ér) £d¢ (3.20j)
0
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0, (1,2)= [ o (£,2) I () Ed€ (3.20K)
0

Gzz(r,Z):TEzz (§,Z)J1(§r)§d(§ (320')

where Jo and J1 denote the Bessel function of the first kind of order zero and one

respectively, and & is the Hankel transform parameter.

By applying the Hankel integral transform given by Egs. (3.20a) to (3.20f)

together with the regularity condition in the radial direction, the equations of motions,

Eqg. (3.19), can be reduced to three equations with three unknowns, Ur, U; and P

as follows:
{51"'(:4451_222}@"‘3465%@"‘5655:0 (3.21a)
sﬁ%u_r—(sz +c33(§j_222]$+35%ﬁ:o (3.21b)
56§U_r+55%m+{53 + Ly ;_;ZJﬁ =0 (3.21c)
where
s, = —&20, + @2 p—a'p 2, (3.22a)
5, =—&%C,, + 0’ p—*p,°f, (3.22b)
S, =—E7f, + = (3.22¢)
M
Sy =—(Ci3+Cy4) (3.22d)
S5 =ty — 2Py f, (3.22¢)
Ss =, —2p, B, (3.22f)
B=—r (i=h) (229

" (M’ —ib,w)
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To solve for the three unknowns, a potential function F s introduced by

relating its Hankel transform to Ur, U, and p inthe following manner:

Ur = g{s{ss + 4, %J_sess}g (3.233)
_ 2 2 _

u; ={—{sl+c44%133+,8\, d—zz}usggz}F (3.23b)
_ 2 E

p :{55 [51"'(:44 %J_Sﬁegz}d—s (3.23¢)

With the substitution of Eg. (3.23) into Eqg. (3.21), the following governing equation is

obtained for the solution of F )

71ddif+72 %1E+73dd222f+74ﬁ20 (3.24)

where
71 = CyCuslB, (3.25a)
V2 =(S2Ca +51Cos + 85 &2) B +(85C53 + 52 ) € (3.25b)
7o =(,8, 450 )5+ (5.6, + 580 +5; £)5,—( 25,88, +51¢, )& (3.25¢)
7o=(s8,-5:)s, (3.250)

The general solution of F is then determined from Eqg. (3.24) as,

F(&2)=Ae"+Be " (j=123) (3.26)

where Aj and Bj (j = 1, 2, 3) are the arbitrary functions to be determined from
appropriate boundary conditions. In addition, A1, 42 and As are the dimensionless
complex wave numbers associated with the three body waves which are similar to that
in Eq. (3.15).
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Finally, the general solutions of uz, Wz, oz, p, ur and or: can then be obtained

as,
- _ /?VJZ_ —/1J'Z
- pr i
UZ :WJAJe it +V/JB]€ it
- _ ﬂ.JZ _ 7ﬂjZ
p =¢;Ae" -¢Be
— s 'y
On :(DJAJe JZ +¢J Bje JZ
— _ AJZ > —/ljZ
where

1=, [34 (33 +,b’v/1j2)—3536}

vy =8+ A7 (8 Caskf )+ 5267
G=s (s o) s8¢

@ :(ﬁjfj ‘mez%)ﬂv

o =Cu(Xiz;=¢v))

1 =&C3xj+CeA W —ag

(3.27a)
(3.27b)
(3.27¢)
(3.27d)
(3.27¢)

(3.27f)

(3.28a)
(3.28b)
(3.28¢)
(3.28d)

(3.28€)

(3.28f)

The above general solutions are used in the derivation of fundamental solutions for

transversely isotropic poroelastic media under axisymmetric deformations presented

in Chapter 5.
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Figure 3.1 Homogeneous transversely isotropic poroelastic half-space
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CHAPTER 4
PLANE STRAIN FUNDAMENTAL SOLUTIONS OF
TRANSVERSELY ISOTROPIC POROELASTIC MEDIA

The general solutions for a transversely isotropic poroelastic medium under
plane strain deformations derived in Chapter 3 are used in the derivation of the
fundamental solutions of a homogeneous and multi-layered half-planes. The
boundary-value problems corresponding to a homogeneous transversely isotropic
poroelastic half-plane subjected to time-harmonic buried loading are considered. For a
multi-layered medium, an exact stiffness matrix method is adopted to obtain
fundamental solutions for a multi-layered transversely isotropic poroelastic half-
plane. Selected numerical results are presented to portray the influence of
anisotropic and poroelastic effects on dynamic response of transversely isotropic

poroelastic media under plane strain deformations.

4.1 Fundamental Solutions for Homogeneous Half-Plane

4.1.1 Boundary-value problems

This section presents boundary-value problems corresponding to a
homogeneous transversely isotropic poroelastic half-plane subjected to time-harmonic
buried loading. Four loading types, i.e. a vertical load, a horizontal load, a fluid source
and applied pore fluid pressure, applied at a depth z = h below the free surface are
considered. All loading types are assumed to be uniform in the y-direction so that the
resulting deformations are of plane strain type. The boundary value problem can be
solved by considering it as a two-domain boundary-value problem. The domain "1" is
bounded by 0 <z < h, and the domain "2" by h <z < 0. The general solutions for the

domain "1" are given by Eq. (3.16), whereas for the domain "2", the general solutions
are also given by Eq. (3.16) with the arbitrary functions Aj and Bj (j =1,2,3) being
replaced by the arbitrary functions Cj and Dj (] =1,2,3) respectively. Note that Cj = 0

to ensure the regularity of the solutions at infinity. The boundary and continuity
conditions corresponding to a transversely isotropic poroelastic half-plane subjected

to buried vertical and horizontal loads, and a buried fluid source can be expressed as,
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TR (x0=0 (nN=x2) (4.1a)
PP (x.00=0 (4.1b)
U (x,h)—-U% (x,h)=0 (n=x,2) (4.1c)
PP x.h)—PP(x,hy=0 (4.1d)
5(1) —(2) 3 .
m(x,h)—om(xh)=~f, (h=X12) (4.1e)
WS (x, h) — WY (x, h) = if?q (4.1f)

where f,, f,, and ', denote the Fourier transforms of applied horizontal and

x
vertical loads, and applied fluid source respectively. In addition, the superscript i (i =
1,2) is used to denote the domain number. Substitution of the general solutions for
displacements, stresses, pore pressure, and fluid displacement given by Eq. (3.16) into
Eqg. (4.1) yields a set of linear simultaneous equations to determine the arbitrary
functions corresponding to the two domains. It is convenient to solve the boundary

value problem corresponding to different loading cases separately.

In the case of a transversely isotropic poroelastic half-plane subjected to
applied pore fluid pressure fp at a depth z = h, the boundary and continuity conditions

are given by Egs. (4.1a) to (4.1c) together with the following continuity conditions:

PP —PPx,h=T, (4.22)
cR(x,h—cR(xh =T, (4.2b)
O (x.h)— O (x,h) =0 (4.2¢)
WS (x,h) =W (x,h) =0 (4.2d)

If buried loading is uniformly distributed with intensity fo over a strip of width

2a at a depth z = h, the Fourier transform of applied loading ?n(n=z,x,q, p)

defined in Egs. (4.1) and (4.2) is given by

2 sin(as)
T g

INGE fo; (n=2,%0,p) (4.33)

In addition, for buried line loading of intensity Fo applied at a depth z = h,
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fn(f)zzF—:z; (n=z,x,q,p) (4.3b)

The solutions for the arbitrary functions corresponding to all loading cases are given

explicitly as followed:

Arbitrary functions for vertical loading

Ai:‘zzth (4.42)
A, 211% (4.4b)
A :_ZZ’e‘fh (4.40)
B, - 2515(2 (26", i ) (267" pyr iy )~ (6 i) | (44D
B, - 221;(2 (20 gy )+ (67 i, ) - (26 gy | (449)
B, = 221;(2 (07 ki) (26 i 0, )+ (26 ey )| (44D
D;-B;+ A" (1123 (4.49)

Arbitrary functions for horizontal loading

A=— Fx (@3, —@Lp5) (4.53)
2K3E."1lh
A, - @y, —os) (4.5b)
2z<3e12“
A - @y, —oWy) (4.5¢)
21(3€ﬂ3h
f _ _
B, = % [2m, 15 (a1 8" — e ") (4.5d)

1 2K,5K,

+@, (2¢2W1K8642h + l/IZKSE’ﬂlh -, (2¢3W1K'Se_ﬂ3h + l//3KSe’ﬂlh )]
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2z<1e
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f _ _
Bz :_21(' );(_ [szKg (¢3W1€ Aah _¢1W3e ﬂlh) (459)
372
+ T O kg€ N — Yk, €~ (2w~ e )]
T _ _
Bg =- 2K‘3);('2 [ZwsK7 (o€ 72h -Q,e ﬂlh) (45f)
+w, (2(01W3K7e’ﬂ1h - WlicGe_%h) + (—2(021//3K7642h + z//zzcee_%h )]
D;=B;-Ae*" (j=1273) (4.50)
Arbitrary functions for fluid source
_ kg (4.62)
25 ;56"
a2 (4.6b)
26,0872
_ TaRys (4.6¢)
2K105e”3h
if
_ q —gh _(2@*2h _(a—A4h 4.6d
B- W[(Ze Paraars) (26 L parony ) (€ W ) | (40D
if
—__ a  |(_pe " —Ah _(2e4h (4.6e)
B, = 2’(10’(25[( 2e (03Kq3/c9)+(e Kq2K4) (28 (01qu1(9)}
if —a.h —A,h —A4h 4.6f
B s (6 )~ (26 s (26 gy ) (460
D;=B;-Ae*"  (j=1273) (4.60)
Arbitrary functions for applied fluid pressure
f K
__P'p1 (4.73)
AL 2/<1e”1h
f K
_ P™ p2 4.7b
A, - (4.7b)
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f K
__Pps3 (4.7c)
A3 2/(1(323h
_ T [(pe — (27" —(e~A" (4.7d)
1 2K K, [( ¢3KP3K8) ( ¢2KPZK8) ( Kp1s )]
277 2K1562 [(_Zerﬂgh(p?/(lo?f€9 ) N (e "Kp2ky)- (26_ P )] (47
T _ _ _
3= s [ (6 s ) (26 ooy ) + (26 My ) | (47D
D;=B;+Ae*"  (j=1273) (4.79)
where
Kl = 771)(253 + 7727(342 + 773)(142 _771)(34’2 _772)(1;3 _773)(24’1 (4-83)
K2 = (037724/1 _(0277342 _¢3771§2 + (017734/2 + @2771;3 - ¢1772§3 (4-8b)

Ky = TD\PY 5 + T PY 5+ DPNs — TP 3 ~ TPy ~ TPy, (4.80)

Ky = Psl1,61 + Polls61 — PG, + PG, —PoThG s — PiIE 5 (4.8d)
K = 011,81 ~ Pol1381 ~ PN 5 ~ PiT1sG 5 + PolhC 3+ PiTToG 5 (4.8e)
K = P11581 + Pollaly — PTG » — PTG, —PolhC s+ PTG 5 (4.81)
K7 =101, (4.89)
Kg =1135 5~ 11,53 (4.8h)
Kg =11551-ThS (4.8i)
K1g = Os0W1 ~ 8,001~ O3 P 5 + O P 5 + S, P 5~ G100/ 5 (4.8))
K= X362~ X263 (4.8K)
Kyp = X361~ X153 (4.81)
Ky = X261~ 2152 (4.8m)
Ky = P2~ P/ (4.8n)
Kq2 = P¥1— PV (4.80)

Koz = P11~ P> (4.8p)
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K1 =ThXo ~1h X3~ vk, (4.80)
Kpo =1 —ThX3 — K, (4.8r)
Koz =ThXi —ThX, — K3 (4.8s)

All variables in above arbitrary functions are given explicitly by Eq. (3.17)

for a transversely isotropic poroelastic half-plane.

4.1.2 Numerical solutions and discussion

The solutions for displacements, stresses, pore pressure and fluid
displacement, given by Eqgs. (4.1) — (4.3) together with the arbitrary functions
defined in Egs. (4.4) — (4.7), appear in terms of infinite integrals in the form of Eq.
(3.8b). The infinite integrals with respect to & can be evaluated by employing an
accurate numerical integration scheme. For ideal elastic materials, influence
functions have singularities along the £-axis. However, for poroelastic materials these
singularities are complex-valued due to material damping associated with fluid
friction. A globally adaptive numerical quadrature scheme (Piessens 1983) has been
employed to numerically evaluate the semi-infinite integrals appearing in the
influence functions. This quadrature scheme subdivides the interval of integrand and
uses a 21-point Gauss—Kronrod rule to estimate the integral over each interval. All
numerical results presented in Figures 4.1 to 4.5 correspond to the case where

loading or fluid pressure of uniform intensity fo is applied over a strip of width 2a. In
addition, a non-dimensional frequency, defined as & =a)a\/p/_G , Is used in all
numerical results presented in this paper; and other normalized material parameters
are defined as: E =E /G:M =M/G: p. =p Ip: M =m [p and b'=ba/\[pG
wherei=handv.

The accuracy of the present solution scheme is first verified by comparing
with existing solutions on dynamic response of an isotropic poroelastic half-plane.
Figure 4.1(a) shows a comparison of vertical profiles of normalized vertical
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displacement along the z-axis, UZ* (= Gu, / foa), of a poroelastic half-plane under the

uniform vertical loading applied at z/a = 1 between the present solution and the

solution reported by Senjuntichai and Rajapakse (1994). The comparison of Uz*

under uniform fluid pressure applied at z/a = 1 is also shown in Figure 4.1(b). The
normalized parameters used in Fig. 1 are defined as: En" = E," = 2.6; wh = wh = 0.3;
on=av =095 pf =053, mn =m=1.1; M" =122 and bn" = by" = 2.3. It can be
observed from Figure 4.1 that the present solution agrees very closely with the

existing solution by Senjuntichai and Rajapakse (1994).

The comparisons with existing solutions of a transversely isotropic elastic
half-plane are also shown to confirm the accuracy of the present solution. Figure
4.2(a) presents a comparison between the present solution and the existing solution

given by Ai and Zhang (2015) for normalized vertical displacements U, and

normalized vertical stress 0, (= o,/ fo) of a transversely isotropic half-plane under

the uniform vertical loading applied on the surface (z/a = 0). The employed
normalized parameters are: En" = 2/3; Ev" = 1/3; wn = wn = 0.25 whereas the other
parameters are negligibly small (= 0.001). As shown in Figure 4.2(a), very good

agreement between the two results is observed.

Rajapakse and Wang (1991) presented normalized horizontal displacements

u, (= GUX/an) and normalized shear stress 0, (=ze/f0) of a transversely

isotropic half-plane under buried horizontal loading (z/a = 1). The properties of the
half-plane are defined as: cii/cas = 4.26; cs33/cas = 4.57 and cis/cas = 1.64. A
comparison shown in Figure 4.2(b) confirms that the obtained solution from the
present scheme is in very good agreement with the existing solution provided by
Rajapakse and Wang (1991). The accuracy of the present numerical solution is thus
verified.

Dynamic response of a transversely isotropic poroelastic half-plane under
uniformly distributed loading or fluid pressure of intensity fo applied over a width 2a
is presented next. Three types of transversely isotropic poroelastic materials,
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namely, Mat A, Mat B and Mat C are considered in the numerical study. The
material properties of Mat A, which is an isotropic poroelastic material, are given as
follows: En" =Ev" =3; = wh=0.3; on=av=0.95; pf =0.5;mn =my'=1; M" =
12.5; and bn" = by" = 2, and Mat A is taken as the reference material in the numerical
study. The properties of Mat B and Mat C are also identical to those of Mat A
except the parameter by” is equal to 0.2 for Mat B, and the parameter Ey" is equal to
1.5 for Mat C. These two materials are presented in order to portray the influence of
anisotropy properties in Young’s modulus and the parameter b on dynamic response

of a transversely isotropic poroelastic half-plane.

*

Figure 4.3(a) shows normalized vertical displacement profiles of U, along

the x-axis of all three materials due to vertical distributed loading of uniform

intensity fo applied at z/a = 1. Profiles along the x-axis of Uy due to buried

horizontal distributed loading (z/a = 1) of uniform intensity fo are also presented in
Figure 4.3(b). Numerical results are presented in Figure 4.3 for all three material
types at two frequencies of excitation, i.e. 6 = 0.5 and 2.0, and they show that
normalized displacements depend significantly on non-dimensional frequency. Both
real and imaginary parts of displacements vary rapidly along the x-axis, and they
become more oscillatory with higher frequency. The difference in the displacements

among the three materials shown in Figure 4.3 is more substantial in the case of the

vertical displacement under vertical loading (U; ) since the parameters that are

varied, i.e. bv" and Ev", represent the anisotropic properties in the vertical direction.
In addition, the influence of anisotropy on both displacements is more evident at a
lower frequency (6 = 0.5) when compared to what observed at a higher frequency (&
=2.0).

Figure 4.4(a) shows profiles along the z-axis of non-dimensional vertical

*

stress 0, due to the vertical distributed loading of uniform intensity fo applied at

the depth z/a = 1. Vertical variation of normalized vertical stress along the z-axis
due to the applied pore pressure of uniform intensity fo at the depth z/a = 1 is also

presented in Figure 4.4(b). As expected, a unit discontinuity exists in the real part of
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*

0, at the depth z = a due to the applied loading at that level whereas, under the

applied pore pressure, a discontinuity of magnitude av is observed at z/a = 1
consistent with Eq. (4.2b). Numerical results shown in Figures 4.4(a) and 4.4(b)
indicate that vertical variations of vertical stresses corresponding to different
loading types are quite similar. Comparison of stress profiles for different materials

*

reveals that the influence of anisotropic properties on the real part of 0, is less

than what observed in the imaginary part. In addition, normalized stresses show
oscillatory variations along the z-axis at 6 = 2.0 whereas at a lower frequency (6 =

0.5) smooth variations of vertical stress profiles with depth are observed.

Profiles of normalized pore pressure p*(: P/fo) along the z-axis due to

applied vertical loading and applied fluid pressure are respectively presented in
Figures 4.5(a) and 4.5(b). Both applied loading and fluid pressure are distributed over
a width 2a with uniform intensity fo at the depth z = a. Both real and imaginary parts
of normalized pore pressure under both loading cases are zero at the surface due to
the imposed hydraulic boundary condition [see Eq. (4.1b)]. However, the real parts
of normalized pore pressure profiles in Figure 4.5(b) show a unit discontinuity at the
depth z = a due to the fluid pressure applied at this level [see Eq. (4.2a)]. In Fig.
5(a), both real and imaginary parts of pore pressure profiles under applied vertical
loading display a significant influence on anisotropic material properties and the
frequency, in which the pore pressure shows oscillatory variations along the z-axis at
&= 2.0 while at a lower frequency (&= 0.5) the variation of p” with depth is smooth.
On the other hand, pore pressure profiles under the applied fluid pressure presented
in Figure 4.5(b) reveal that the influence of anisotropic material properties on the
real part is almost negligible, whereas for the imaginary part, significant dependence

on both anisotropic material properties and the frequency of excitation is observed.

4.2 Fundamental Solutions for Multi-Layered Half-Plane

4.2.1 Exact Stiffness Matrix Method
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Consider a multi-layered transversely isotropic poroelastic half-plane
consisting of N layers with different properties and thicknesses overlying a
homogenous transversely isotropic poroelastic half-plane as shown in Figure 4.6. A
superscript n is used to denote quantities associated with an nth layer (n =1, 2,..., N),

where the top and bottom levels are denoted by Z, and Z,,;, respectively. The

relationship for the nth layer can be established by using Eq. (3.16) as follows:

[iT&z) | [ire™  —ige™ ipet —iget ige™  -ige |[A
u,($.z,) et p,e e w,e e e B,
p(&.z,) B gt —g e g gt Leth et || A

00620 || e g g g g | B,
0,(¢,2,,) | |we™™  we gttt yett oyttt et || A
| ez | [ce gea ) cem gt gem gete ||B,

(4.9)
[-i5,(¢,2,) ] _—iqole'ﬁz“ -ipe ™ —ipe™ —ipe™ —ipe" —ipe " A7
—0,(6:2) | | ne™omett —mett gt —pe et || B
W, (s,2,) - _wleﬂjzn _wleiﬂlzn _wzeﬂZzn _wzeiﬂﬂ” _533%2” —wgefjgz" A
i7,(5,2,,) | |ige™ ipe™  ipett  ipe it ipett  ipe ™ || B,
(S 2,.) mett —pe i ettt p et pefta e || A
W82, | | @M @ @ ae o™ @e™ || B,

(4.10)

In above equations, the elements in Eq. (4.9) are the Fourier transforms of
displacements and pore pressure at the top and bottom surfaces of the nth layer while
the elements in Eqg. (4.10) are the Fourier transforms of traction and fluid
displacements at the top and bottom surfaces of the nth. The matrices of
displacements and pore pressure as well as traction and fluid displacements in Egs.

(4.9) and (4.10) can be expressed in the following forms.

u(”) = [IUX (5’ Zn) Uz (5' Zn) p(é' Zn) IUX (57 Zn+1) Uz (5’ Zn+1) ﬁ(f’ Zn+1)]T

(4.11)

[ I (é:’ zn _622 (5! Zn) _V_Vz (5’ Zn) io_-xz (51 zn+l) O_-zz (é’ Zn+1) V_Vz (6’ Zn+1):|T
(4.12)
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Then, the relationship between U™ and 6" for the nth layer can be established as

follows:

" =K"", n=123 .., N, (4.13)

(n)

where K" is an exact stiffness matrix in the frequency-wave number domain. It is

found that the matrix K" is symmetric and its elements are functions of the layer
thickness, the layer material properties, the frequency of excitation @, and the

(n)

horizontal wave numbers & The elements of K'Y’ are given explicitly in

Appendix A.

(N+1)

Similarly, the stiffness matrix K for the underlying half-space can

(N+1) (N+1)

be established from the relationship between u and © . Note that the

(N+1)

matricesu™ ™ and © are the columns matrices that represents the generalized

(N

displacement and force at the level zn+1. The elements of K *Y do not contain the

exponential term, and depend only on the half-plane material properties. Note

that the matrix K™ is also symmetric and its elements are also given explicitly in

Appendix B.

The global stiffness matrix of a multi-layered transversely isotropic
poroelastic half-plane as shown in Figure 4.6 can be assembled by using the
layer and half-plane stiffness matrices together with the continuity conditions of
traction and fluid flow at the layer interfaces. The global equation system can be

expressed as
K*U*=F* (4.14)
where K* is the global stiffness matrix and U* is the global vector of generalized

displacements. In addition, F* is the global vector of generalized forces defined as

Pe=[TO TO LTO T‘N”)]T (4.15)

A (n)

) — —
i—]. In addition, Tj(”) and Q"
[0

= ()= (n
In Eq. (4.15), the sub-matrix T = [ITx T.

denote the Fourier transforms of applied traction in the j-direction (j = x, z) and
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applied fluid source at the nth interface, respectively. For example, if a multi-layered
half-plane is subjected to normal traction of uniform intensity fo applied over a strip of

width 2a at the top surface of n layer, all elements of F* are zero except that

2 sin(a&)

= ()
Tz =
(5) T é:

fy (4.16)

In the case of a multi-layered transversely isotropic poroelastic half-plane subjected to
applied pore fluid pressure fp at a depth z = h, the boundary and continuity conditions
similar to what given by Egs. (4.1a) to (4.1c) and (4.2) for a homogeneous half-plane
have to be employed. A slight modification to the global equation, Eq. (4.14), has to
be made to satisfy the continuity condition of pore pressure at that level since the pore
pressure is typically an unknown of the equation. At the layer interface with a depth z
= h, the pore pressure variable in the matrix U* is now given and it is moved to the
right hand side of Eq. (4.14). A global stiffness matrix K* is altered accordingly and
the modified global equation is then solved for the solution corresponding to the
applied fluid pressure case. The obtained fundamental solution is the influence
function required in the formulation of dynamic interaction problems between
impermeable strip foundations and multi-layered transversely isotropic poroelastic

soils.

4.2.2 Numerical solutions and discussion

A computer code based on the solution procedure presented in the previous
section has been developed. The major computational effort in the analysis involves
the computation of influence functions solved the global equation in Eq. (4.14)
based on exact stiffness method. The parameters in Eq. (4.14) are expressed in terms
of semi-infinite integrals of the Fourier transform parameter. It should be noted that
the integrand has no singularities along the &-axis due to material damping associated
with fluid friction of poroelastic materials. To numerically evaluate the semi-infinite
integrals, a globally adaptive numerical quadrature scheme proposed by Piessens

(1983) has been implemented in the computer code. In this work, a non-dimensional
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frequency is defined as & = way| PP 1GY | where p%) and G® are the parameters

of the first layer. In addition, a set of normalized material parameters for all layers

are defined as: Eh*:Eh/G(l)y Ev*:EV/G(l), G*:G/G(1)1 M *:M /G(l), ,0*:,0 /p(l)
’ pf* =p, /,0(1), mh* =m, /,0(1), mv* =m, /,0(1), bh* :Qa/ /p(l)G(l) and
b =ha/\p9GY |

The accuracy of the present solution scheme is first verified by comparing
with existing solutions on dynamic response of a multi-layered transversely
isotropic half-plane under the uniform vertical loading of magnitude fo with width 2a
applied on the surface. Figure 4.7(a) presents a comparison between the present

solution and the existing solution given by Ai and Zhang (2015) for normalized

* 1
vertical displacement profile U, (: G( )Uz / foa) along z-axis, where 6= 1. The multi-

layered considered by Ai and Zhang (2015) consists of two layers, with the thickness
of 4a and 3a respectively, and an underlying half-plane. The normalized parameters
are: En" = 6; Ev" = 3 and G™ = 1 for first layer; En" = 3; E," = 1.5 and G" = 0.5 for
second layer; En" = 2; Ev" = 1 and G* = 0.3 for underlying half-plane. In addition,
and wh are equal to 0.25 for all layers. It should be noted that the other parameters
are negligibly small (= 0.001). It can be seen that a very good agreement between
the two results is obtained as shown in Figure 4.7(a). The comparison with existing
solutions Rajapakse and Senjuntichai (1995) for dynamic response of a multi-
layered isotropic poroelastic half-plane is shown in Figure 4.7(b). The multi-layered
medium consists of two layers with the thickness of a and underlying half-plane, and
is subjected to the uniform vertical loading applied at h/a = 1, where h denotes depth
of loading. The results from this present solution scheme and that of Rajapakse and
Senjuntichai (1995) are compared throughout the non-dimensional frequency range
of 6= 0.2-2.6. It can be observed from Fig. Figure 4.7(b) that the present solution

agrees very closely with the existing solution.

To investigate the dynamic response of a multi-layered transversely isotropic
poroelastic soil, the selected material properties for two layers with a thickness a
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and underlying half-plane are expressed in Table 4.1, and it is called System A.
Another system considered in the numerical study is called System B, which
represents a multi-layered isotropic poroelastic half-plane. The properties of System
B are the same as those given in in Table 4.1, except that the properties in the
direction normal to the isotropic plane (i = v) are set to be equal to those in the plane
of isotropy (i = h), in the two layers and the underlying half-plane. For example, Ev°
= En" =2.5, by" = bn" = 2 in the first layer of System B.

Figures 4.8(a) and 4.8(b) respectively show non-dimensional vertical

* 1
displacement U, (=6 /fa) due to a uniformly distributed vertical load of

. . . ) . * 1)
magnitude fo and non-dimensional horizontal displacement U, (=G U, /qoa) due to

a uniformly distributed horizontal load of magnitude qo. Both vertical and horizontal
loads are applied on the surface (h = 0) and at the level h/a = 1. In Figures 4.8(a)
and 4.8(b), System A and System B are considered in the numerical study over the
non-dimensional frequency range of 0.2 < § < 2.6. It is found from Figures 4.8(a)
and 4.8(b) that the influence of anisotropy is more evident for both real and
imaginary parts of the vertical displacement while the influence on horizontal
displacement is almost negligible. This is due to the fact that the variations of the
parameters representing the anisotropic properties of transversely isotropic
poroelastic materials in the vertical direction (e.g., Ev" and bv") between System A
and System B are different. Thus, the variations of the parameters En and bn are
suggested to be considered in the parametric studies in order to portray the influence
of anisotropy effect on the horizontal displacement. In addition, the vertical
displacements of System A are higher than that of System B due to the fact that E,"
of System A is higher than that of System B in all layers. From Figures 4.8(a) and
4.8(b), both real and imaginary parts of non-dimensional displacements due to
surface loading are larger than those under buried loading. Thus, the layered
medium becomes less stiff and less damped under surface loading than buried

loading.
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4.3 Conclusion

In this chapter, the fundamental solutions of a homogeneous transversely
isotropic poroelastic half-plane subjected to time-harmonic buried loads and fluid
sources are presented by employing the general solutions for the case of plane strain
derived in Chapter 3. Those general solutions are employed in the exact stiffness
matrix scheme to determine the fundamental solutions of a multi-layered transversely
isotropic poroelastic half-plane under time-harmonic loading. A computer program
based on an accurate numerical integration scheme is developed, and the accuracy of
present solution is verified by comparing with existing solutions. Selected numerical
results under low and high frequencies are presented to demonstrate the anisotropy
effects in the vertical direction of Young’s modulus (Ev) and the parameter b (bv) on
dynamic response of homogenous and multi-layered half-planes, and it is found that
normalized displacements, stresses and pore pressure depend significantly on the
anisotropic parameters and the frequency of excitation. The present fundamental
solutions are employed as the influence functions required in the analysis of dynamic
interaction between strip foundations and transversely isotropic poroelastic soils

presented in Chapter 6.



Table 4.1 Material properties of System A
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En”

E/

h Wh o o
First layer 2.5 4 0.3 0.3 1 0.95 0.5
Second layer 1.3 2.5 0.3 0.3 0.5 0.98 0.98
Half-plane 10 15 0.25 0.25 4 0.9 0.9
p* yo; * Mmh* my” bn” b M*

First layer 1 0.5 15 1.5 2 3 10
Second layer 0.5 0.5 0.9 0.9 1 1.5 7.5

Half-plane 4 0.5 2.4 2.4 6 9 8
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Figure 4.1 Comparisons of normalized vertical displacement profiles of an isotropic
poroelastic half-plane under buried loading (z/a = 1): (a) applied vertical load; (b)

applied fluid pressure
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Figure 4.2 Comparisons of normalized elastic fields of transversely isotropic elastic
half-planes: (a) vertical displacements and vertical stress under surface vertical
loading; (b) horizontal displacement and horizontal stress under buried horizontal
loading (z/a = 1)
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Figure 4.3 Normalized displacement profiles along the x-axis under buried loading
(z/a =1): (a) vertical displacements under vertical loading; (b) horizontal
displacement under horizontal loading
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Figure 4.4 Normalized vertical stress profiles along the z-axis under buried loading

(z/a =1): (a) applied vertical load; and (b) applied fluid pressure
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Figure 4.5 Normalized pore pressure profiles along the z-axis under buried loading
(z/a =1): (a) applied vertical load and (b) applied fluid pressure
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under time-harmonic loading
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normalized vertical displacement of a multi-layered poroelastic half-plane under
buried loading (h/a = 1)
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Figure 4.8 Non-dimensional displacements due to surface (h/a = 0) and buried loading
(h/a = 1): (a) vertical displacement due to vertical loading; (b) horizontal
displacement due to horizontal loading
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CHAPTER 5
AXISYMMETRIC FUNDAMENTAL SOLUTIONS OF
TRANSVERSELY ISOTROPIC POROELASTIC MEDIA

The general solutions derived in Chapter 3 are used to obtain the fundamental
solutions of a homogeneous half-space and multi-layered medium under
axisymmetric deformations. For a homogeneous half-space, the boundary-value
problems corresponding to axisymmetric deformations of a transversely isotropic
poroelastic half-space subjected to time-harmonic buried loading are presented. For a
multi-layered medium, an exact stiffness matrix method is employed to determine
the fundamental solutions of a multi-layered transversely isotropic poroelastic half-
space under axisymmetric loading. Selected numerical results are presented to
portray the influence of anisotropic and poroelastic effects on dynamic response of

transversely isotropic poroelastic media.

5.1 Fundamental Solutions for Homogeneous Half-Space

5.1.1 Boundary-value problems

The fundamental solutions for axisymmetric problems can be obtained by
solving boundary value problems for a transversely isotropic poroelastic half-space
subjected to time-harmonic buried loading. Four loading types, i.e. a vertical load f;, a
tangential load fr, a fluid source fq and applied fluid pressure fp, applied at the depth z
= h below surface are considered. Similar to the case of homogeneous half-plane
under buried loading presented in Section 4.1, the boundary value problems are
solved by treating it as two-domain boundary-value problem. The domain "1" is
bounded by 0 <z < h, and the domain "2" by h <z <. The boundary and continuity
conditions corresponding to a transversely isotropic poroelastic half-space subjected
to buried axisymmetric a vertical load, a tangential load, a fluid source can be

expressed as,

o¥Y(r,00=0 (n=r,2) (5.1a)
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p®(r,0)=0 (5.1b)
U (r,h)-UP(r,n)=0 (n=r,z) (5.1¢c)
P@(r,h)— p®(r,h)=0 (5.1d)
o (r.h)—of@(r,h)=fr(r) (n=r,2) (5.1e)
W, ) - W r hy =0 (510

For the case of a transversely isotropic poroelastic half-space subjected to applied
pore fluid pressure, the boundary and continuity conditions are given by Egs. (5.1a) to

(5.1c) together with the following continuity conditions:

PA(r,h)—pO(r,h) = fr) (5.10)
o@(r.h)-c@(r,h=ay () (5.1h)
o2 (r,h)—o{ (r,h) =0 (5.1i)
W (r,h) - W (r,h) =0 (5.1))

where
f.(r)=H@-r (=zr.qp) (5.2)

and a denotes the radii of the circular loading respectively.

The boundary value problem corresponding to four types of loading cases are
considered separately, i.e. fr = fq = fy = 0 for the applied vertical loading case. The
application of the Hankel integral transform, Egs. (3.20a) to (3.2f), together with the
substitution of the general solutions, Eq. (3.27), for each loading case yields the
solutions to the four boundary value problems. The general solutions for the domain
"1" are given by Eq. (3.27), whereas for the domain "2", the general solutions are also
given by Eq. (3.27) with the arbitrary functions Aj and Bj (j =1,2,3) being replaced
by the arbitrary functions Cj and D; (] =1,2,3) respectively. Note that Cj = 0 to ensure

the regularity of the solutions at infinity. The substitution of the general solutions for
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the two domains into the boundary and continuity conditions, Eq. (5.1), yields a set of
linear simultaneous equations to determine the arbitrary functions Aj, Bj and D;j
(J=1,2,3). The arbitrary functions for each loading case are similar to those
presented in Eq. (4.4) for the applied vertical loading case, Eq. (4.5) for the applied
tangential loading case (by substituting fx by fr), Eq. (4.6) for the fluid source case and
Eq. (4.7) for the applied fluid pressure case. Note that all variables in Egs. (4.5) to
(4.7) are given by Eq. (3.28) for a transversely isotropic poroelastic half-space under

axisymmetric deformation.

5.1.2 Numerical solutions and discussions

The solution procedure outlined in the previous section is implemented into a
computer program to compute the dynamic response of transversely isotropic
poroelastic half-space under circular loading. The major computational effort
required in the analysis involves the computation of influence functions which are
expressed in terms of semi-infinite integrals of the Hankel transform parameter & by
using a globally adaptive numerical quadrature scheme (Piessens 1983) as described
in Chapter 4.

As the influence functions have a direct effect on the accuracy of the current
solution scheme, their accuracy is verified first by considering the case of an
isotropic poroelastic half-space subjected to uniformly distributed vertical loading
of intensity fo applied over a circular area of radius a at a depth h/a = 1. The solution
to this problem was given by Zeng and Rajapakse (1999) who presented numerical
solutions for the isotropic case with En" = Ev" = 2.6, on = v = 0.3, on = av = 0.95,
pr =053, m =m =11 M =122, and bn" = b," = 2.3. Comparison of the

profiles of normalized vertical displacement U, (=GU,/fa) shown in Figure 5.1
confirms excellent agreement with the solution of Zeng and Rajapakse (1999) for

different frequencies (o= 0.5 and 2).

To demonstrate the basic features of dynamic response of an anisotropic

poroelastic soil, we consider the case of Berea sandstone (Rice and Cleary 1976)
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which is isotropic with the properties, En* = Ev" = 2.6, oh = ov = 0.3, on = av = 0.95,
pf =053, m" =m’ =11, M" =122, and bn" = by" = 2.3. In the absence of
experimental results for properties of anisotropic poroelastic materials, we consider
a hypothetical Berea sandstone with n = 0.5, 1 and 2 and other material properties

unchanged to illustrate the coupled influence of anisotropy and poroelasticity.

Figures 5.2(a), 5.2(b) and 5.2(c) show the profiles of non-dimensionalized

vertical displacement U, (= GUZ/fga), pore pressure P (= p/fo) and vertical stress

Uzz* (: 0y / fo) along the z-axis of a soil under uniformly distributed time-harmonic
circular load of radius a and magnitude fo applied on the surface (h/a = 0). The
variation of displacement, pore pressure and stress along the depth is generally
smooth at lower frequencies (o = 0.5) but show a higher degree of oscillations at
higher frequencies (6 = 2). The influence of anisotropy (i.e., n) is also more
significant at higher frequencies and displacements decrease as n increases. The
profiles of displacements and stress confirm that poroelastic effects are also
significant at higher frequencies. The pore pressure profiles show substantial
influence of anisotropy. The peak values of pore pressure occur within z/a <2 and it

is less than 20% of the peak total stress values.

5.2 Fundamental Solutions for Multi-Layered Half-Space

5.2.1 Exact Stiffness Matrices

Consider a multi-layered transversely isotropic poroelastic half-space
under axisymmetric deformations consisting of N layers with different properties
and thicknesses overlying a homogenous transversely isotropic poroelastic half-

place as shown in Figure 5.3. A superscript n is used to denote quantities associated

with an nth layer (n = 1, 2,..., N), where the top and bottom levels are denoted by Z,

and Z,., respectively. The relationship for the nth layer can be established by using

Eq. (3.27) as follow,



Ur (gg, Zn) ] Zleﬂqzn _Zle—ﬂqzn Zze/azn _}Qefﬂjzn lseﬁjz,‘ _Zse%z" Al
u,(&,z,) l//leﬂiz” Wle—ﬂlz" l//zej"zz er—/lzzn 1/136%1” 1/136_;%2" B,
ﬁ(év Zn) é’lemn _é’le_ﬂizn gzeﬂqzn _é’ze_AzZ" ée% _é,se_wn Az
Ur (§1 Zn+1) lle/ﬁlm _lle*/ﬁlm xze/ﬁlm _Zze*/’jznﬂ Zseﬁjzm _zse—}_lzw B2
UZ (5, Zn+1) l//lefﬁlrm wle*/HZM l//ze;iznﬂ l/lzefizlm l//aeﬂazm l//sei}?z . A3
| P(&.2,.,) | | gt g gttt e ettt e || B,
(5.3)
_Erz (é‘, Zn) _qoleazn _@le—/‘qzn —(Z)ZGAZ" —(Pze_;ﬂ" _(pseaizn _(pse-zjzn T A1
~G,(&,2,) | |-ne™  pett opett opet —pe*™ pe || B
—W,(5.2) |_|-@e™ —@e™ -we™ —@ett —wet —ae || A
o, (s, Zn+1) (pleﬂlzm 40187/112"‘1 (pzejlzm (/7297112"‘1 (/73921Zm1 40397111"‘1 Bz
EZZ (§1 Zn+1) nle)“lzm _nle’jlzml nzeﬂzznﬂ _nze*ﬁzzna 7738332“1 773e*ﬂgln-1 A3
L WZ (é, Zn+l) | L wleﬂlznﬁ w-le_ilzn-l wzelﬂnﬂ w-ze_izznﬁ w3e}g2n+1 w_ae Ao J i B3 |
(5.4)

In above equations, the elements in Eq. (5.4a) are the Hankel transforms of
displacements and pore pressure at the top and bottom surfaces of the nth layer while
the elements in Eq. (5.4b) are the Hankel transforms of traction and fluid
displacements at the top and bottom surfaces of the nth The matrices of displacements
and pore pressure as well as traction and fluid displacements in Eqgs. (5.4a) and (5.4b)

can be expressed in the following forms.

u(n) = [Ur (5’ Zn) l'Tz (5’ Zn) ﬁ(éj’ Zn) l'Tr (5’ Zn+l) l'Tz (5' Zn+1) ﬁ(i’ Zn+1)]T (55)

G(n) = [_5rz (951 Zn) _5-22 (éi Zn) _V_vz (51 Zn) 5rz (‘5’ Zn+1) 522 ("f’ Zn+1) V_Vz (5’ Zn+1)]T
(5.6)

(n)

Then, the relationship between vectors u™ and ¢ for the nth layer can be

established as follow,

o =K"u", n=123 ...,N, (5.7)
where K™ is an exact stiffness matrix in the frequency-wave number domain. It is

found that the elements in matrices K(”) and K(Nﬂ) are similar to that shown in
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Appendix A and Appendix B respectively except K,,, K3, K5, K, K
and Kis that have to multiply with —i (imaginary number).

The global stiffness matrix of a multi-layered transversely isotropic
poroelastic half-space under axisymmetric deformations as shown in Figure 5.3
can be assembled by using the layer and half-space stiffness matrices together
with the continuity conditions of traction and fluid flow at the layer interfaces.
The global equation system can be expressed as

K*U*=F* (5.8)
where K* is the global stiffness matrix and U* is the global vector of generalized

displacements. In addition, F* is the global vector of generalized forces defined as
Fr=[TO 1@ .. 70 .. o] (5.9)

) Q(ﬂ)

.= (n) — ~
In Eq. (5.9), the sub-matrix TM = [ITr T. E]' In addition, Tj(”) and Q(n)

denote the Hankel transforms of applied traction in the j-direction (j = r, z) and
applied fluid source at the nth interface, respectively. For example, if a multi-layered
half-space is subjected to normal traction of uniform intensity fo applied over a
circular area with a radius a at the top surface of n layer, all elements of F* are zero
except that

= (n) 1

T (@ ==a) G, (5.10)
Note that normal traction of a unit vertical point load applied at top surface of n layer

can be expressed as,

= (n)

T: (&)=1 (5.11)
For the case of a multi-layered transversely isotropic poroelastic half-space subjected
to applied pore fluid pressure fp at a depth z = h, the boundary and continuity
conditions similar to what given by Egs. (5.1a) to (5.1c) and (5.1g) to (5.1j) for a
homogeneous half-space have to be employed. The global equation, Eq. (5.8), has to

be slightly modified in order to satisfy the continuity condition of pore pressure at that
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level since the pore pressure is typically an unknown of the equation. The pore
pressure variable at the layer interface with a depth z = h is now given in the matrix
U*. It is then moved to the right hand side of Eq. (5.8). A global stiffness matrix K* is
altered accordingly and the modified global equation is then solved for the solution
corresponding to the applied fluid pressure case. As a results, the fundamental
solution is obtained, and can be used as a required influence function in the
formulation of dynamic interaction problems between an impermeable circular

foundation and a multi-layered transversely isotropic poroelastic half-space.

5.2.2 Numerical solutions and discussions

A computer code based on the solution procedure presented above has been
developed. The major computational effort in the analysis involves the computation
of influence functions from exact stiffness matrix method that are expressed in
terms of semi-infinite integrals of the Hankel transform parameter & by using a
globally adaptive numerical quadrature scheme described in Chapter 4. The
accuracy of the present solution scheme is verified by comparing with existing
solutions. Zheng et al. (2013) presented vertical profiles of vertical displacements in
a multi-layered poroelastic half-space under a time-harmonic vertical point load.
The layered half-space consists of two poroelastic layers overlying a homogeneous
poroelastic half-space, in which the normalized thicknesses of the first and the
second layers are one and two respectively. The normalized properties are ai = 0.9,
M=2 p=1, pr=05 mi=2and bi =1 (i =v, h) for the two layers and the half-
space. In addition, the normalized Lame' constants 4 and  are equal to 1.5, 2, and
3, respectively, for the first layer, the second layer, and the half-space. The
comparison in the case of homogeneous poroelastic half-space was also presented,
in which the parameters A and ux are equal to one in the two layers and the half-
space. The vertical point load is applied at the depth of h = 2. Note that only real
parts are given in the works by Zheng et al. (2013). It is evident from Figure 5.4 that
the numerical solutions from the present study agree very closely with those
presented by Zheng et al. (2013).
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The two layer systems, System A and System B identical to that presented in
Chapter 4, are considered in the numerical study. Figures 5.5(a) and 5.5(b)

. . . . . *_ W)
respectively show non-dimensional vertical displacement U, (—G Uz/foa) and

* 1
non-dimensional radial displacement U, (:G()Ur/foa) due to a uniformly

distributed vertical load of magnitude fo applied on the surface (h = 0) and at the
level h/a = 1. Figures 5.5(a) and 5.5(b) present the vertical and radial displacements
respectively of System A and System B under vertical loading over the non-
dimensional frequency range of 0.2 < 6 < 2.6. It can be seen that the difference in
transversely isotropic poroelastic materials in the vertical direction (e.g., Ev" and by")
between System A and System B has a significant influence on both vertical and
radial displacements. It is found that System A is basically stiffer than System B. In
addition, the multi-layered medium under surface loading is less stiff and less

damped than that under buried loading as illustrated in Figures 5.5(a) and 5.5(b).

5.3 Conclusion

The fundamental solutions of homogeneous and multi-layered transversely
isotropic poroelastic half-spaces subjected to time-harmonic axisymmetric loading are
presented in this chapter. The fundamental solutions for the homogeneous half-space
are explicitly derived by solving the boundary value-problems based on the
axisymmetric general solutions, whereas the exact stiffness matrix method is
employed to obtain the fundamental solutions of the multi-layered half-space under
axisymmetric deformations. Note that the arbitrary functions obtained for the
axisymmetric fundamental solutions are akin to what obtained for the plane strain
solutions presented in Chapter 4, except that all parameters involved in the
expressions are given by Eq. (3.28) for a transversely isotropic poroelastic half-space
under axisymmetric deformation. The accuracy of fundamental solutions for both
homogeneous and multi-layered half-spaces are confirmed by comparing with their
isotropic poroelastic counterparts. Selected numerical results indicate that anisotropic
properties has a significant influence on vertical displacement, vertical stress and pore

pressure in a transversely isotropic poroelastic half-space under vertical loading. In
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addition, it is also the multi-layered half-space under surface loading is less stiff and
less damped than that under buried loading. The axisymmetric fundamental solutions
presented in this chapter are the required influence functions in the formulation of
dynamic interaction between circular foundations and transversely isotropic

poroelastic soils presented in Chapter 7.
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CHAPTER 6
INTERACTION BETWEEN STRIP FOUNDATIONS AND
TRANSVERSELY ISOTROPIC PORORELASTIC SOILS

In this chapter, the fundamental solutions of homogeneous and multi-layered
transversely isotropic poroelastic half-plane derived in Chapter 4 are employed to
solve soil-structure interaction problems involving strip foundations and transversely
isotropic poroelastic soils. Three problems, namely a rigid strip foundation embedded
in a homogeneous half-plane, multiple rigid strip foundations on a homogeneous layer
with rigid base and multiple flexible strip foundations on a multi-layered medium, are
presented. Selected numerical results are presented to portray the influence of

anisotropic and poroelastic properties on dynamic response of strip foundations.

6.1 Rigid Strip Foundation in Homogeneous Half-Plane

6.1.1 Formulation of interaction problem

The analysis of soil-structure interaction problems involving a rigid strip
foundation and a transversely isotropic poroelastic half-plane is presented in this
section. Consider a rigid strip foundation with a width of 2a embedded in a
transversely isotropic poroelastic half-plane with a depth h below the surface as
shown in Figure 6.1(a). The strip foundation is assumed to be rigid, massless and
subjected to time-harmonic line loading [see Figure 6.1(a)]. In addition, the
foundation is assumed to be perfectly bonded to the supporting soil with either fully
permeable or impermeable contact surface. The displacements at an arbitrary point on

the contact surface (|x|<a and z = h) can be expressed as,
u (x,h)=A, (6.1a)
u,(x,h)=A, +x¢ (6.1b)

where A, (i=x,z) represents the displacement amplitude in the i-direction at the center

of the foundation; and ¢ denotes the amplitude of the rotation about the y-axis.
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The traction and the pore pressure jump generated at the contact surface
between an impermeable foundation and the supporting soil in the i-direction are
denoted by Ti (i = x, z) and Tp respectively. To determine the unknowns Tx, Tz and Tp,
the contact surface is discretized into N equally spaced nodes as shown in Figure

6(b). It is assumed that the contact stresses and pore pressure are distributed

uniformly over the tributary length of each node. The displacement u; (i=x,z) at the

node with the coordinate (x,,h) can be expressed as,

N N N
Uy (%4 1) = DU s (5 XD T (40) + DU s (4 X0 T, () + DU (4 X0 Tp (%) (6.22)
1=1 1=1 1=1 )

:AX

N N N
Uy (X, 1)+ X = DU 5 (6 X)) T () + DU 5 (s X)T, 04) + DU 50 (4 )T (%) (6.2b)
= 1= 1=1 '
In addition, the zero flow condition under the impermeable foundation is given by,
N N N
W, (X, 1) = > U e (O 0Ty 04) + DU 5 O X0 T, 04) + DU 5o (X )T (%) (6.20)
=1 1= I=1 '
=0
where U, (X;X) (i=j=2xp) denotes the influence function, which is the vertical (i =
z) or horizontal (i = x) displacement or the relative fluid displacement (i = p) at the
nodal location (x,,h) due to a unit vertical (j = z) or horizontal (j = x) line load or a

line fluid source (j = p) applied at the nodal location (x,,h). The influence functions

U.(x:X) are obtained from the fundamental solutions presented in Section 4.1.

For vertical vibrations, a rigid foundation is only subjected to vertical loading,
and the contact surface between the foundation and the supporting soil is assumed to

be smooth. The following relationship can be established from Egs. (6.2b) and (6.2c):

A, _ Uy, Uzp T, 6.3)
0 Upz Upp Tp
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.
where AZ={AZ A, AZ} is a column vector of size Nx1 containing the

amplitude of the vertical displacement, and 0 is a zero vector of size Nx1. In

addition, T, and T, are column vectors of size Nx1 whose elements are the contact

traction T,(x) and the pore pressure jump Tp(X|) respectively, and Ui,- (i=j=z,p)is
a matrix of size NxN whose elements are the influence functions U, (x,;X) .

Once the contact traction (Tz) and pore pressure jump (Tp) are obtained, the
equation of equilibrium of vertical forces applied to the rigid strip foundation can then

be expressed as,

:_I +aT (6.4)

where av is Biot’s parameter defined in Eq. (3.1).

For a rigid foundation with fully permeable contact area, Eq. (6.3) is reduced

to:
A =U,T, (6.5)

and the equation of equilibrium of vertical forces in Eq. (6.4) involves only the

normal contact traction (Tz).

For the analysis of a rigid foundation under horizontal and moment loading,
the influence of hydraulic boundary conditions on dynamic response of the
foundation is negligible, and the fully permeable condition is usually assumed. The
following relationship can be established from Egs. (6.2a) and (6.2b) for a rigid
foundation under horizontal and moment loading and fully bonded to a poroelastic

half-plane with fully permeable contact surface:

<
(I) UZX UZZ TZ
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T T
where AX:{AX Ay . AX} and d):{xl¢ X0 .. XN¢} are column vectors

of size Nx1, and (x,.h) is the location of the nodal point of the k™ element (k = 1, 2,
..., N). In addition, the elements of the matrices Uij and T, (i =j=x, z) are defined

similarly to what given for the two matrices U;; and T, (i =j =z, p) respectively in
Eqg. (6.3).

After the normal traction T: and the shear traction Tx are obtained, the

equations of equilibrium for horizontal forces and moment can then be computed as,

a

F=—] (T, )x (6.72)

a

M = —I (T, ) xdx (6.7b)

—a
Thereafter, the relationship between applied loading F;, Fx and M, and the
displacement amplitudes Az, Ax and ¢ can be expressed in the following matrix form:
A e, O 0 ](F,

A = O CH CHM FX (6'8)
X¢b 0 C, C, |IM

where Cv, Ch, Cm and Cnm represent vertical, horizontal, coupling and rocking

compliances of rigid strip foundation respectively.

6.1.2 Numerical solutions and discussions

A computer code based on the formulations presented above has been
developed in order to investigate dynamic response of a rigid strip foundation.

Figure 6.2(a) shows the comparison of non-dimensional vertical compliance

CV*(= Gaa, /ﬂFZ) of a rigid strip foundation resting on the surface of a transversely

isotropic poroelastic half-plane between the present solutions and the solutions given
by Ai and Zhang (2016). The material properties of the half-plane are En" = 2/3; E/*
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= 1/3; w = wh = 0.25. In addition, the contact surface is divided into a number of N
elements, where N = 4, 8, 16, and 32. It can be seen that the present solution
converges to the solution by Ai and Zhang (2016) with increasing number of N, and
accurate numerical results can be obtained when N > 32. In Figure 6.2(b), the
impedances, which are obtained from the inversion of the compliances, of a fully
permeable strip foundation resting on a surface of a homogeneous poroelastic half-
plane are presented for a comparison between the present solution and the existing
solutions given by Senjuntichai and Rajapakse (1996) with N = 32. The comparison
of vertical, horizontal, rocking and coupling impedances, denoted by Kv*, Kn*, Km”
and Kum" respectively, presented in Figure 6.2(b) indicates a very good agreement
between the two solutions for both real and imaginary parts of all impedances. Thus,
all numerical results presented in Figures 6.3 to 6.5 are obtained with the discretized

contact area of N = 32.

The vertical compliance of a rigid strip foundation resting on a transversely
isotropic poroelastic half-plane are presented in Figures 6.3(a) and 6.3(b) for fully
permeable or impermeable contact surfaces respectively. In addition, all three types
of materials which are similar to those in Section 4.1 are considered in the two
figures over the frequency range 0.2 < < 3. Numerical results presented in Figure
6.3 reveal that the anisotropic material properties and the hydraulic boundary
condition have a significant influence on the vertical compliance, particularly in the
imaginary part at low frequency. The vertical compliances vary smoothly over the
frequency range 0.2 < ¢ < 3 for both real and imaginary parts. In addition, the
impermeability at the contact surface makes the soil-foundation system stiffer and

less damped when compared to the case of fully permeable condition.

The influence of embedded depth “h” on non-dimensional vertical
compliances of a rigid strip foundation is also investigated. Figures 6.4(a) and 6.4(b)
respectively show Cv* for the cases of fully permeable and impermeable foundations
embedded in the half-plane of Mat B at various depths of h/a = 0, 1, 2, 5 and 10.
Numerical results indicate that vertical compliance of strip foundations depends
significantly on the depth of embedment. Similar to what observed in Figure 6.4,

non-dimensional compliances of the impermeable foundation are smaller than those
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of the fully permeable one. Numerical results presented in Figure 6.4 also indicate
that both real and imaginary parts of Cv* for surface (4/a = 0) and deeply buried (4/a
= 20) foundations vary smoothly with frequency whereas, for foundations with
intermediate embedded depths (h/a = 1, 2 and 5), they show oscillatory variation
with o. This is due to the effects of standing waves generated between the free

surface and the embedded foundation that virtually diminish as the embedded depth

increases. Non-dimensional rocking (C, =Ga’g, [ zM), horizontal

(C, =GaA, /7F), and coupling (C,, =Ga’A,/zM) compliances of a rigid
surface strip foundation (z/a = 0) are presented in Figures 6.5(a), 6.5(b) and 6.5(c)
respectively over the frequency range 0.2 < d < 3 under the condition of fully
permeable contact surface. Numerical results presented in Figure 6.5 indicate that
both real and imaginary parts of all compliances vary smoothly with the frequency.
It is evident that both real and imaginary parts of the moment and coupling
compliances depend significantly on the anisotropic material properties. On the
other hand, the influence of the anisotropic material parameters Ev and by on the
horizontal compliances is almost negligible due to the fact that these two parameters
represent the anisotropic properties of poroelastic materials in the vertical direction.
Thus, the variations of the parameters En and br would also be considered in the
parametric studies to investigate the influence of anisotropic properties on

horizontal vibrations of embedded foundations in poroelastic soils.

6.2 Multiple Rigid Strip Foundations on Homogeneous Layer with Rigid Base

6.2.1 Formulation of interaction problem

Consider a system of N strip foundations, subjected to time-harmonic
loading resting on a homogeneous transversely isotropic poroelastic layer as shown
in Figure 6.6(a). All strips are assumed to be rigid, massless, and undergoing time-
harmonic translational and rotational displacements. In addition, they are assumed
to be bonded to the underlying layer with fully permeable contact surface. Under

this condition, both normal traction and shear traction on the contact area under each
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strip are unknown. If the contact area is impermeable, pore pressure jump is also an
unknown in addition to the contact traction. The modelling of impermeable contact
surface was employed in the past for vertical vibrations of rigid foundations. It was
found that the variation of vertical compliances with frequency for fully permeable
and impermeable contact surfaces show similar trends with the maximum difference
being less than ten percent. Furthermore, the influence of hydraulic conditions at the
contact area of rigid foundations under other loading types is typically negligible. In
view of this observation, the current assumption of fully permeable contact surface is

acceptable for the interaction problem under consideration.

Consider a rigid strip i (1=12,..,N) with a width of 2a' and the center of its
contact surface being located at (X;,O) as shown in Figure 6.6(a). The horizontal and

vertical displacements, denoted by U:( and UIZ respectively, at an arbitrary point on
the contact surface of the strip i are given by,

w(x0)=A, x-a'<x<x+a (6.9a)

U(x,0)=AL+x4, X -a'<x<x +a (6.9b)

where Alj (J=x1) represents the displacement amplitude in the j-direction at the

i

center of the strip; and ¢ denotes the amplitude of the rotation about the y-axis of the

strip. Let define the unknown traction in the j-direction generated at the contact

surface between the strip i and the underlying layer as le (J=X12). To determine the

i i .

unknowns Ty and T, the contact surface under the strip i is discretized into Ng'

equally spaced nodes with the tributary length t' (= a'/Ne') as shown in Figure 6.6(b).

i i
It is assumed that Tx and Tz are uniformly distributed over each discretized
element. The displacements at the node k, with the coordinate (xk, 0) on the contact

surface under the strip i (i=12,..,N), can be expressed as,
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uL(xik,o>=i{zuyxx'k:xﬂw.(xﬂnzu'xux'k:xﬂ)u(x.')] (6.10a)

j=1 1= 1=1

o NN o N

U (4,,0) = Z{zu;ux'k:xs T )+ Y UL )T <x.l>} (6.10b)
j=1| 1= 1=1

where U (X; () denotes the influence function, which is the horizontal (m = x) or

vertical (m = z) displacement at the nodal location (X,'(;O) at the contact surface under

the strip i due to a uniform horizontal (n = x) or vertical (n = z) strip load of unit

intensity applied at the nodal location (X.J ;0) at the contact surface under the strip j. In

addition, TXJ| and Tzf (1=1, 2, ..., N&) are the shear and normal contact tractions at

the node | of the strip j, which are assumed to be uniformly distributed over the
tributary length of the node.

These influence functions U#m can be obtained by solving a boundary value

problem of a transversely isotropic poroelastic layer subjected to uniformly
distributed vertical and horizontal strip loads of unit intensity, and the corresponding

boundary conditions can be expressed as,

on(x,0)=f, (n=x,2) (6.11a)

P(x,0)=0 (6.11b)

U,(x,h)=0 (n=x,2) (6.11c)

W, (x,h)=0 (6.11d)
where

f,(x)=[H(x+0.5t)-H(x-05t)]; (n=z,x) (6.11¢)

and 0.5t is the half-width of the applied loads. The arbitrary functions for the applied
vertical and horizontal loading cases can be obtained by solving the boundary-value
problem for each case separately, i.e. fx = 0 for the applied vertical ring load and f; =
0 for the applied horizontal load. The application of the Fourier integral transform,

Eqg. (3.8a), together with the substitution of the general solutions, Eqg. (3.16), for



69

each loading case yields the solutions of the six arbitrary functions Aj and Bj (j = 1,
2, 3). The influence functions in the Fourier transform domain are then obtained by
substituting those arbitrary functions into Eq. (3.16).

The equilibrium equations of applied forces on a rigid strip j (j = 1, 2, ..., N)
can then be expressed as,

. NEj ..
R =-)Tgt! (6.12a)
1=1
. NEj L
Fl=-) Tt (6.120)
1=1
H NEj PR . .
M) ==YTjt/(x!-x) (6.12¢)

1=1
Finally, the relationship between the applied loading on the strip j, and the

displacement amplitudes of the strip i, can be expressed in the following matrix form:

Dl Cll ClZ ! ClN Fl
2 21 22 2N 2
LS C e (6.132)
I:).N C.Nl C'NZ ”: C;\IN F‘N
where
Al ci o 0 ]
Z z
D'=1aAl t; Cl=] 0 ¢} ci,|i Fl= R} (andj=12.,N)
alg' o ci, cii M)
(6.13b)

InEq. (6.13), C/, Cp, Cy and Cpy respectively represent the vertical, horizontal,

coupling and rocking compliances of the strip i due to the loading applied on the strip
jandj=1,2,...,N).

6.2.2 Numerical solutions and discussions
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Note that the expressions for all those the non-dimensional compliances are
the same as those defined in Section 6.1.2. Figure 6.7 shows the comparison of non-
dimensional vertical, horizontal and rocking compliances of a rigid strip of a width
2a bonded to a transversely isotropic layer with a thickness of h/a = 1 between the
present solution and the solution given by Gazetas (1981). The material properties of
the layer are given as follows: En/Ev = 2; G/Ev = 0.5; vh = wh = 0.45. In addition, the
compliances from the present study are obtained by setting all poroelastic material
parameters to be negligibly small with the number of discretized contact area equal
to Ne = 32. It can be seen from Figure 6.7 that very good agreement between the
two solutions is obtained for both real and imaginary parts of all compliances.
Senjuntichai and Rajapakse (1996) presented non-dimensional impedances of a rigid
strip bonded to an isotropic poroelastic layer with h/a = 1. Note that the impedances
of a rigid strip can be obtained from the inversion of the compliance matrix CU given
by Eq. (6.13). The material properties of the layer are defined as, En" = Ev" = 2.6; w =
wh =0.3; an = av = 0.95; pr = 0.53; mp" =my" =15 M  =125; and bn" = by =
3.16. It is evident that non-dimensional vertical, horizontal, rocking and coupling
impedances, denoted by Kv", Ku", Km™ and Kum™ respectively between the present
solution with Ne = 32 and the solution reported by Senjuntichai and Rajapakse

(1996) agree very closely for both real and imaginary parts as shown in Figure 6.8.

Consider a system of two rigid strip foundations with the same width of 2a
on a transversely isotropic poroelastic layer with the thickness h overlying an
impermeable rigid base as shown in Figure 6.9. The distance between the two strips
is represented by d, and the contact surface between the strips and the layer is fully
permeable. Strip 1 is subjected to the time-harmonic vertical, horizontal and
moment loads with its displacements being given by Eq. (6.9). On the other hand,
Strip 2 is free of any external loading. In addition, Strip 2 is also restrained such that
their vertical and horizontal displacements are zero. It should be noted that the
solution to this case where the loading is applied only to one strip can be
superimposed to investigate the dynamic interaction problem where both strips are
loaded. Numerical solution corresponding to the non-dimensional compliances of

Strip 1 of the double-strip system bonded to a transversely isotropic poroelastic
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layer, as shown in Figure 6.9, is presented for the rest of the paper. Three types of
transversely isotropic poroelastic layers are considered in the numerical study,
namely, Layer A, Layer B and Layer C. The material properties of the three layers
are given as follows: En" = 3; vn= wh =0.3; on = av = 0.95; pr" = 0.5; mn" = my" = 1;
M”* = 12.5; and bn" = 2. In addition, Layer A is chosen as an isotropic poroelastic
layer, thus Ev" = 3 and by" = 2, whereas E," =3 and bv" = 1 for Layer Band E," = 1.5
and by" = 2 for Layer C respectively to portray the anisotropic effects in Young’s
modulus and the parameter b on the this dynamic structure-soil-structure interaction

problem.

Figure 6.10 shows the non-dimensional compliances of Strip 1 of the double-
strip system on the three transversely isotropic poroelastic layers of the same
thickness h/a = 1 over the frequency range 0 < 6 <5 and the distance between the
two strips is d/a = 0.5. Numerical results presented in Figure 6.10 indicate that
similar variations of the compliances with the frequency are observed in Strip 1 on
the three layers. It is evident that the variations in Ev and by have a significant
influence on the vertical, rocking and coupling compliances. However, a negligible
dependence of the real and imaginary parts of C1* on Ev and by is observed as these
two parameters represent the anisotropic properties of poroelastic materials in the
vertical direction. In addition, it can be seen from the non-dimensional compliances
shown in Figure 6.10 that the consideration of anisotropic properties yields the strip-
poroelastic soil system that is less stiff and less damped under vertical and rocking

motions.

The influence of the distance between the two strips, d/a, on the non-
dimensional compliances of Strip 1 is presented in Figure 6.11 for the frequency
range 0 < o< 3. Two rigid strips, as shown in Figure 6.9, resting on the transversely
isotropic poroelastic Layer C with a thickness of h/a = 1 is considered for different
values of d/a = 0.25, 0.5, 1, and 4. The case of single strip foundation is also shown
in Figure 6.11 for comparison. It can be observed that the influence of d/a on the
compliances is less significant when the distance between the two strips is larger. It
is found that the compliances of Strip 1 for the cases of d/a = 4 and those of single

strip are virtually identical implying that the influence of adjacent foundations could
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be ignored if the distance between the two strips are at least four times greater than
their width. It should be noted that the case of three-strip system has also been
investigated by preparing similar plots of all compliances of the Strip 1 to those
presented in Figure 6.11 with the distances between Strip 1 and Strip 2 and between
Strip 2 and Strip 3 being d/a = 0.25. It is found that the compliances of Strip 1
corresponding to the three-strip system are practically the same as those of the two-
strip system. Thus, only the case of the double-strip system is considered to

investigate the interaction between adjacent foundations.

The numerical results corresponds to the compliances of Strip 1 on the Layer
C with d/a = 0.5 for various thicknesses h/a are presented in Figure 6.12 over the
non-dimensional frequency range 0 < ¢ < 3. The numerical results of all
compliances of Strip 1 on a relatively thin layer (h/a <5) show oscillatory variations
with the frequency due to the standing waves generated within the layer, which
practically vanish for the thick layer (h/a > 15). In addition, it is found that the
compliances of Strip 1 on transversely isotropic saturated layers with h/a = 15 and
20 are practically identical, and they vary smoothly over the frequency range under
consideration. The analysis of the dynamic interaction between a multiple strip
system and a transversely isotropic poroelastic layer with h/a > 15 could then be

carried out by treating the layer as a half-space.

6.3 Multiple Flexible Strip Foundations on Multi-Layered Half-Plane

6.3.1 Formulation of interaction problem

Consider a system of Ns flexible strip foundations resting on a multilayered
transversely isotropic poroelastic half-plane as shown in Figure 6.13. The i"" strip
foundation has a width of 2a', and a local coordinate x as ¢ = (x —x/)/a, where X! is
the x-coordinate at the center of the it foundation (i = 1, 2, 3,..., Ns). The contact
area between the flexible strip foundations and the half-space is assumed to be

smooth, and either fully permeable or impermeable. The vertical displacement of the

it" foundation is denoted by W (,u) , and can be expressed in the following form.
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. Nr o
W (k)= M =123, (6.14)
n=0

where A! (n = 0,1,...,N7) denotes a set of generalized coordinates. Hence, the

bending moment per unit length acting on the i foundation is in the following form.

Ny '
M'(x)=-D"> n(n-1)Au"2  i=1,23..,N, (6.15)
n=0
where
i (i )}
o Ex(hs) (6.16)

12[1—(v;t )1
where h!, denotes thickness of the i foundation, and E!, and v, represent Young’s

modulus, and Poisson’s ratio of the i foundation material respectively.

For an i impermeable foundation, there are two unknowns, which are normal
traction T)(x) and T; (1) pore pressure jump. In order to solve for these unknowns,

the contact surface between i foundation is then discretized into a total number of
N{ strip elements with equally spaced nodes, where the tributary length ¢ is equal to
a'/NE' as shown in Figure 6.6(b). The vertical displacement compatibility and the
impermeable condition are then imposed at the contact surface between the strip
foundation and the half-plane. This is done by taking each term of the deflection
approximation of the i foundation with A! =1 (n=0,1,...,Ntand i = 0,1,..., Ns).
Thereafter, the resulting deflection variation and zero flow condition are imposed on

the nodal locations at the contact surface of the half-plane by applying contact traction

T i

znk

and pore pressure T;nk at the k™ node of i foundation, where n=0,1,...,Nt and

k = 0,1,...,NiE. The following relationship between the normal traction, pore

pressure jump and the generalized displacement can be established on the contact

surface of all impermeable foundations.
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[ ~11 11 1j 1N INg | 1 1
C;ZZ Gzp toe GZI’J Tt GZZ ° GZp ° Tzn uzn
11 m 1j . INg INg 1 1
G pz G pp G pr G pz G pp Tpn Upn
i1 in i iNg iNg i L=J 6.17
Ge Gy GJ Gos G 4Ty, TS (6.17)
Ng1 Nsl . Nsi .. NgNg NgNg Ng Ng
Gzz Gzp Gzr Gzz Gzp Tzn uzn
Ng1 Nel . Nej ... NgNg NgNg Ng Ng
_G pz G pp G pr G pz G p Tpn Upn
where
el ij ij
qu,n qu,lz qu,lNE
Gl, Gl G}
ij 21 qr,22 qr,IN
Gy=| ° E 6.18
ar : : Gl (6.18)
. . qr,kl
ij ij ij
_qu,NEl qu,NEl qu,NENE N

where the elements G}, ,

@(1,j=1,2,..., Ns; k, | =1, 2,..., Ne) denote the influence
functions, which are the vertical displacement (g = z) and the relative fluid
displacement (q = p) at any point of the k™ strip element on contact surface of it"
foundation due to a unit vertical load (r = z) and applied pore fluid pressure (r = p) of

unit intensity, which are uniformly distributed over the I strip element of j™

) ) = j ) ]
foundation. The influence functions le can be obtained from the exact stiffness

matrix method under plane strain deformations presented in Section 4.2. In addition,

the elements of displacement and traction are expressed below.

Tzin =|:Tzinl Tzinz Tt Tzink T TzinNE :'T ’ T;;n :[T;nl T;nz T;nk T;nNE :'T
(6.19)

u;n = I:u;nl uizn2 oo u;nk e u;nNE :'T ) uipn = [uipnl uipn2 e uipnk e uipnNE :IT
(6.20)

For a fully permeable contact surface on which no pore pressure is generated, Eq.

(6.17) is then reduced to,

Gll GlZ . Gle Tl ul
21 22 2Ng 2 2
G'zz G'zz G i Gzz Tzn = u.zn (6 . 2 1)

2z

Ns1 Ng2 NgNg Ns Ns
GZZ GZZ GZZ TZI"I u
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The Lagrangian function IT of the system of Ns flexible strip foundations as

shown in Figure 6.13 can be expressed as,
S i N i i
H:;{V -U —J-[E{TZ (,u)+05VTp (y)}— f (,u)stt(,u)d,u}
In the above equation, Vi and U' denote the kinetic and strain energies of the i strip
foundation respectively which can be expressed in term of the generalized
coordinates, A! (n=0,1,...,N1;i=0,1,..., Ns), in the following matrix form:

(6.22)

VI=AM, (AT}, U'=A'HL(A'), i=123,..N, (6.23)
The elements H!, and M, can be expressed respectively as,
k()"
m = m[l—(—l) } (6.24a)
i Eslt (hslt )2 (ai )m+“_5 (m_l)(m—Z)(n—l)(n—Z) |:1_(_1)m+n—5j|’ (624b)

(m+n-5)

" 24[1-(v)? ]
where p! denotes mass density of the i foundation, and q(x) denotes the external

loading acting on the i*" foundation and can be written as,
(6.25)

NL
q ()= dnad”
m=0
In addition, ¢rL (m=0,1,...,NL) denotes coefficients of loading function.

The Lagrangian’s equations of motion for this problem are determined from the

following equation.

g[a_n o _

dt\0A) oA
T

ANS} . As a results, it leads to the following equations of

(6.26)

where A:[A1 A?
motion for determination of A.
QA=B (6.27)

where
(6.28)

Q——a)z(l\/lSt +I\/I;)+Hst+H;+S+ST
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and

M, =diag| M} |, H, =diag|H| |, S=diag[S'|, B=[B' B’ ... B" ]T
(6.29)
In above equations, the element S! and B! of S' and B' (m,n=0,1,...,N7+1; i =

0,1,..., Ns) can be expressed as,

i _1 < i M= (i i
Smn = E ; Ik (uk ) 1 (Tz(n—l)k + ava(n—l)k )’ (6.3061)
. S\ m+k—1
Bi = S M[l—(—l)mk_l} (6.30b)
k=1 (m +k —1)

where | denotes the width of the k" strip element of the it" foundation.

The solution of a linear simultaneous equation system given by Eq. (6.27)
yields the solution of the generalized coordinates A! (n=0,1,...,Nt; i =0,1,..., Ns).

By substituting the generalized coordinates of i"" foundation into Eq. (6.14), the
vertical displacement of the i" is then obtained.

6.3.2 Numerical solutions and discussions

To study a soil-structure interaction problem between multiple flexible strip
foundations and multi-layered transversely isotropic poroelastic half-planes,
corresponding to System A and System B similar to that in Section 4.2, are selected.
The dynamic interaction between a system of strip foundations subjected to a
uniform vertical load of intensity qo resting on a multi-layered transversely isotropic
poroelastic half-plane as shown Figure 6.13 is presented next. A non-dimensional

deflection (compliance) and a relative flexibility parameter of the foundation defined
as W (x)=G"w(x) /a0, and y=E h /12(1-12)a’G® respectively are presented. Figure
6.14(a) shows a comparison of inverted central deflection 1/w*(0) for two values of y
= 05 and y = 1 for a strip footing resting on the surface of homogeneous

transversely isotropic half-plane between the present study and the solutions given by

Ai et al. (2017). The material properties of the half-plane are En" = 6; E," = 3 and
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= wh = 0.25. The converged solution is attained when Ne > 32 and Ns > 8. It can be
obsevered from Figure 6.14(a) that the solution of the current formulation is in good
agreement with that given by Ai et al. (2017) for both flexibility values. A system of
strip footings on multi-layered poroelastic half-plane by Senjuntichai and Kaewjuea
(2008) are also employed to verify the present solution scheme. Note that the
comparisons in Figure 6.14(b) consist of single foundation and two foundations with
y =1 resting on a multi-layered poroelastic half-space. The multi-layered poroelastic
half-plane consists of first and second layers with same thickness of a and
underlying half-plane. Note that the distance (d) between two foundation is d/a = 1.
It is evident from Figure 6.14(b) that very good agreement between both solutions is
obtained for both real and imaginary parts. The proposed numerical scheme is thus

verified through these independent comparisons.

The effect of footing flexibility and permeability on the dynamic response of
multiple flexible strips is investigated next. Numerical results in Figures 6.15(a) and
6.15(b) respectively present the vertical displacement w*(0) and bending moment
M™(0) at the center of a flexible impermeable strip on the multi-layered transversely
isotropic poroelastic half-plane identified as System A with the material properties
shown in Table 4.1. In this investigation, a set of footing flexibilities, which are y =
0.2, 0.5, 1, 10 and 100, is considered in Figure 6.15. Strip footings with larger y are
stiffer and less damped compared to more flexible footings for both real and
imaginary parts as shown in Figure 6.15(a). In addition, the numerical results of
central bending moment M*(0) show that stiffer footings (higher » values) experience

higher bending moments.
Figure 6.16 shows the profiles of non-dimensional contact traction
(TZ* :Tz/qo) and pore pressure jump (Tp :Tp/qo) under an impermeable strip with

y=100. The selected examples correspond to the cases of 6= 0.5 and 2, and traction
and pore pressure profiles are plotted along the x-axis. It can be seen from Figure
6.16 that the profiles of contact traction and pore pressure jump depend significantly
on the frequency. Both real and imaginary parts of contact traction are singular near

the boundary of the strip. The magnitude of pore pressure jump is relatively small
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for both real and imaginary parts. In addition, both real and imaginary parts of pore
pressure jump converge to zero near the boundary of the strip implying that no

singular pore pressure jump takes place at the strip edge.

Figures 6.17(a) and 6.17(b) respectively show w*(0) and M*(0) of an
impermeable flexible strip footing with » = 1 resting on different transversely
isotropic poroelastic systems. Four transversely isotropic poroelastic systems, namely
a homogenous half plane, a homogenous layer of thickness a with an impermeable
rigid base, and multi-layered System A and System B, are considered in the figure to
investigate the influence of layering and transversely isotropic poroelastic material
parameters. The material properties of the homogeneous half-plane and the
homogenous layer are identical to those of the first layer defined in Table 4.1. The
geometries and material properties of the multi-layered System A and System B are
identical to those used in Chapter 4. It can be seem from Figures 6.17(a) and 6.17(b)
that substantial differences among strip foundations on three poroelastic systems are
clearly observed. Both real and imaginary parts of w*(0) and M*(0) for the strip on the
homogenous half-plane and layer vary smoothly with 6 whereas those of System A
and System B show oscillatory variations. The difference in the strip displacements
between System A and System B is mainly due to the anisotropy effect, where System
A corresponds to a transversely isotropic medium while System B corresponds to an
isotropic medium. It is found that central vertical displacement of strip foundation on
System B is higher than that on System A since the System A has a stiffer properties

in the vertical direction.

Figures 6.18(a) and 6.18(b) respectively present w*(0) of two flexible
impermeable strip footings with = 0.2 and 100 resting on the System A for different
distances between two footings, i.e. d/a = 1, 2, 4 and 8. In addition, the case of
single-footing is also shown in Figure 6.18 for comparison. It is evident from Figure
6.18 that w*(0) depend significantly on the distance d. The central vertical
displacements of closely spaced strips with d/a < 4 show oscillatory variations with
frequency. The variation of w*(0) becomes smoother when the distance d is larger. It
can be seen that the values of w*(0) converge to those of single foundation when d/a >
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8 implying that two strip system could be studied as a single strip when the distance
from adjacent foundations is larger than two time of their width.

6.4 Conclusion

In this chapter, three problems, namely a rigid strip foundation embedded in a
homogeneous half-plane, multiple rigid strip foundations on a homogeneous layer
with rigid base and multiple flexible strip foundations on a multi-layered medium, are
presented. For rigid strip foundations, vertical, horizontal, rocking, and coupling
compliances are presented, whereas for the case of multiple flexible strips only the
case of vertical loading is considered. The interaction problem is investigated by
employing a semi-analytical discretization technique together with the fundamental
solutions obtained in Chapter 4. Accuracy of the present solution scheme is confirmed
by comparing with existing solutions. Selected numerical solution on non-
dimensional compliance is presented to show the influence of the two anisotropic
parameters Ev and by on the compliances. Numerical results indicate that all
compliances except the horizontal compliance show a strong dependence on the two
parameters. It is also found that the impermeable hydraulic boundary condition at the
contact area makes a strip foundation under vertical loading stiffer and less damped
than the fully permeable one. In addition, the compliances also depend significantly
on the distance between adjacent foundations, the layer thickness, the frequency of

excitation and the relative rigidity (in the case of flexible strips).
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Figure 6.1 (a) Rigid strip foundation embedded in a transversely isotropic poroelastic
half-plane under time-harmonic loading; (b) Discretization of contact area
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Figure 6.3 Non-dimensional vertical compliances of surface strip foundation (h/a =
0): (a) permeable foundation; (b) impermeable foundation
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CHAPTER 7
INTERACTION BETWEEN CIRCULAR FOUNDATION AND
TRANSVERSELY ISOTROPIC PORORELASTIC SOILS

In this chapter, the fundamental solutions of homogeneous and multi-layered
transversely isotropic poroelastic half-space under axisymmetric deformations derived
in Chapter 5 are employed in the analysis of dynamic interaction between a circular
foundation and transversely isotropic poroelastic soils. Three problems, namely a
rigid circular foundation on a homogeneous layer with rigid base, a flexible circular
foundation embedded in a homogeneous half-space and a flexible circular foundation
embedded in multi-layered medium, are considered in this chapter. Selected
numerical results are presented to portray the influence of relevant parameters on the

foundation response.

7.1 Rigid Circular Foundation on Homogeneous Layer with Rigid Base

7.1.1 Formulation of interaction problem

Consider the dynamic interaction between a surface circular foundation of
radius a subjected to time-harmonic vertical loading and a transversely isotropic
poroelastic layer with rigid base as shown in Figure 7.1. The foundation is assumed
to be rigid, massless and undergoing time-harmonic vertical displacement of
amplitude Az. The contact surface between the foundation and the layer is assumed
to be smooth, and either fully permeable or impermeable. The discretization
technique is employed to solve this soil-structure interaction problem. Let S denote
the contact surface between the foundation and the saturated layer. The contact area
S is then divided into a total number of Ne annular elements, with the width of each
element being An (I = 1, 2,..., Ne). In addition, the inner and outer radii of the I™
annular element are expressed as ni and rio, respectively (see Figure 7.2). Note that

for the first element (I = 1) rui is zero, and the contact area is then a circular area. The
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following relationship can be established on the contact surface S under an

[sz HZP]{TZ }:{A} (7.1a)
HP? HPP || T, 0

In the above equation, the elements H|i(j| (k =1=1,2,..., Ne) in HI denote the

impermeable foundation:

influence functions, which are the vertical displacement (i = z), and the relative fluid
displacement (i = p) at the center of the annular element k on S due to a unit vertical
ring load (j = z) and ring fluid pressure of unit intensity (j = p) applied at the center of
the annular element | on S; each element in the column matrix A is the displacement

amplitude Az; and 0 is a zero column matrix.

These influence functions HL’, can be obtained by solving a boundary value

problem corresponding to a transversely isotropic poroelastic layer overlying a rigid
base. Two loading cases are considered to obtain the influence functions, i.e., a unit
vertical ring load f;, and applied ring fluid pressure of unit intensity fp, which are
distributed over an annular area. The boundary conditions for both loading cases are

given as follows:

o,(r,0)=0 (7.1b)

o,(r.0)=f,+a,f, (7.1¢)

p(r,0)=f, (7.1d)

u(r,n)=0 (i=r,z) (7.1e)

w, (r,h) =0 (7.1)
where

fo=H{,-1)-H({-r) (n=p2) (7.19)

and the inner and outer radii of the annular loading are expressed as ri and rio,
respectively (see Figure 7.2). The arbitrary functions for the two loading cases can be
obtained by solving the boundary-value problem for each case separately, i.e. fp = 0

for the applied vertical ring load and f; = O for the applied ring fluid pressure. The
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application of the Hankel integral transform, Egs. (3.20a) to (3.20f), together with the
substitution of the general solutions, Eqg. (3.27), for each loading case yields the
solutions of the six arbitrary functions Ajand Bj (j = 1, 2, 3). The influence functions
in the Hankel transform domain are then obtained by substituting those arbitrary
functions into Eq. (3.27).

In addition, the elements Tz and Tp in the matrices T and Tp respectively
denote the normal contact traction and pore pressure jump generated at the annular

element | on S. Note that Tz and Tp are assumed to be constant within each annular

element. The required influence functions,Hf(J., are determined by employing an

accurate numerical inversion scheme. Thereafter, the unknown contact traction Tz
and pore pressure jump Tpi at each annular element can be solved from the discrete
version of Eq. (7.1a).
The applied vertical force F can then be calculated from the contact traction
and pore pressure jump generated at the contact area S from the following equation:
Ne
F= ;ﬂ(ﬁﬁ - rnz)(Tz| +0‘sz|) (7.2)

where ﬁ(ﬁﬁ—ﬁf) is the contact area of the 1" annular element (1 =1, 2, ..., Ne).

Finally, the vertical vibrations of a rigid circular foundation is characterized by

the vertical compliance Cv, in which,

C, = F (7.3)
For a fully permeable foundation, Eq. (7.1a) reduces to
H*T! =A (7.4)

and Eq. (7.2) involves only Tz in the calculation of vertical load F applied to a fully

permeable foundation.

7.1.2 Numerical solutions and discussions
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The accuracy of the present numerical scheme is then verified with the
existing solutions for rigid circular foundations. Figure 7.3(a) presents the

comparison of non-dimensional vertical compliances, defined as Q/*:4Gac\//(1_vvh)1

between the present solution and the solution given by Zeng and Rajapakse
(1999). The material properties employed in the present solution are as follows: En*
=B =26; w=wmuh=03;, an=av=0.95; pr =0.53; my"=m, =11, M =12.2;
and bn* = by" = 2.3. Convergence and stability of the proposed solution scheme was
studied with respect to the number of annular elements, Ne, employed in the
discretization of the contact area. It was found that numerically stable and
converged solutions can be obtained when Ne = 16. In addition, the half-space can
be modeled from the present study by using the layer thickness of h/a > 15. It can be
clearly seen from Figure 7.3(a) that the present solution, with Ne = 16 and h/a = 20,
agrees very closely with the existing solution for both real and imaginary parts of

the compliance.

The accuracy of the present study is also examined by comparing with

existing solutions for a transversely isotropic elastic material. Figure 7.3(b) presents

the comparison of the non-dimensional vertical impedance, Kv*=F/AZGa, of a rigid

circular plate resting on a transversely isotropic elastic half-space between the
present solution and Ai et al. (2016), where the material properties of the half-space
are defined as En" = 5; Ev” = 2.5; and w = wn = 0.25. In addition, Ne = 16, h/a = 20,
and all poroelastic material parameters are set to be negligibly small in the present
solution. It is evident from Figure 7.3(b) that very good agreement between the two
impedances is obtained for both real and imaginary parts. The proposed numerical
scheme is thus verified through these independent comparisons.

In this subsection, numerical results for non-dimensional vertical compliance,
Cv", of a rigid circular foundation on a transversely isotropic poroelastic layer
are presented to portray the influence of anisotropic material properties on Cv*. The
following variables are introduced to investigate the anisotropic effects of the
saturated layer, i.e., the ratio between the two drained Young’s moduli, n1 = Ev/En,

and the ratio between the parameters accounting for the internal friction due to
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relative motion between solid and fluid phases, n2 = bv/bn. In addition, the following
parameters are employed, En" = 3; bn" = 2; w= wh =0.3; an = av = 0.95; pr" = 0.5;
mh"=my = 1; M" =12.5; and Ne = 16, for all numerical results presented hereafter.
The influence of hydraulic boundary conditions at the contact surface is also
investigated with both fully permeable and impermeable foundations being

considered in Figures 7.4 to 7.6.

Non-dimensional vertical compliance of a rigid circular foundation resting
on a transversely isotropic poroelastic layer with finite thickness h/a = 1 are
presented in Figures 7.4 and 7.5 for the non-dimensional frequency 0 < & <5.
Figures 7.4(a) and 7.4(b) show the vertical compliances of fully permeable and
impermeable foundations, respectively, for different values of ni, i.e., n1 = 0.5, 1 and
2, and n2 = 1 to consider the influence of anisotropy in the Young’s moduli.
Comparison between the vertical compliances of fully permeable and impermeable
foundations, presented in Figures 7.4(a) and 7.4(b) respectively, show similar trend
with increasing difference between Cvof different hydraulic conditions at the contact
surface being observed at high frequencies (6> 2). It is clearly seen that non-
dimensional vertical compliances depend significantly on the ratio of Ev/En for both
pervious and impervious foundations. The maximum responses of both real and
imaginary parts of Cv"* decrease with increasing n1 since the Young’s modulus in the
vertical direction Ev increases with increasing ni rendering the layer stiffer and more
damped. In addition, the peak values of Cv" are attained at higher frequencies with

increasing value of n1 for both types of foundations.

To study the influence of the parameters by and bn, non-dimensional vertical
compliances of rigid circular foundation on a transversely isotropic poroelastic layer
with h/a = 1 and various values of n2 = bv/bn are presented in Figure 7.5. Figures
7.5(a) and 7.5(b) show the vertical compliances of fully permeable and impermeable
foundations respectively on the saturated layer with n2 = 0.5, 1 and 2, and n1 = 1 for
0 < 6 < 5. Since the parameter b is inversely proportional to permeability, the layer
with nz2 = 2 is then the least permeable among all layers considered in Figure 7.5.
Numerical results shown in Figure 7.5 indicate that the influence of the parameter n2

on both real and imaginary parts of the vertical compliance is less significant than
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what observed from the effect of n1shown in Figure 7.4. In addition, the influence of
n2 becomes almost negligible on Cv”™ at low frequency (& < 1.0). The influence of
the hydraulic boundary condition at the contact surface, on the other hand, is more
evident on the solutions shown in Figure 7.5 when compared to those in Figure 7.4
as the value of nz directly relates to the permeability of the layer. A notable feature
observed in Figure 7.5 is the fact that difference between pervious and impervious
foundations is decreased with increasing the value of n2. This is physically realistic
since the layer becomes less permeable with increasing the value of n2, the hydraulic
boundary condition at the contact surface then becomes less relevant. Therefore, Eq.
(7.4) could be employed to study vertical vibrations of rigid foundation, irrespective

of its permeable condition, on the layer with a large value of nz (or bv/bn).

The final set of numerical results corresponds to the case of a rigid circular
foundation resting on transversely isotropic poroelastic layers of various thicknesses
h/a. Non-dimensional vertical compliances of fully permeable and impermeable
foundations are presented in Figures 7.6(a) and 7.6(b) respectively for the layers
with h/a =1, 2, 5, 15 and 20, and n1 = nz = 0.5 for the non-dimensional frequency 0
< 6 < 3. Numerical results presented in Figure 7.6 reveal that both real and
imaginary parts of Cv” for the foundation on the layer with h/a < 5 show oscillations
with the frequency due to the standing waves generated within the layer, which
practically vanish for a deep layer. The difference of Cv" between pervious and
impervious foundations is reduced with increasing the layer thickness h/a. In
addition, non-dimensional vertical compliances of the foundation on the layers with
h/a = 15 and 20 are practically identical implying that the vertical vibrations of a
rigid foundation resting on a transversely isotropic poroelastic layer with h/a > 15
could be investigated by considering the layer as a transversely isotropic poroelastic
half-space.

7.2 Flexible Circular Foundation in Homogeneous Half-Space

7.2.1 Formulation of interaction problem
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Consider a flexible embedded circular foundation under time-harmonic
vertical loading as shown in Figure 7.7. The contact surface is assumed to be
smooth, and either fully permeable or impermeable. The deflection, w(r) of the

foundation is expressed in the following form:
w(r)=> Ar™, 0<r<a (7.5)
n=0

where A, (n=0,1,...,N) denotes a set of generalized coordinates.

The strain and kinetic energies of the foundation denoted by Up and Vp

respectively can be expressed as (Timoshenko & Woinowsky-Krieger 1959),

2
1 d'w ldw) 2(-v,)dwd’w
) IZ”D[{ dar? ' r drj r dr dr? }dr (7.62)
n, 230, [ ' rar (7.6b)
0

where D=Eph3 /12(1‘05), and hp denotes thickness of the plate; and Ep, wp, and pp

denote Young’s modulus, Poisson’s ratio, and the mass density of the foundation

respectively.

In view of Eq. (7.5), the strain and kinetic energies of the foundation can be

expressed in terms of An in the following matrix form.

U, ={af" [HP J{a}, v, =[] [we A 7)

In the above equations, {A}:{AOJAliAZi“'!AN} is a column vector containing the

generalized coordinates, and the elements H iJP and M iJP of H? and MP are given by,

Ho = 4zD(i-1)(j-1)
! 2i+2j-6
h o
Mifz%
2(i+j-1)

[4G-D)(i-D)-20-v,)2i-3)] 2<i,j<(N+1) (7.8a)

1<i, j<(N+1) (7.8b)
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Let S denote the contact area between the foundation and the soil. For an
impermeable foundation, the applied vertical loading is resisted by the normal contact
traction Tz(r) and a pore pressure jump Tp(r) across S. They can be written in terms of

the generalized coordinates as follows:
N N

TZ(I‘):ZAnTnZ(I’), Tp(r):ZAnTnp(r) (7.9)

n=0 n=0
where Tnz(r) and Tnp(r) denote the normal contact traction and the pore pressure jump

on S corresponding to the foundation displacement field r2".

A solution for T and T»» can be obtained by discretizing S into N. annular
elements. It is assumed that 7. and 7, are constant within each annular element. The

following relationship can be established.

G” G* Tnz 24 unz
|:sz Gpp}{Tnp}_{unp}’ nzolllzl"'lN (710)

ij y
where the elements ij| (k =1=1, 2,..., Ne) in GY denote a set of influence

functions, which are the vertical displacement (i = z) and the relative fluid
displacement (i = p) at the centre of the kth annular element on S due to uniformly
distributed unit vertical pressure and a unit pore pressure jump over the Ith annular

element. The example of an annular element is shown in Figure 7.8.

.
The influence functions ij| were derived in Section 4.2 and are directly

used in Eq. (7.10). The elements Tnz, Tnpi, Unzi @nd Unpi OF Tnz, Tnp, Unz @and Unp are

given respectively below.

r) (7.11a)

2n
unzi :ri ! unpi =0 (7.llb)

For a fully permeable foundation no pore pressure jump is generated on S, Eq.

(7.10) is then reduced to,

[G*]{T,}={u,}, n=012..N (7.12)
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The energy corresponding to the tractions on Un of the soil can be expressed as

follows:

U, zzﬂj:%[n (r)+a,T, (r)]w(r)rdr (7.13)

The potential energy W due to an applied load g(r) on the foundation can be

expressed as,

W :—'[OaZEq(r)w(r)rdr (7.14a)
where
Mq
a(r)=2 wa.r", ~ 0<r<a (7.14b)
m=0

and Yy (m=0,1,...,Mq) denotes coefficients of the loading function.

The Lagrangian L of the foundation is given by (Washizu 1982),

|_=Vp —Up—Uh-I-W (7.15)
The equation of motion of the foundation is obtained from,

d( oL oL

—| —Tm ——:0, n:0,1,...,N

dt [6An ] oA, (7.16)

In the view of Egs. (7.5), (7.7) and (7.9), the Lagrangian L can be expressed in

terms of A, . By substituting Eq. (7.15) into Eq. (7.16), the following equations of

motion for determination of A,

[KJ{A}={X] (7.17)

where

[K]=-o’ {[MpJ+[Mp]T}+{[HP]+[HP]T}+{[HS]+[HS]T} (7.18)
In above equations, the elements H i? and Xi of H® and X respectively can

be expressed as,
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N

n;(Tﬂk +a,T, T

)

2i 2i
[rok"'rkJ _[rk_rikJ
) 2 2 <,

H; X, =2rx _
=om+2i

(7.19)

where rok, ik and rk denote the outer, inner and center radii of the kth annular element,
and Tjx and Tjpk are defined in Eq. (7.11a).

The solution of Eq. (7.17) yields the solutions for the generalized coordinates

A, (n=0,1,..., N). By substituting the generalized coordinates into Eq. (7.5), the
deflection of foundation can be obtained. Normal traction and pore pressure jump on
S are obtained from Eqg. (7.19). The bending moment M(r) of the foundation is given
by:

N
M (r):—DZAn[2n(2n—1)+2nup]r2”‘2, 0<r<a (7.20)

n=0

7.2.2 Numerical solutions and discussions

To demonstrate the basic features of dynamic response of an anisotropic
poroelastic soil, we consider the case of Berea sandstone which is similar to that in
Section 4.2. Note that that the range of the ratio n = E\/Ex varies from 0.5 to 2 which
are identical to that in Section 4.2. Consider a uniformly loaded circular foundation

as shown Figure 7.7. A non-dimensional deflection (compliance) and a relative
flexibility parameter of the foundation are defined as W*(I’)=GW(|’)/aqo and

y=Ga’/ D, respectively. Note that the foundation mass density is set to a negligible
value to eliminate the foundation inertia effects and examine the influence of soil
anisotropy, poroelasticity and other relevant parameters on the vertical response.
Figure 7.9 shows a comparison of central deflection w*(0) for two yvalues for an
embedded impermeable foundation (h/a = 1) with the solutions given by
Senjuntichai and Sapsathiarn (2003) for an isotropic soil (Berea sandstone). For the

foundation, vp = 0.25 and y= 0 (rigid) and 100 (elastic). The solution scheme is found
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to converge for Ne > 32 and N > 8. Comparisons shown in Figure 7.9 confirm the
accuracy of the current formulation for both flexible and rigid foundations.

Next, we examine the effect of foundation permeability on the dynamic
response by considering fully permeable and impermeable rigid surface foundations
(h/a = 0) in Berea sandstone. The influence of anisotropy is also shown by
considering n = 0.5, 1 and 2. Figure 7.10 shows the solutions for foundation
compliance w*(0) in the non-dimensional frequency range, § = 0—4. The influence of
foundation permeability is negligible in the low frequency range (0<1.0) and
become significant as the frequency increases. Impermeable foundations are stiffer
and dissipate more energy with increasing frequency. The influence of anisotropy is
more visible in the imaginary part of the compliance and generally tend to reduce as
frequency increases for the different hydraulic boundary conditions of the foundation.
Based on these results, it can be concluded that foundation permeability itself is not a
significant factor affecting the dynamic response. In the ensuing sections, only

impermeable foundations are considered.

The influence of depth of embedment on the dynamic compliance, w*(0) is
investigated next by considering h/a =0, 1, 2, 10 and 100 for rigid foundations in an
isotropic Berea sandstone and an anisotropic Berea sandstone with n = 2. Figures
7.11(a) and 7.11(b) show the solutions for the isotropic and anisotropic cases
respectively. The foundation in anisotropic Berea sandstone is stiffer and has more
damping compared to a foundation on isotropic soil as the modulus in vertical
direction is twice the value for the isotropic case. The variation of compliance with
frequency is generally smooth for surface (4/a = 0) and deeply buried (A/a = 10 or
100) foundations whereas shallow foundations (h/a = 1 and 2) show oscillatory
variations as frequency increases. This behaviour is due to the wave reflection at the
free surface for shallow foundations whereas for both deeply buried and surface
foundations such wave reflections are minimal. The foundation stiffness and
damping increase with the depth of embedment for low frequencies. The influence
of frequency decreases as the depth of embedment increase. For 4/a > 10, the

foundation can be considered deeply buried.
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Figure 7.12 shows the profiles of a non-dimensional contact traction
(Tz*sz/qO) and pore pressure jump (T;:Tp/qo) under a rigid impermeable

foundation with y = 0. The selected examples are the case of n = 0.5 and 2, where a
rigid foundation is embedded at h/a = 2. Traction and pore pressure profiles along

the r-axis are presented for different frequencies, i.e., 6 = 0.5 and 2. Numerical

results presented in Figure 7.12 reveal that the imaginary part of Tz* shows more

dependence on frequency and hydraulic boundary conditions than the real part. Both

real and imaginary parts of TZ* are singular near the boundary of the rigid

foundation. For pore pressure jump, the magnitude of T; is relatively small except

the imaginary part at higher frequency (6 = 2). This reveals that the applied load is

essentially transferred through the solid skeleton, particularly at a low frequency. In

addition, both real and imaginary parts of T; converge to zero near the boundary of

the foundation indicating no singular pore pressure jump occurred at the foundation

edge.

The influence of foundation flexibility on the dynamic response is investigated
next by considering foundations with » = 0.1, 10, 100 and 1000. Figure 7.13 shows
that the central compliance depends significantly on both yand 6. For a given value of
v, the real part of the compliance decreases with increasing frequency whereas the
absolute value of the imaginary part of the compliance initially increases with
frequency for & < 2 and thereafter decreases. Stiffer foundations are more damped
compared to softer foundations at higher frequencies but the influence of frequency
on the imaginary part of compliance is negligible at very small frequencies. As
observed in Figure 7.10, soil anisotropy with n > 1 makes the response stiffer with
higher damping compared to an isotropic case. Central bending moment is an
important parameter in the design of foundations. Figure 7.14 shows the influence of
the foundation flexibility on the central bending moment M*(0). Bending moment
shows a significant influence of both foundation flexibility and frequency of

excitation. Stiffer foundations (smaller » values) correspond to higher bending
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moments and very flexible foundations show negligible bending moment. The soil
anisotropy has a small effect on M*(0).

The force-displacement relationship of a rigid circular foundation of radius a

with mass m can be expressed as (Das, 2011),

,_GeA
Q,

where A; denotes the amplitude of vertical vibration; Qo denotes the amplitude of

(7.21)

the time-harmonic force acting on the foundation; and Z denotes the dimensionless

amplitude, which is given by,

f2+f]
7 = = s (7.22)
(I-mo°f) +(mof,)

In addition, m = m/pa3 ; and f1 and f2 can be directly obtained from Re[w*/#] and

Im[w"*/ 7] respectively given in the preceding section.

The amplitude of the force transferred to soil, denoted by Po, can be

expressed as,

P =Q,+m6°ZQ, (7.23)

Richart (1962) presented the solutions for Z for a rigid circular foundation on

the surface of an isotropic soil for 6 < 1.5. To illustrate the coupled influence of
anisotropy and poroelasticity on vertical vibrations, Figures 7.15(a) and 7.15(b) show
the dimensionless amplitude Z and the dimensionless force transferred to soil, Po/Qo.
The response curve given by Richart (1962) is also shown (En" = Ev" = 2.5, 1 = un
=0.25). In these figures, for the transversely isotropic elastic soil, the value of Ev'=
5 (n = 2) is used. For poroelastic materials, the values of am, av, pr, mn", my" and M”
are identical to the properties of Berea sandstone (Rice and Cleary, 1976), whereas
the values of bn" and b," equal to 2.3 and 11.5 are considered to illustrate the
influence of b on the response. Figure 7.15 confirms that the degree of anisotropy
has a major effect on the vertical response. Presence of poroelasticity also reduces
the vertical amplitude as fluid friction serves as a damper and a reduction of

displacement is seen as bn” and by" increase. The influence of poroelasticity is



111

relatively higher in the case of isotropic soils compared to an anisotropic soil. The
effects of poroelasticity and anisotropy on the vertical response become negligible
for 6 > 2.0. The force transferred soil increases with frequency and reaches a peak
value which is over the twice the static force for isotropic soils. The force
transferred reaches an asymptotic value when ¢ > 2.0. The results also show that

force amplification with frequency is smaller for poroelastic and anisotropic soils.

7.3 Flexible Circular Foundation in Multi-Layered Half-Space

7.3.1 Formulation of interaction problem

Consider a flexible circular foundation under time-harmonic vertical loading
embedded in a multi-layered transversely isotropic poroelastic half-space as shown in
Figure 7.16. The formulation of dynamic interaction between a flexible circular
plate and a homogeneous half-space outlined in Section 7.2 can be adopted for this
problem, where only the influence functions in Eq. (7.10) are obtained by employing

the exact stiffness matrix method outlined in Section 5.2.

7.3.2 Numerical solutions and discussions

The accuracy of the present study for dynamic response of a flexible circular

foundation of radius a resting on a multi-layered transversely isotropic elastic half-

space is examined next. Ai and Liu (2014) reported displacement profiles W*(r) of a

circular plate, subjected to a uniformly distributed load of constant magnitude qo,
resting on a multi-layered transversely isotropic half-space. The multi-layered half-
space consists of the first and second layers with the same thickness of 3a overlying a
homogeneous half-space. The normalized parameters are: En” = Ev" = 3 and for first
layer; En” = Ev" = 4 for second layer; En" = E,” = 3 for underlying half- space. In
addition, wn and whn are equal to 0.25 and G™ is equal to 1 for all layers, whereas
other poroelastic parameters are set to be negligibly small. The material properties of

foundation are y= 11.25, and the normalized frequency is o = 1. By using Ne = 32 and
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N = 8, it can be seen from Figures 7.17 that a very good agreement between the
displacement profiles obtained from the present study and that reported by Ai and Liu

(2014) is obtained for both real and imaginary parts.

Figures 7.18(a) and 7.18(b) respectively show the central displacement of
permeable and impermeable flexible circular plates in multi-layered transversely
isotropic poroelastic half-space under time-harmonic vertical loading. Both System
A and System B, which correspond to a transversely isotropic and isotropic
poroelatic media respectively, are presented in Figure 7.18. In addition, vp = 0.25
and y = 10 for the flexible plate and Ne = 32 and N = 8 with both surface (h = 0) and
embedded (h/a = 1) foundations being considered. The influence of anisotropy is
clearly seen on dynamic response of flexible foundations. Moreover, the embedded
foundation (h/a = 1) is less stiff and less damped than surface foundation (h = 0) as
illustrated in Figures 7.18(a) and 7.18(b). It is also found that central displacement
of the foundation depends significantly on the hydraulic boundary conditions, where
the impermeable contact surface makes the soil-foundation system stiffer and less
damped when compared to the case of fully permeable condition. Figure 7.19 shows
vertical displacement profiles of circular impermeable foundations at h/a = 0 and 1 for
different systems, where ¥ = 10 and 6 = 0.5. It is also evident from Figure 7.19 that
the effects of anisotropy and the level of embedment are clearly noted on the vertical

displacement profiles of flexible foundations.

7.4 Conclusion

The discretization technique and the fundamental solutions obtained in
Chapter 5 are used in the formulation of dynamic interaction between vertically
loaded rigid and flexible circular foundations and transversely isotropic poroelastic
soils presented in this chapter. The soil-structure interaction problems considered here
are a rigid circular foundation on a homogeneous layer with rigid base, and a flexible
circular foundation embedded in homogeneous and multi-layered half-spaces.
Numerical results indicate that non-dimensional vertical compliances of circular

foundation depend significantly on anisotropic material properties Ev and byv. For a
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rigid foundation on a homogeneous layer with rigid base, the thickness of the layer
significantly influences the vertical compliance of a foundation, and it is found that
for a layer with h/a > 15 this case could be investigated by considering the layer as a
half-space. For a flexible foundation embedded in a half-space, the foundation
flexibility is an important factor and the central displacement increases as the
foundation becomes more flexible. It is also found that the foundation can be

considered deeply buried when A/a > 10.

The response curves for the cases of a flexible circular foundation embedded
in a homogeneous half-space show that the highest response corresponds to isotopic
soils and the presence of poroealsticity reduces the foundation displacement for
increasing values of the pore fluid friction. Anisotropy also reduces the
displacement when n > 1 and the influence of poroelasticity on anisotropic soils is
similar to isotropic soils. The force transferred to soil is amplified with increasing
frequency but reaches an asymptotic value. A lower force is transferred in the case

of poroealstic and anisotropic soils.



114

Feia)r

> 7

_I_
|62a %|

Transversely isotropic
poroelastic layer

< > —>

LSS SN S S S SSSSSSSSSSSS

Rigid base v
A

Figure 7.1 Rigid circular foundation on transversely isotropic poroelastic layer



115

R

VA
—— h

Vio Transversely isotropic
poroelastic layer

W
SN

Rigid base g

Figure 7.2 Unit vertical ring load f. and applied ring fluid pressure fp



116

1.2
—Present study

L .

> 08 - * Zeng and Rajapakse (1999)
O
e

= Real part
— 04
©

c

(35}
— 0.0 A

>
O,

» -04 4
@

Imaginary part
'0.8 T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0
o
(a)
7

<

= 6 - Real part

>

X

e

E 5 -

2 imagi .

S 4 maginary par

-)l<_|

Z

= 3 1 —Present study

na « Aietal. (2016)

2 T T T T T

0.0 0.5 1.0 1.5 2.0 2.5 3.0

o
(b)

Figure 7.3 Comparison with existing solutions for: (a) isotropic poroelastic half-
space; (b) transversely isotropic elastic half-space



-0.3

0.0 1.0 2.0 3.0 4.0 5.0

(b)

-1.2

117

0.0

1.0

2.0

3.0

4.0

5.0

Figure 7.4 Influence of n1 = Ev/En on non-dimensional vertical compliance with h/a =

1 and n2 = 1: (a) permeable foundation; (b) impermeable foundation



118

0.8 0.0
0.6 A
-0.2 4
0.4 A
[l -04 4
b >
T ° <
o = -06 1
0.0 A
0.8
0.2
0.4 . . . . -1.0 T T T T
0.0 1.0 2.0 3.0 4.0 5.0 0.0 1.0 2.0 3.0 4.0 5.0
) )
(a)
0.8 0.0
0.6 1 - 02 |
0.4 4
F F _04 -
5 o
.02 S
[<3)
x — -06
0.0 A \
\
\
0.8 4
0.2
-0.4 T T T . -1.0 T T r r
0.0 1.0 2.0 3.0 4.0 5.0 0.0 1.0 2.0 3.0 4.0 5.0

(b)

Figure 7.5 Influence of n2 = bv/bn on non-dimensional vertical compliance with h/a =

1 and ni1 = 1: (a) permeable foundation; (b) impermeable foundation



(a)

3.0

1.6
1.2
0.8
P
>
O, 04
[o7)
x
0.0 A
- hla=1 _..hla=2
—.-hla=5 — h/a=15
0.4 e hla=20
0.8 r r r T T
0.0 05 1.0 1.5 2.0 2.5 3.0
o
1.6
1.2
0.8
_
>
O, 04
7]
m ",
00 i Ay \\
----- hfa=1 ---h/a=2 =
—--hla=5 — ha=15
-0.4 A e h/a=20
0.8 r r r T T
0.0 0.5 1.0 1.5 2.0 2.5
1)

(b)

Im[C,]

0.0

-0.3 4

-0.6 4

-0.9 4

-1.2 4

-1.5

119

0.0

-1.2 4

-1.5

0.5

1.0

15 2.0 2.5 3.0

0.0

0.5

1.0

15 2.0 25 3.0

Figure 7.6 Influence of layer thickness on non-dimensional vertical compliance with
n1 = n2 = 0.5: (a) permeable foundation; (b) impermeable foundation



120

Elastic circular footing

Figure 7.7 Vertically loaded circular foundation in a transversely isotropic poroelastic
soil
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Figure 7.8 Vertical annular load f; and annular fluid pressure fp acting in the interior of
soil half-space
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CHAPTER 8
CONCLUSIONS

This dissertation presents poroelastodynamic fundamental solutions of
transversely isotropic poroelastic materials. The general solutions for transversely
isotropic poroelastic media under time-harmonic loading are derived analytically by
applying appropriate integral transform techniques. The fundamental solutions of a
homogeneous half-space under plane strain and axisymmetric deformations are then
explicitly obtained by solving relevant boundary value-problems based on the derived
general solutions. An exact stiffness matrix method is also employed to obtain the
fundamental solutions of multi-layered transversely isotropic poroelastic media.
Selected numerical results corresponding to dynamic response of transversely
isotropic poroelastic media under time-harmonic loading. In addition, the obtained
fundamental solutions are then employed in the analysis of various dynamic
interaction problems between foundations and transversely isotropic poroelastic soils.
Conclusions for each problems are given at the end of Chapter 4-7 based on the
numerical results presented in those chapters. The major findings and conclusions of

this study can be summarized as follows:

1. The fundamental solutions are obtained in the Fourier and Hankel
transform spaces for plane strain and axisymmetric problems respectively.
An exact stiffness matrix method is successfully applied to determine the
fundamental solutions for multi-layered media. The numerical inversion of
Fourier and Hankel transforms is carried out by employing an adaptive
numerical quadrature scheme using a 21-point Gauss—Kronrod rule.
Accuracy of the present numerical scheme is verified by comparing with
various existing solutions for each problem. Numerical results indicate that
anisotropic and poroelastic material properties have a significant influence
on the dynamic response of transversely isotropic poroelastic media.

2. A semi-analytical discretization scheme is successfully adopted to
investigate dynamic interaction problems between foundations and

transversely isotropic poroelastic soils. Numerical results reveal that the
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dynamic interaction between strip and circular foundations and
transversely isotropic poroelastic soils are substantially different from the
interaction with isotropic poroelastic soils. In addition, dynamic response
of foundations also depends significantly on frequency of excitation,
hydraulic boundary conditions, foundation flexibility, and distance
between adjacent foundations.

The fundamental solutions obtained in this dissertation can be used to assess
the accuracy of approximate methods such as finite element and boundary element
methods that are applied to study more complicated problems in geotechnical
engineering. In addition, the present solution scheme can also be extended to study
other geomechanics problems such as arbitrary-shape foundations or laterally-loaded
piles with the development of required fundamental functions that are related to three-

dimension dynamic response of transversely isotropic poroelastic soils.
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APPENDIX

Appendix A: Element of the layer stiffness matrix K™

15t row:
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Appendix B: Element of the layer stiffness matrix K™+
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