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fundamental solutions to demonstrate the influence of soil properties, the 

foundation flexibility, the embedded depth, and the frequency of excitation on the 

foundation response.  
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CHAPTER 1  

INTRODUCTIONS 
 

1.1 General 

The theory of elasticity has long been used in geomechanics to estimate 

settlements and stresses of soil-structure interaction problems under static working 

loads. Although soils are not ideally elastic materials, they behave in a reasonably 

elastic manner when subjected to shearing strains of the magnitude ordinarily 

developed under machine, offshore and other foundations. The linear theory of 

elasticity has also been used to study the time-harmonic dynamic response of 

foundations in layered soils under small strains. One of key quantities in dynamic 

analysis of foundations is the amplitude of vibration of foundation. Richart (1962) 

developed a set of curves to demonstrate general limits of displacement amplitude for 

a given frequency as shown in Figure 1.1. These limits range from not noticeable to 

people to the extreme danger to structures. The amplitude of vibration and the 

maximum force transferred to soil are two key elements of foundation design.  

Early studies on soil-structure interaction problems based on classical 

elasticity theory considered soils as homogenous isotropic elastic solids. However, 

geo-materials are often two-phase materials consisting of elastic solid skeleton with 

voids filled with water, commonly known as poroelastic materials. In addition, natural 

soils and rocks normally exhibit some degrees of anisotropy owing to various effects 

such as deposition or overburden. A simplified form of anisotropic properties, called 

transversely isotropic, has widely been accepted for the study of wave propagations in 

anisotropic materials including soils and rocks. The consideration of both anisotropic 

and two-phased properties of geo-materials is thus important in the study of dynamic 

interaction between foundations and soils. The theory of elastic wave propagations in 

poroelastic materials was proposed by Biot (1956) by adding the inertia terms to his 

three-dimensional consolidation theory (Biot 1941), in which the coupling between 

the solid and fluid stresses and strains are taken into account based on the classical 

theory of linear elastic and Darcy’s law. To consider the effects of both anisotropy 

and poroelasticity, Biot proposed the constitutive model for anisotropic poroelastic 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2 

materials (Biot 1955), and later presented governing equations for wave propagations 

in transversely isotropic poroelastic media (Biot 1962).  

In this dissertation, poroelastodynamics theory given by Biot (1962) is 

employed to obtain the fundamental solutions of transversely isotropic poroelastic 

media under plane strain and axisymmetric deformations by using the techniques of 

Fourier and Hankel integral transforms respectively. For homogeneous media, 

boundary-value problems corresponding to a transversely isotropic poroelastic half-

space subjected to time-harmonic buried loading are established, and the plane strain 

and axisymmetric fundamental solutions are presented explicitly. For multi-layered 

media, an exact stiffness approach is employed to obtain the fundamental solutions 

for both cases. The obtained fundamental solutions are then employed as the influence 

foundations required in the formulation of various dynamic interaction problems 

between foundations and transversely isotopic poroelastic media. In addition, the 

influence of anisotropic and poroelastic material properties on foundation responses is 

also discussed. 

 

1.2 Objectives of Present Study 

The main objectives of the present study are given as follows: 

i. To obtain the analytical general solutions of transversely isotropic poroelastic 

materials under plane strain and axisymmetric deformations by using the 

techniques of Fourier and Hankel integral transforms respectively. 

ii. To obtain the fundamental solutions of homogeneous transversely isotropic 

poroelastic half-spaces under plane-strain and axisymmetric deformations.  

iii. To obtain the fundamental solutions of multi-layered transversely isotropic 

poroelastic media under plane-strain and axisymmetric deformations by 

adopting the exact stiffness matrix method. 

iv. To present numerical solutions of several boundary value problems based on 

the obtained fundamental solutions to demonstrate the influence of anisotropic 

and poroelastic material properties and other relevant parameters on dynamic 

response of transversely isotropic poroelastic media. 
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v. To investigate several dynamic interaction problems between strip and circular 

foundations and transversely isotropic poroelastic soils by employing a semi-

analytical discretization technique based on the obtained fundamental 

solutions. 
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Figure 1.1 Amplitude versus frequency relations for vertical oscillation of a rigid 

circular footing on an elastic half-space (After Richart 1962) 
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CHAPTER 2  

LITERATURE REVIEWS 
 

2.1 Literature Reviews of Fundamental Solutions  

Geo-materials such as rocks and soils often consists of a two-phase material 

consisting of an elastic solid skeleton with voids saturated with water commonly 

known as poroelastic materials. A salient feature of poroelastic materials is generation 

and dissipation of excess pore water pressure under applied loading. The study of 

wave propagations in poroelastic materials is of considerable importance in various 

disciplines such as civil engineering, earthquake engineering, and offshore 

engineering. The theory of elastic wave propagations in poroelastic materials was 

proposed by Biot (1956). Several researchers have employed Biot’s 

poroelastodynamics theory to study a variety of problems related to poroelastic media. 

For example, dynamic response of homogeneous isotropic poroelastic media 

subjected to time harmonic loading under plane strain (Paul 1976; Philippacopoulos 

1988; Senjuntichai and Rajapakse 1994); and axisymmetric (Philippacopoulos 1989; 

Zeng and Rajapakse 1999) deformations; and for three-dimensional response 

(Halpern and Christiano 1986a). For studies related to multi-layered poroelastic media 

under time harmonic loading, Lu and Hanyga (2005) and Zheng et al. (2013) adopted 

the transmission and reflection matrix (TRM) approach to investigate the response of 

multi-layered media under axisymmetric and asymmetric deformations respectively. 

The exact stiffness matrix approach was employed by Rajapakse and Senjuntichai 

(1995) to investigate dynamic response of a multi-layeredi isotropic poroelastic half-

plane. The similar technique was used by Liu et al. (2015) and Ai and Wang (2017) to 

present dynamic response of a multi-layered isotropic poroelastic half-space under 

axisymmetric deformation. In addition, Senjuntichai et al. (2018) presented the 

dynamic response of multi-layered poroelastic media in three-dimensional Cartesian 

coordinate by using the exact stiffness matrix approach. 

Geo-materials generally exhibit certain degrees of anisotropic properties that 

occur from deposition or sedimentation processes. As a result, the mechanical 
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properties of natural soils and rocks in their vertical and horizontal directions are 

different, and these materials are commonly known as transversely isotropic elastic 

materials. The theory of wave propagations in transversely isotropic elastic materials 

was presented by Stoneley (1949). Rajapakse and Wang (1991, 1993) derived Green’s 

functions for a homogeneous transversely isotropic elastic half-space subjected to 

time-harmonic loading under plane-strain and axisymmetric conditions respectively. 

Subsequently, several studies on axisymmetric wave propagation problems involving 

homogeneous transversely isotropic elastic media were carried out by Liu (1997) and 

Wang and Liao (1999). In addition, Shodja and Eskandari-Ghadi (2007) presented a 

study on dynamic response of two-layered transversely isotropic elastic media under 

axisymmetric deformation. By using the elastodynamic potential method (Rahimian et 

al. 2007), asymmetric dynamic Green’s functions for transversely isotropic elastic 

media were derived for single-layered (Khojasteh et al. 2008a) and two-layered 

(Khojasteh et al. 2008b) half-spaces. For studies on multi-layered transversely 

isotropic elastic media under time harmonic loading, Khojasteh et al. (2011) adopted 

the transmission and reflection matrix (TRM) approach to investigate dynamic 

response of multi-layered media under asymmetric deformations. The exact stiffness 

method was used by Wang and Rajapakse (1994) to obtain fundamental solutions of a 

multi-layered transversely isotropic elastic half-plane. The similar method was 

employed by Ai and Li (2014), Ai et al. (2014) and Ai and Zhang (2015) to 

investigate the response of multi-layered media under time-harmonic loading for 

asymmetric, axisymmetric and plane strain deformations respectively. 

In order to combine the effects of anisotropy and poroelasticity, Biot (1955) 

proposed the constitutive relations for transversely isotropic and orthotropic 

poroelastic materials. Biot (1962) later extended his poroelastodynamics theory (Biot 

1956) to study wave propagations in transversely isotropic and anisotropic poroelastic 

media. Based on Biot’s constitutive models (Biot 1955), Kumar et al. (2003; 2004) 

obtained the time-harmonic response of a homogeneous transversely isotropic 

poroelatic full-space subjected to vertical concentrated forces under axisymmetric and 

plane strain deformations. The material parameters in Biot’s models were later 

reformulated by Cheng (1997) to be more easily identifiable from the laboratory 
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measurement. Sahebkar and Eskandari-Ghadi (2016) employed the parameters 

proposed by Cheng (1997) to study dynamic response of a transversely isotropic 

poroelastic half-space subjected to asymmetric time-harmonic surface loading. 

Pooladi et al. (2017) then revisited the problem by Sahebkar and Eskandari-Ghadi 

(2016) to investigate the influence of permeable and impermeable surfaces of the 

asymmetric half-space under surface loading. The exact stiffness method was adopted 

by Ba et al. (2017) to study dynamic response of a multi-layered transversely isotropic 

poroelastic half-plane. To the best of the authors’ knowledge, the fundamental 

solutions of a transversely isotropic poroelastic medium subjected to time-harmonic 

buried loads and fluid sources have never been presented explicitly in the literature 

even for the case of plane strain or axisymmetric deformation. In addition, the 

fundamental solutions of a multi-layered transversely isotropic poroelastic medium 

under axisymmetric deformations have never been reported in the literature. These 

fundamental solutions can be employed as influence functions in the development of 

numerical solution scheme in the analysis of a variety of problems related to 

transversely isotropic poroelastic soils such as embedded foundations, anchors, and 

underground structures, etc. 

 

2.2 Literature Reviews of Soil-Structure Interaction Problems 

For soil-structure interaction problems between foundations and homogeneous 

isotropic poroelastic media, several previous works on the dynamic response of 

foundations subjected to time-harmonic loading were presented for rigid rectangular 

(Halpern and Christiano 1986b), circular (Kassir et al. 1989; Bougacha et al. 1993; Jin 

and Liu 1999; Zeng and Rajapakse 1999), and strip (Kassir and Xu 1988; Bougacha et 

al. 1993). In addition, Philippacopoulos (1989) also presented the study of a rigid 

circular foundation resting on two layered isotropic poroelastic half-space. For soil-

structure interaction problems between foundations and multi-layered isotropic 

poroelastic media, Senjuntichai and Rajapakse (1996) proposed the solutions of a 

rigid strip foundation on a multi-layered isotropic poroelastic half-plane. In addition, 

Senjuntichai and Sapsathiarn (2003) and Senjuntichai and Kaewjuea (2008) 
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investigated dynamic interaction between flexible circular and strip foundations 

respectively and a multi-layered isotropic poroelastic medium.  

In the context of transversely isotropic elastic media, the dynamic response of 

a rigid strip foundation bonded to a homogeneous half-plane was studied by Gazetas 

(1981). Later, Kirkner (1982), Eskandri-Ghadi et al. (2010) and Eskandri-Ghadi and 

Ardeshir-Behrestaghi (2010) developed semi-analytical solutions for vertical 

vibrations of a rigid circular foundation on a transversely isotropic elastic half-space. 

For multi-layered problems, vertical vibration of a circular foundation embedded in a 

multi-layered transversely isotropic elastic half-space was studied by Eskandri-Ghadi 

et al. (2014), and Ai et al. (2016). In addition, dynamic response of a rigid strip 

foundation on a multi-layered transversely isotropic elastic half-plane was 

investigated by Ai and Zhang (2016). For a study on flexible foundations, Ai and Liu 

(2014) and Ai et al. (2017) respectively presented an investigation on the dynamic 

response of a flexible circular foundation and a flexible strip foundation on a 

transversely isotropic multi-layered half-space and half plane. A rigid rectangular 

foundation on a transversely isotropic multi-layered half-space was also studied by 

Amiri-Hezaveh et al. (2013), where the required influence functions used in the 

analysis were based on the asymmetric coordinate system.   
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CHAPTER 3  

BASIC EQUATIONS AND GENERAL SOLUTIONS 
 

In this chapter, basic equations of a transversely isotropic poroelastic medium 

are presented. The general solutions for problems under plane strain and axisymmetric 

deformations are then obtained by using the techniques of Fourier and Hankel integral 

transforms respectively. These general solutions are later used to derive the 

fundamental solutions of homogeneous and multi-layered transversely isotropic 

poroelastic media in the subsequent chapters. 

 

3.1 Basic Equations 

Consider a transversely isotropic poroelastic material, where the x- and y-

planes are chosen as the plane of isotropy, and the z-axis is thus perpendicular to the 

isotropic plane (see Figure 3.1). According to Cheng (1997), the constitutive relations 

of a transversely isotropic poroelastic medium can be expressed as, 

11 12 13 hxx xx yy zzc c c p          (3.1a) 

12 11 13 hyy xx yy zzc c c p           (3.1b) 

13 13 33 vzz xx yy zzc c c p           (3.1c)  

11 12
)( ) / 2(xy xy yxc c         (3.1d)  

44( )  xz xz zxc        (3.1e) 

44
( )yz yz zyc         (3.1f) 

,
, , ,( )vh hxx yy zz i i

i x y zp M w          (3.1g) 

, , , , , ,( ) / 2ij i j j i i j x y zu u       (3.1h) 

In the above equations,
ij  (i = j = x, y, z) is the total stress component of the bulk 

material; 
ij  (i = j = x, y, z) is the strain component, which is related to the solid 

displacement ui (i = x, y, z); p is the excess pore fluid pressure (suction is considered 
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negative); wi (i = x, y, z) is the fluid displacement relative to the solid matrix); i (i = 

v, h) and M are Biot's parameters accounting for compressibility of the two-phased 

material, where h and v are Biot's coefficients of effective stress in the plane of 

isotropy (x-y plane) and in the plane normal to the plane of isotropy (z-direction), 

respectively. In addition, c11, c12, c13, c33 and c44 are elastic moduli of solid skeleton 

being held for a transversely isotropic medium in the following manner.  

2

11 2

( )

(1 )( 2 )

h v h vh

h v v h h vh

E E E

E E E
c



  



  
               (3.2a) 

2

12 2

( )

(1 )( 2 )

h v h h vh

h v v h h vh

E E E

E E E
c

 

  



  
               (3.2b) 

13 22
vh vh

v v h h vh

E E

E E E
c



  
        (3.2c) 

2

33 2

(1 )

2

v vh

v v h h vh

E

E E E
c



 



 
         (3.2d) 

44 Gc              (3.2e) 

In the above equations, Eh and Ev are drained Young’s modulus in the plane of 

isotropy (x-y plane) and in the plane normal to the plane of isotropy (z-direction), 

respectively; G is the shear modulus; h is the Poisson's ratio characterizing the lateral 

strain response in the plane of transverse isotropy to a stress acting parallel to it; vh is 

the Poisson's characterizing the lateral strain response in the plane of transverse 

isotropy to a stress acting normal to it. 

The equations of motions of a transversely isotropic poroelastic medium, in 

absence of body forces and a fluid source, can be expressed as, 

22 2 2

2 2 2

2 22

2 2

11 12 11 12
11 44

13 44

) )

2 2

)(

( (

fh

yx x x

x xz

x y z x y

x z x t t

uc c c cu u u
c c

p u wuc c   

   


    

  


    







  

  (3.3a) 

2 2 2 2

2 2 2

2 22

2 2

11 12 11 12
11 44

13 44

) )

2 2

)(

( (

fh

y y y x

y yz

x y z x y

y z y t t

u u uc c c c u
c c

u wpuc c   

    


    

 


    







  

  (3.3b) 
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22 2 2

2 2 2

2 2 2

2 2

44 44 33 13 44

13 44

)

)

(

(
fv

xz z z

y z z

x y z x z

y z z t t

uu u uc c c c c

u p u wc c   

  
 

    

   


    







  

         (3.3c)  

2 2

2 2f h h
x x x

x tt t

u w wp
m b   


  
        (3.3d) 

2 2

2 2f h h

y yy

y t t t

u wp wm b
  


   
                (3.3e) 

2 2

2 2v vf
z z z

z tt t

p u w wm b   

  
                (3.3f)  

where  and f are the mass densities of the bulk material and the pore fluid, 

respectively; mi (i = v, h) is a density-like parameter that depends on f and the 

geometry of the pores; bi (i = v, h) is a parameter accounting for the internal friction 

due to the relative motion between the solid matrix and the pore fluid. 

A homogeneous transversely isotropic poroelastic material is defined with a 

cylindrical coordinate system (r, , z) as shown in Figure 3.1. In the present study, the 

r plane is chosen as the plane of isotropy, and the z-axis is thus perpendicular to the 

isotropic plane. The constitutive relations of a transversely isotropic poroelastic 

medium can be expressed in the cylindrical coordinate system as, 

11 12 13

1r r z
rr h

uu u u
c c c p

r r r z
 


 
 

 

 
   

  
    (3.4a) 

12 11 13

1r r z
h

uu u u
c c c p

r r r z


 


 
 

 

 
   

  
    (3.4b) 

13 33

1r r z
zz v

uu u u
c c p

r r r z
 


 
 
 

 
    

  
     (3.4c) 

44
z r

rz

u u
c

r z


 
 
 

 
 

 
       (3.4d) 

44

1 z
z

uu
c

r z


 

 
 
 


 

 
       (3.4e) 
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11 12

2

1 r
r

u uc c u

r r r
 




  
 

 


 

 
      (3.4f) 

1

1

z r r z
v

r r
h

p M

wu w w w
M

z r r r z

uu u

r r r











 
 
 

 
 
 



  
    

   


 

 
     (3.4g) 

In the above equations, rr, , zz r, z and r denote the total stress components 

of the bulk material; ui and wi denote the displacement of the solid matrix and fluid 

displacement relative to the solid matrix respectively in the i-direction (i = r,  , z). 

The equations of motions of a transversely isotropic poroelastic medium can 

be expressed in the cylindrical coordinate, in absence of body forces and a fluid 

source as, 

22 2 2

11 12 11 12

11 442 2 2 2 2 2

2 2 2

11 13 442 2 2

2 2

2 ( )

r r r r r

z r r

h f

u uu u u c c u u c c
c c

r r r r r z r r r

u u u wp
c c c

r r z r t t

 



  

  


      
     

      

   
     

     

      
     
      

 
 
 

    (3.5a) 

2 2 2 2

11 12 11 12

11 442 2 2 2 2 2

2 22

11 13 442 2 2

2 2

2 ( )

r r

r z

h f

u u u u uc c c c u u
c c

r r r r r z r r r

u wu u p
c c c

r r z r t t

    

 

  

  
  

      
    

      

   
     

     

      
      

     

 
 
 

    (3.5b) 

 
2 2 2

44 33 13 442 2 2 2

22 2 2

2 2

z z z z

r r z z

v f

u u u u
c c c c

r r r r z

uu u u wp

r z r z r z z t t





  


   
   

   

   
    

       

 
 

 

 
 
 

        (3.5c) 

2 2

2 2

r r r

f h h

u w wp
m b

r t t t


  
   
   

              (3.5d) 

2 2

2 2f h h

u w wp
m b

r t t t

  


  
   

   
              (3.5e) 
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2 2

2 2

z z z

f v v

u w wp
m b

z t t t


  
   
   

              (3.5f) 

 

3.2 General Solutions for Plane Strain Deformations 

Consider a homogeneous transversely isotropic poroelastic material with a 

Cartesian coordinate system (x, y, z). Let assume that the deformations are plane strain 

in the xz-plane, i.e. xy = yy = yz = 0. In addition, the xy-plane is chosen as the plane 

of isotropy, and the z-axis is thus perpendicular to the isotropic plane. Thus, the 

constitutive relations for a transversely isotropic poroelastic material, given by Eq. 

(3.1), can be expressed as, 

11 13 hzzxx xxc c p          (3.6a) 

12 13yy hzzxxc c p          (3.6b) 

13 33 vzz zzxxc c p         (3.6c)  

44( )xz xz zxc                            (3.6d) 

( )vh
x z

zzxx x z

w wp M      


 
     (3.6e)  

The equations of motions of a transversely isotropic poroelastic material, 

given by Eq. (3.3), can be expressed for plane strain deformations as, 

2 2 2 22

2 2 2 211 44 13 44
)(

fh
x x x xz

x z x z x t t

pu u u wu
c c c c   

   


      
             (3.7a) 

22 2 2 2

2 2 2 244 33 13 44
)(

fv
xz z z z

x z x z z t t

puu u u w
c c c c   

   
 

      
             (3.7b) 

2 2

2 2f h h
x x x

x t t t

p u w w
m b

   

   
                (3.7c) 

2 2

2 2v vf
z z z

z t t t

p u w w
m b

   

   
                (3.7d) 

Let the motion under consideration be assumed to be time-harmonic of the 

form eit, where  is the frequency of the motion and 1i   . The term eit is 
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omitted hereafter. The Fourier integral transform of a function with respect to the x-

coordinate and its inverse relationship are defined respectively as (Sneddon 1951), 

        
  i

2

1
, ( , ) xf z f x z e dx








      (3.8a) 

  i

2

1
, ( , ) xf x z f z e d


 





         (3.8b) 

where   is the Fourier transform parameter.  

With the aid of Eqs. (3.6e) and (3.8a), the equations of motions, Eq. (3.7), can 

be reduced to three equations expressed in terms of Fourier transforms of the three 

unknowns xu , zu  and p as, 

 
2

1 44 13 442
( ) 0x z h

d d
s c u c c i u i p

dzdz
 

   
     

  

     
     (3.9a) 

2

13 44 2 33 2
( ) 0x z v

d d d
c c i u s c u p

dz dzdz


    
    

    
    

     
            (3.9b) 

 
2

3 2
0x zv vh

d d
i u u s p

dz dz
 

  
     

   

            (3.9c) 

where 

2 2 4 2
1 11 f h

s c                       (3.10a) 

2 2 4 2
2 44 vf

s c                       (3.10b) 

2
3

1
h

s
M

                          (3.10c) 

2 ( , )
j j jf

j h v           (3.10d) 

2

1
( , )

( )j
j j

j h v
m ib


 

 


                               (3.10e)  

To solve for the analytical solution of Eq. (3.9), a potential function  , zF   is 

introduced, and the function F  is related to xu , zu  and p  in the following 

manner:  
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2

13 44 3 2
( )x v v h

d dF
u i c c s

dzdz
 
  
  
  

   

     
     (3.11a)  

2 2
2 2

3 1 13 442 2
( )z v h

d d
u s s c c F

dz dz
 

   
   
   
    

    
    (3.11b)  

2
2

1 44 13 442
( )v h

d dF
p s c c c

dzdz


  
  
  

   

     
    (3.11c)  

Substitution of Eq. (3.11) into Eq. (3.9) leads to the following governing equation to 

determine F , 

6 4 2

1 2 3 46 4 2
0

d F d F d F
F

dz dz dz
            (3.12)  

where 

1 33 44 vc c                      (3.13a) 

   2 2 2
2 2 44 1 33 13 44 3 33 44

( ) v vs c s c c c s c c         (3.13b) 

 

 

2 2 2
3 2 1 2 44 1 33 13 44 3

2 2
13 44 33

( ( ) )

2( )

v v

v h h

s s s c s c c c s

c c c

  



     

    

  (3.13c) 

 2 2
4 1 3 2h

s s s                (3.13d)  

The general solution to Eq. (3.12) can be obtained as follows: 

 ( , ) ( 1,2,3)j jz z

j jz jF A e B e
 




       (3.14) 

where Aj and Bj (j = 1, 2, 3) are the arbitrary functions, and 

1 2
1 3

3 13 3


  







,  1 2
2 3

3 13 3


  







, 1 2
3 3

13

2
2 33


   

 





      (3.15a)  

2
32

1 2
11

3
 




,
3

2 32 4
2 3 2

11 1

2

27 9

3
  

  
 

,
1/3

3
2 1

3 2 2

41 1

2 2 27

 
 
 
 


     

  (3.15b) 

1 3

2

i
                                         (3.15c)  

In addition,1, 2 and 3 are the dimensionless complex wave numbers associated 

with the three kinds of dispersive and dissipative body waves. For an isotropic 

poroelastic material under plane strain condition, there also exists three body waves, 

which are identified as two dilatation (fast and slow) waves and one rotational wave. 
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However, the motion associated with the wave numbers i (i = 1, 2, 3) is neither 

purely dilatational nor purely rotational. In the case of transversely isotropic elastic 

materials, Eq. (3.11) is reduced to two equations for the two unknowns xu and zu  

expressed in term of a potential function F , which is governed by a fourth-order 

differential equation. The general solution of F  involves two complex wave 

numbers that are identified as quasi-dilatational and quasi-distortional waves. 

Therefore, the three body waves propagating in transversely isotropic poroelastic 

materials under plane strain condition can be considered as  two quasi-dilatation (fast 

and slow) waves and one quasi-distortional wave.  

In view of Eqs. (3.11) and (3.14), the general solutions of xu , zu , p , zw , 

xz  and zz  can be written as, 

j jz z
x j j j ju A e B e

 
 


               (3.16a) 

j jz z
z j j j ju A e B e

 
 


                     (3.16b)  

j jz z

j j j jp A e B e
 

 


                (3.16c) 

j jz z
z j j j jw A e B e

 
 


                  (3.16d)  

j jz z
xz j j j jA e B e

 
  


                      (3.16e) 

j jz z
zz j j j jA e B e

 
  


                        (3.16f) 

where 

2
13 44 3

( ) v vj j j h
i c c s   

  
  

   

        (3.17a)  

  2 2 2 2
3 1 44vj j j h

s s c                 (3.17b)  

 2 2
1 44 13 44

( )vj j j h
s c c c    

 
 

            (3.17c)  

 2
vj j j jf

                 (3.17a) 

 44j j j jc i                  (3.17b) 
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13 33 vj j j j j
i c c            (3.17c) 

The above general solutions are used in the derivation of fundamental solutions for 

transversely isotropic poroelastic media under plane strain deformations presented in 

Chapter 4. 

 

3.3 General Solutions for Axisymmetric Deformations 

The constitutive relations of a transversely isotropic poroelastic medium 

undergoing axisymmetric deformations can be reduced from Eq. (3.4) as follows: 

11 12 13
r r z

rr h

u u u
c c c p

r r z
 

 
   

 
     (3.18a) 

12 11 13
r r z

h

u u u
c c c p

r r z
 

 
   

 
    (3.18b) 

13 33
r r z

zz v

u u u
c c p

r r z
 

  
    

  
     (3.18c) 

44
z r

rz

u u
c

r z


  
  

  
       (3.18d) 

z r r z
v

r r
h

u w w w
p M M

z r r z

u u
r r


   
    

  

  
    

  





  (3.18e) 

The equations of motions of a transversely isotropic poroelastic medium can 

be written for axisymmetric deformations as, 

2 2 2 2
2

11 44 13 442 2 2 2

1
( )r z r r

r h f

u u u wp
c u c c c

r z r z r t t
  

    
        

      
    (3.19a) 

2 2 22
2

13 44 33 442 2 2
( ) z z z

r z v f

u u wp
c c u c c u

r z r z z z t t
  

      
        

       

 (3.19b) 

2 2

2 2

r r r
f h h

u w wp
m b

r t t t


  
   
   

              (3.19c) 
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2 2

2 2

z z z
f v v

u w wp
m b

z t t t


  
   
   

              (3.19d) 

2 1
r

r r r

  
   

  
               (3.19e) 

The Hankel integral transform of a relevant variables with respect to the radial 

coordinate, and their inverse transforms can be expressed as follows: 

  1

0

, ( , ) ( )r ruu z r z J r rdr 


       (3.20a) 

  0

0

, ( , ) ( )z zuu z r z J r rdr 


       (3.20b) 

  0

0

, ( , ) ( )p z p r z J r rdr 


      (3.20c) 

  1

0

, ( , ) ( )z zww z r z J r rdr 


       (3.20d) 

  0

0

, ( , ) ( )rz rzz r z J r rdr   


       (3.20e) 

  1

0

, ( , ) ( )zz zzz r z J r rdr   


       (3.20f) 

and 

  1

0

( , ) , ( )r ru r z u z J r d   


       (3.20g) 

  0

0

( , ) , ( )z zu r z u z J r d   


       (3.20h) 

  0

0

( , ) , ( )p r z p z J r d   


      (3.20i) 

  1

0

( , ) , ( )z zw r z w z J r d   


       (3.20j) 
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  0

0

( , ) , ( )rz rzr z z J r d     


       (3.20k) 

  1

0

( , ) , ( )zz zzr z z J r d     


       (3.20l) 

where J0 and J1 denote the Bessel function of the first kind of order zero and one 

respectively, and  is the Hankel transform parameter.  

By applying the Hankel integral transform given by Eqs. (3.20a) to (3.20f) 

together with the regularity condition in the radial direction, the equations of motions, 

Eq. (3.19), can be reduced to three equations with three unknowns, ru , zu  and p  

as follows: 

2

1 44 4 62
0r z

d d
s c u s u s p

dzdz
 

 
 
 
 

        (3.21a) 

2

54 2 33 2
0r z

d d d
s u s c u s p

dz dzdz


 
 
 
 

        (3.21b) 

2

56 3 2
0r z v

d d
s u s u s p

dz d z
 

 
 
 
 

        (3.21c) 

where 

2 2 4 2
1 11 f h

s c                            (3.22a) 

2 2 4 2
2 44 vf

s c                           (3.22b) 

2
3

1
hs

M
                         (3.22c) 

4 13 44( )s c c                        (3.22d) 

2
5 v vf

s                           (3.22e) 

2
6 h f h

s                           (3.22f) 

2

1
( , )

( )
j

j j

j h v
m ib


 

 


               (3.22g) 
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To solve for the three unknowns, a potential function F  is introduced by 

relating its Hankel transform to ru , zu  and p in the following manner: 

2

54 3 62
r v

d d F
u s s s s

dzd z
 
  
  

  
  

        (3.23a) 

2 2
2 2

1 44 3 62 2
z v

d d
u s c s s F

dz d z
 

   
   

   
   

         (3.23b) 

2
2

5 1 44 4 62

d d F
p s s c s s

dzdz


  
  

  
  

        (3.23c) 

With the substitution of Eq. (3.23) into Eq. (3.21), the following governing equation is 

obtained for the solution of F , 

6 4 2

1 2 3 46 4 2
0

d F d F d F
F

dz dz dz
          (3.24) 

where  

1 33 44 vc c                       (3.25a)  

   2 2 2
52 2 44 1 33 4 3 33 44vs c s c s s c s c                       (3.25b)  

   2 2 2 2 2

3 2 5 1 2 44 1 33 4 3 4 5 6 6 33
( ) 2

v
s s s s c s c s s s s s s c             (3.25c)  

 2 2

4 1 3 6 2
s s s s                       (3.25d)  

The general solution of F is then determined from Eq. (3.24) as, 

( , ) ( 1,2,3)j jz z

j jF z A e B e j
 




      (3.26) 

where Aj and Bj (j = 1, 2, 3) are the arbitrary functions to be determined from 

appropriate boundary conditions. In addition, 1, 2 and 3 are the dimensionless 

complex wave numbers associated with the three body waves which are similar to that 

in Eq. (3.15). 
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Finally, the general solutions of uz, wz, zz, p, ur and rz can then be obtained 

as, 

j jz z
r j j j ju A e B e

 
 


        (3.27a) 

j jz z
z j j j ju A e B e

 
 


        (3.27b) 

j jz z

j j j jp A e B e
 

 


        (3.27c) 

j jz z
z j j j jw A e B e

 
 


        (3.27d) 

j jz z
rz j j j jA e B e

 
  


        (3.27e) 

j jz z
zz j j j jA e B e

 
  


        (3.27f) 

where 

 2

4 3 5 6j j v js s s s      
              (3.28a) 

  2 2 2 2
3 1 44 6j v j js s c s                   (3.28b) 

 2 2

5 1 44 4 6j j j
s s c s s                   (3.28c) 

  2
j j j j vf                   (3.28d) 

  44j j j jc                (3.28e) 

 
13 33 vj j j j jc c                  (3.28f) 

The above general solutions are used in the derivation of fundamental solutions for 

transversely isotropic poroelastic media under axisymmetric deformations presented 

in Chapter 5. 
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Figure 3.1 Homogeneous transversely isotropic poroelastic half-space 
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CHAPTER 4  

PLANE STRAIN FUNDAMENTAL SOLUTIONS OF 

TRANSVERSELY ISOTROPIC POROELASTIC MEDIA 

 

The general solutions for a transversely isotropic poroelastic medium under 

plane strain deformations derived in Chapter 3 are used in the derivation of the 

fundamental solutions of a homogeneous and multi-layered half-planes. The 

boundary-value problems corresponding to a homogeneous transversely isotropic 

poroelastic half-plane subjected to time-harmonic buried loading are considered. For a 

multi-layered medium, an exact stiffness matrix method is adopted to obtain 

fundamental solutions for a multi-layered transversely isotropic poroelastic half-

plane. Selected numerical results are presented to portray the influence of 

anisotropic and poroelastic effects on dynamic response of transversely isotropic 

poroelastic media under plane strain deformations. 

 

4.1 Fundamental Solutions for Homogeneous Half-Plane 

4.1.1 Boundary-value problems  

This section presents boundary-value problems corresponding to a 

homogeneous transversely isotropic poroelastic half-plane subjected to time-harmonic 

buried loading. Four loading types, i.e. a vertical load, a horizontal load, a fluid source 

and applied pore fluid pressure, applied at a depth z = h below the free surface are 

considered. All loading types are assumed to be uniform in the y-direction so that the 

resulting deformations are of plane strain type. The boundary value problem can be 

solved by considering it as a two-domain boundary-value problem. The domain "1" is 

bounded by 0 ≤ z ≤ h, and the domain "2" by h ≤ z ≤ ∞. The general solutions for the 

domain "1" are given by Eq. (3.16), whereas for the domain "2", the general solutions 

are also given by Eq. (3.16) with the arbitrary functions Aj and Bj ( 1, 2,3)j  being 

replaced by the arbitrary functions Cj and Dj ( 1, 2,3)j  respectively. Note that Cj ≡ 0 

to ensure the regularity of the solutions at infinity. The boundary and continuity 

conditions corresponding to a transversely isotropic poroelastic half-plane subjected 

to buried vertical and horizontal loads, and a buried fluid source can be expressed as,
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(1)
( ,0) 0 ( , )zn x n x z                                 (4.1a)  

(1)
( ,0) 0xp                                    (4.1b)  

(1) (2)
( , ) ( , ) 0 ( , )n nx h x h n x zu u                      (4.1c)  

(1) (2)
( , ) ( , ) 0x h x hp p                                (4.1d)  

(1) (2)
( , ) ( , ) ( , )zn zn nx h x h f n x z                (4.1e)  

(1) (2)
( , ) ( , )z z

qi
x h x h

f
w w


                            (4.1f) 

where xf , z
f , and 

q
f  denote the Fourier transforms of applied horizontal and 

vertical loads, and applied fluid source respectively. In addition, the superscript i (i = 

1,2) is used to denote the domain number. Substitution of the general solutions for 

displacements, stresses, pore pressure, and fluid displacement given by Eq. (3.16) into 

Eq. (4.1) yields a set of linear simultaneous equations to determine the arbitrary 

functions corresponding to the two domains. It is convenient to solve the boundary 

value problem corresponding to different loading cases separately.  

In the case of a transversely isotropic poroelastic half-plane subjected to 

applied pore fluid pressure fp at a depth z = h, the boundary and continuity conditions 

are given by Eqs. (4.1a) to (4.1c) together with the following continuity conditions: 

(2) (1)
( , ) ( , ) px h x h fp p                      (4.2a)  

(1) (2)
( , ) ( , )zz zz v px h x h f                                   (4.2b)  

(1) (2)

( , ) ( , ) 0zx zxx h x h                                 (4.2c)  

(1) (2)
( , ) ( , ) 0z zx h x hw w                                 (4.2d) 

If buried loading is uniformly distributed with intensity f0 over a strip of width 

2a at a depth z = h, the Fourier transform of applied loading  , , ,
n

f n z x q p  

defined in Eqs. (4.1) and (4.2) is given by 

 0

2 sin( )
( ) , , ,;n

a
f n z x q pf




 
          (4.3a) 

In addition, for buried line loading of intensity F0 applied at a depth z = h,  
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 0 ; , , ,( )
2

n n z x q p
F

f 


                          (4.3b)  

The solutions for the arbitrary functions corresponding to all loading cases are given 

explicitly as followed: 

Arbitrary functions for vertical loading 

1

1
1

1
2

z

h
v

f
A

e



 

                    (4.4a) 

 
2

2
2

1
2

z

h
v

f
A

e





                    (4.4b)  

3

3
3

1
2

z

h
v

f
A

e



                      (4.4c) 

     3 2 1
3 2 51 3 8 2 8 1

1 2

2 2
2

h h hz
v v v

f
B e e e       

 
      

  
    (4.4d)  

     3 2 1
3 12 3 9 2 4 1 9

1 2

2
2

2h h hz
v v v

f
B e e e       

 
       

  
    (4.4e)  

     3 2 1
2 17 73 3 6 2 1

1 2
2

2 2h h hz
v v v

f
B e e e       

 
      

  
    (4.4f)  

2
( 1, 2,3)jh

j j j jD B A e 
            (4.4g)  

 

Arbitrary functions for horizontal loading 

1

3 2 2 3
1

3

( )

2

x

h

f
A

e

   
 

                  (4.5a)  

2

3 1 1 3
2

3

( )

2

x

h

f
A

e

  


                   (4.5b)  

3

2 1 1 2
3

3

( )

2

x

h

f
A

e

  
 

                   (4.5c)  

3 2

32 1 1

1 3 2 2 3

3 2 1 2 2 3 1 3

1 8
3 2

5 58 8

2 ( )
2

(2 ) (2 )

[

]

h hx

hh h h

f
B e e

e e e e

 

  


 

   

  

     

 

  

  

   

  (4.5d) 
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3 1

31 2 2

2 3 1 1 3

3 1 2 1 1 3 2 3

2 9
3 2

9 4 9 4

2 ( )
2

(2 ) (2 )

[

]

h hx

hh h h

f
B e e

e e e e

 

  


 

   

  

     

 

  

  

   

  (4.5e)  

2 1

3 31 2

3 2 1 1 2

2 1 3 1 1 2 3 2

73
3 2

7 76 6

2 ( )
2

(2 ) ( 2 )

[

]

h hx

h hh h

f
B e e

e e e e

 

  


 

   

  

     

 

  

  

    

   (4.5f)  

2
( 1, 2,3)jh

j j j jD B A e 
             (4.5g)  

 

Arbitrary functions for fluid source 

1

1
1

10
2

q

h

q
i f

A
e




                     (4.6a) 

 
2

2
2

10
2

q

h

q
i f

A
e




                      (4.6b)  

3

3
3

10
2

q

h

q
i f

A
e




                     (4.6c) 

     3 2 1
3 2 51 3 8 2 8 1

10 2

2 2
2

h h hq

q q q

i f
B e e e  


     

 
       

  

   (4.6d)  

     3 2 1
3 12 3 9 2 4 1 9

10 2

2
2

2h h hq

q q q

i f
B e e e  


     

 
        

  

 (4.6e)  

     3 2 1
2 17 73 3 6 2 1

10 2
2

2 2h h hq

q q q

i f
B e e e  


     

 
       

  

 (4.6f) 

2
( 1, 2,3)jh

j j j jD B A e 
            (4.6g)  

 

Arbitrary functions for applied fluid pressure 

1

1
1

1
2

p

h

p
f

A
e



                     (4.7a)  

2

2
2

1
2

p

h

p
f

A
e



                      (4.7b)  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 27 

3

3
3

1
2

p

h

p
f

A
e



                     (4.7c)  

     3 2 1
3 2 51 3 8 2 8 1

1 2

2 2
2

h h hp

p p p

f
B e e e       

 
       

  

  (4.7d)  

     3 2 1
3 12 3 9 2 4 1 9

1 2

2
2

2h h hp

p p p

f
B e e e       

 
        

  

(4.7e) 

     3 2 1
2 17 73 3 6 2 1

1 2
2

2 2h h hp

p p p

f
B e e e       

 
       

  

 (4.7f) 

2
( 1, 2,3)jh

j j j jD B A e 
            (4.7g)  

where  

1 2 3 2 3 1 3 1 2 1 3 2 2 1 3 3 2 11
                            (4.8a)  

3 2 1 2 3 1 3 1 2 1 3 2 2 1 3 1 2 32
                       (4.8b)  

1 3 2 2 1 3 3 2 1 1 2 3 2 3 1 3 1 23
                      (4.8c)  

3 2 1 2 3 1 3 1 2 1 3 2 2 1 3 1 2 34
                       (4.8d)  

3 2 1 2 3 1 3 1 2 1 3 2 2 1 3 1 2 35
                       (4.8e)  

3 2 1 2 3 1 3 1 2 1 3 2 2 1 3 1 2 36
                       (4.8f)  

2 1 1 27
                 (4.8g)  

3 2 2 38
                 (4.8h)  

3 1 1 39
                (4.8i)  

3 2 1 2 3 1 3 1 2 1 3 2 2 1 3 1 2 310
                      (4.8j)  

3 2 2 31v
                (4.8k)  

3 1 1 32v
                 (4.8l) 

2 1 1 23v
                (4.8m) 

3 2 2 31q
              (4.8n)  

3 1 1 32q
              (4.8o)  

2 1 1 23q
              (4.8p) 
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3 2 2 31 1vp v
                 (4.8q)  

3 1 1 32 2vp v
                 (4.8r)  

2 1 1 23 3vp v
                 (4.8s)  

All variables in above arbitrary functions are given explicitly by Eq. (3.17) 

for a transversely isotropic poroelastic half-plane. 

 

4.1.2 Numerical solutions and discussion 

The solutions for displacements, stresses, pore pressure and fluid 

displacement, given by Eqs. (4.1) – (4.3) together with the arbitrary functions 

defined in Eqs. (4.4) – (4.7), appear in terms of infinite integrals in the form of Eq. 

(3.8b). The infinite integrals with respect to  can be evaluated by employing an 

accurate numerical integration scheme. For ideal elastic materials, influence 

functions have singularities along the -axis. However, for poroelastic materials these 

singularities are complex-valued due to material damping associated with fluid 

friction. A globally adaptive numerical quadrature scheme (Piessens 1983) has been 

employed to numerically evaluate the semi-infinite integrals appearing in the 

influence functions. This quadrature scheme subdivides the interval of integrand and 

uses a 21-point Gauss–Kronrod rule to estimate the integral over each interval. All 

numerical results presented in Figures 4.1 to 4.5 correspond to the case where 

loading or fluid pressure of uniform intensity f0 is applied over a strip of width 2a. In 

addition, a non-dimensional frequency, defined as /a G   , is used in all 

numerical results presented in this paper; and other normalized material parameters 

are defined as: 
*

/i iE GE ;
*

/M GM ; 
*

/f f   ; 
*

/i im m   and 
*

/i ib b a G , 

where i = h and v.  

The accuracy of the present solution scheme is first verified by comparing 

with existing solutions on dynamic response of an isotropic poroelastic half-plane. 

Figure 4.1(a) shows a comparison of vertical profiles of normalized vertical 
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displacement along the z-axis,  0

*
/

zz Gu f au , of a poroelastic half-plane under the 

uniform vertical loading applied  at z/a = 1 between the present solution and the 

solution reported by Senjuntichai and Rajapakse (1994). The comparison of 
*

zu  

under uniform fluid pressure applied at z/a = 1 is also shown in Figure 4.1(b). The 

normalized parameters used in Fig. 1 are defined as: Eh
* = Ev

* = 2.6; h = vh = 0.3; 

h = v = 0.95; f
* = 0.53; mh

* = mv
*

 = 1.1; M* = 12.2 and bh
* = bv

* = 2.3. It can be 

observed from Figure 4.1 that the present solution agrees very closely with the 

existing solution by Senjuntichai and Rajapakse (1994).  

The comparisons with existing solutions of a transversely isotropic elastic 

half-plane are also shown to confirm the accuracy of the present solution. Figure 

4.2(a) presents a comparison between the present solution and the existing solution 

given by Ai and Zhang (2015) for normalized vertical displacements 
*

zu  and 

normalized vertical stress  0

*
/zz zz f   of a transversely isotropic half-plane under 

the uniform vertical loading applied on the surface (z/a = 0). The employed 

normalized parameters are: Eh
* = 2/3; Ev

* = 1/3; h = vh = 0.25 whereas the other 

parameters are negligibly small ( 0.001). As shown in Figure 4.2(a), very good 

agreement between the two results is observed.  

Rajapakse and Wang (1991) presented normalized horizontal displacements 

 0

*
/x xGuu f a  and normalized shear stress  0

*
/xz xz f   of a transversely 

isotropic half-plane under buried horizontal loading (z/a = 1). The properties of the 

half-plane are defined as: c11/c44 = 4.26; c33/c44 = 4.57 and c13/c44 = 1.64. A 

comparison shown in Figure 4.2(b) confirms that the obtained solution from the 

present scheme is in very good agreement with the existing solution provided by 

Rajapakse and Wang (1991). The accuracy of the present numerical solution is thus 

verified. 

Dynamic response of a transversely isotropic poroelastic half-plane under 

uniformly distributed loading or fluid pressure of intensity f0 applied over a width 2a 

is presented next. Three types of transversely isotropic poroelastic materials, 
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namely, Mat A, Mat B and Mat C are considered in the numerical study. The 

material properties of Mat A, which is an isotropic poroelastic material, are given as 

follows: Eh
* = Ev

* = 3; h = vh = 0.3; h = v = 0.95; f
* = 0.5; mh

* = mv
*

 = 1; M* = 

12.5; and bh
* = bv

* = 2, and Mat A is taken as the reference material in the numerical 

study. The properties of Mat B and Mat C are also identical to those of Mat A 

except the parameter bv
* is equal to 0.2 for Mat B, and the parameter Ev

* is equal to 

1.5 for Mat C. These two materials are presented in order to portray the influence of 

anisotropy properties in Young’s modulus and the parameter b on dynamic response 

of a transversely isotropic poroelastic half-plane. 

Figure 4.3(a) shows normalized vertical displacement profiles of 
*

zu  along 

the x-axis of all three materials due to vertical distributed loading of uniform 

intensity f0 applied at z/a = 1. Profiles along the x-axis of 
*

xu  due to buried 

horizontal distributed loading (z/a = 1) of uniform intensity f0 are also presented in 

Figure 4.3(b). Numerical results are presented in Figure 4.3 for all three material 

types at two frequencies of excitation, i.e.  = 0.5 and 2.0, and they show that 

normalized displacements depend significantly on non-dimensional frequency. Both 

real and imaginary parts of displacements vary rapidly along the x-axis, and they 

become more oscillatory with higher frequency. The difference in the displacements 

among the three materials shown in Figure 4.3 is more substantial in the case of the 

vertical displacement under vertical loading (
*

zu ) since the parameters that are 

varied, i.e. bv
* and Ev

*, represent the anisotropic properties in the vertical direction. 

In addition, the influence of anisotropy on both displacements is more evident at a 

lower frequency ( = 0.5) when compared to what observed at a higher frequency ( 

= 2.0).  

Figure 4.4(a) shows profiles along the z-axis of non-dimensional vertical 

stress 
*

zz  due to the vertical distributed loading of uniform intensity f0 applied at 

the depth z/a = 1. Vertical variation of normalized vertical stress along the z-axis 

due to the applied pore pressure of uniform intensity f0 at the depth z/a = 1 is also 

presented in Figure 4.4(b). As expected, a unit discontinuity exists in the real part of 
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*

zz at the depth z = a due to the applied loading at that level whereas, under the 

applied pore pressure, a discontinuity of magnitude v is observed at z/a = 1 

consistent with Eq. (4.2b). Numerical results shown in Figures 4.4(a) and 4.4(b) 

indicate that vertical variations of vertical stresses corresponding to different 

loading types are quite similar. Comparison of stress profiles for different materials 

reveals that the influence of anisotropic properties on the real part of 
*

zz is less 

than what observed in the imaginary part. In addition, normalized stresses show 

oscillatory variations along the z-axis at  = 2.0 whereas at a lower frequency ( = 

0.5) smooth variations of vertical stress profiles with depth are observed.  

Profiles of normalized pore pressure  0

*
/p p f  along the z-axis due to 

applied vertical loading and applied fluid pressure are respectively presented in 

Figures 4.5(a) and 4.5(b). Both applied loading and fluid pressure are distributed over 

a width 2a with uniform intensity f0 at the depth z = a. Both real and imaginary parts 

of normalized pore pressure under both loading cases are zero at the surface due to 

the imposed hydraulic boundary condition [see Eq. (4.1b)]. However, the real parts 

of normalized pore pressure profiles in Figure 4.5(b) show a unit discontinuity at the 

depth z = a due to the fluid pressure applied at this level [see Eq. (4.2a)]. In Fig. 

5(a), both real and imaginary parts of pore pressure profiles under applied vertical 

loading display a significant influence on anisotropic material properties and the 

frequency, in which the pore pressure shows oscillatory variations along the z-axis at 

 = 2.0 while at a lower frequency ( = 0.5) the variation of p*

 
with depth is smooth. 

On the other hand, pore pressure profiles under the applied fluid pressure presented 

in Figure 4.5(b) reveal that the influence of anisotropic material properties on the 

real part is almost negligible, whereas for the imaginary part, significant dependence 

on both anisotropic material properties and the frequency of excitation is observed.  

 

4.2 Fundamental Solutions for Multi-Layered Half-Plane 

4.2.1 Exact Stiffness Matrix Method 
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Consider a multi-layered transversely isotropic poroelastic half-plane 

consisting of N layers with different properties and thicknesses overlying a 

homogenous transversely isotropic poroelastic half-plane as shown in Figure 4.6. A 

superscript n is used to denote quantities associated with an nth layer (n = 1, 2,..., N), 

where the top and bottom levels are denoted by nz  and 1nz   respectively. The 

relationship for the nth layer can be established by using Eq. (3.16) as follows: 
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(4.10) 

In above equations, the elements in Eq. (4.9) are the Fourier transforms of 

displacements and pore pressure at the top and bottom surfaces of the nth layer while 

the elements in Eq. (4.10) are the Fourier transforms of traction and fluid 

displacements at the top and bottom surfaces of the nth. The matrices of 

displacements and pore pressure as well as traction and fluid displacements in Eqs. 

(4.9) and (4.10) can be expressed in the following forms.    

 ( )

1 1 1i ( , ) ( , ) ( , ) i ( , ) ( , ) ( , )
Tn

x n z n n x n z n nu z u z p z u z u z p z       u   

(4.11) 

 ( )

1 1 1i ( , ) ( , ) ( , ) i ( , ) ( , ) ( , )
Tn

xz n zz n z n xz n zz n z nz z w z z z w z              σ

    (4.12) 
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Then, the relationship between 
( )n

u  and 
( )n

σ  for the nth layer can be established as 

follows:  

    
   ( ) , 1, 2, 3, .... ,
n nn n Nσ =K u ,    (4.13) 

where 
 n

K  is an exact stiffness matrix in the frequency-wave number domain. It is 

found that the matrix 
 n

K  is symmetric and its elements are functions of the layer 

thickness, the layer material properties, the frequency of excitation , and the 

horizontal wave numbers . The elements of 
 n

K  are given explicitly in 

Appendix A. 

 Similarly, the stiffness matrix 
 1N 

K  for the underlying half-space can 

be established from the relationship between 
 1N

u and 
( 1)N 

σ . Note that the 

matrices
 1N

u and 
( 1)N 

σ  are the columns matrices that represents the generalized 

displacement and force at the level zN+1.  The elements of 
 1N 

K  do not contain the 

exponential term, and depend only on the half-plane material properties. Note 

that the matrix 
 1n

K  is also symmetric and its elements are also given explicitly in 

Appendix B.  

The global stiffness matrix of a multi-layered transversely isotropic 

poroelastic half-plane as shown in Figure 4.6 can be assembled by using the 

layer and half-plane stiffness matrices together with the continuity conditions of 

traction and fluid flow at the layer interfaces. The global equation system can be 

expressed as  

K*U*=F*                                             (4.14)  

where K* is the global stiffness matrix and U* is the global vector of generalized 

displacements. In addition, F* is the global vector of generalized forces defined as 

(1) (2) ( ) ( 1)
T

n N    F* T T T T     (4.15) 

In Eq. (4.15), the sub-matrix 
( )n

T = [
( )

i
n

xT
( )n

zT  

( )

i

nQ


]. In addition, 

( )n

jT  and 
( )nQ  

denote the Fourier transforms of applied traction in the j-direction (j = x, z) and 
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applied fluid source at the nth interface, respectively. For example, if a multi-layered 

half-plane is subjected to normal traction of uniform intensity f0 applied over a strip of 

width 2a at the top surface of n layer, all elements of F* are zero except that 

( )

0

2 sin( )
( )

n

z

a
fT




 
          (4.16) 

In the case of a multi-layered transversely isotropic poroelastic half-plane subjected to 

applied pore fluid pressure fp at a depth z = h, the boundary and continuity conditions 

similar to what given by Eqs. (4.1a) to (4.1c) and (4.2) for a homogeneous half-plane 

have to be employed. A slight modification to the global equation, Eq. (4.14), has to 

be made to satisfy the continuity condition of pore pressure at that level since the pore 

pressure is typically an unknown of the equation. At the layer interface with a depth z 

= h, the pore pressure variable in the matrix U* is now given and it is moved to the 

right hand side of Eq. (4.14). A global stiffness matrix K* is altered accordingly and 

the modified global equation is then solved for the solution corresponding to the 

applied fluid pressure case. The obtained fundamental solution is the influence 

function required in the formulation of dynamic interaction problems between 

impermeable strip foundations and multi-layered transversely isotropic poroelastic 

soils. 

 

4.2.2 Numerical solutions and discussion 

A computer code based on the solution procedure presented in the previous 

section has been developed. The major computational effort in the analysis involves 

the computation of influence functions solved the global equation in Eq. (4.14) 

based on exact stiffness method. The parameters in Eq. (4.14) are expressed in terms 

of semi-infinite integrals of the Fourier transform parameter. It should be noted that 

the integrand has no singularities along the ξ–axis due to material damping associated 

with fluid friction of poroelastic materials. To numerically evaluate the semi-infinite 

integrals, a globally adaptive numerical quadrature scheme proposed by Piessens 

(1983) has been implemented in the computer code. In this work, a non-dimensional 
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frequency is defined as 
(1) (1)/a G  , where (1) and G(1) are the parameters 

of the first layer. In addition, a set of normalized material parameters for all layers 

are defined as: 
* (1)

/h hE E G , 
* (1)

/v vE E G , 
* (1)

/ GG G , 
* (1)

/ GM M , 
* (1)

/  

, 
* (1)

/
f f

   , 
* (1)

/h hm m  , 
* (1)

/v vm m  , 
(1* (1) )/h hb b a G  and 

(1* (1) )/v vb b a G .  

The accuracy of the present solution scheme is first verified by comparing 

with existing solutions on dynamic response of a multi-layered transversely 

isotropic half-plane under the uniform vertical loading of magnitude f0 with width 2a 

applied on the surface. Figure 4.7(a) presents a comparison between the present 

solution and the existing solution given by Ai and Zhang (2015) for normalized 

vertical displacement profile 0

(1)*
( )/zz G uu f a  along z-axis, where  = 1. The multi-

layered considered by Ai and Zhang (2015) consists of two layers, with the thickness 

of 4a and 3a respectively, and an underlying half-plane. The normalized parameters 

are: Eh
* = 6; Ev

* = 3 and G* = 1 for first layer; Eh
* = 3; Ev

* = 1.5 and G* = 0.5 for 

second layer; Eh
* = 2; Ev

* = 1 and G* = 0.3 for underlying half-plane. In addition, h 

and vh are equal to 0.25 for all layers. It should be noted that the other parameters 

are negligibly small ( 0.001). It can be seen that a very good agreement between 

the two results is obtained as shown in Figure 4.7(a). The comparison with existing 

solutions Rajapakse and Senjuntichai (1995) for dynamic response of a multi-

layered isotropic poroelastic half-plane is shown in Figure 4.7(b). The multi-layered 

medium consists of two layers with the thickness of a and underlying half-plane, and 

is subjected to the uniform vertical loading applied at h/a = 1, where h denotes depth 

of loading. The results from this present solution scheme and that of Rajapakse and 

Senjuntichai (1995) are compared throughout the non-dimensional frequency range 

of  = 0.2-2.6. It can be observed from Fig. Figure 4.7(b) that the present solution 

agrees very closely with the existing solution.  

To investigate the dynamic response of a multi-layered transversely isotropic 

poroelastic soil, the selected material properties for two layers with a thickness a 
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and underlying half-plane are expressed in Table 4.1, and it is called System A. 

Another system considered in the numerical study is called System B, which 

represents a multi-layered isotropic poroelastic half-plane. The properties of System 

B are the same as those given in in Table 4.1, except that the properties in the 

direction normal to the isotropic plane (i = v) are set to be equal to those in the plane 

of isotropy (i = h), in the two layers and the underlying half-plane. For example, Ev
* 

= Eh
* =2.5, bv

* = bh
* = 2 in the first layer of System B. 

Figures 4.8(a) and 4.8(b) respectively show non-dimensional vertical 

displacement 0

(1)*
( )/

zz
G uu f a  due to a uniformly distributed vertical load of 

magnitude f0 and non-dimensional horizontal displacement 0

(1)*
( )/

xx
G uu q a  due to 

a uniformly distributed horizontal load of magnitude q0. Both vertical and horizontal 

loads are applied on the surface (h = 0) and at the level h/a = 1. In Figures 4.8(a) 

and 4.8(b), System A and System B are considered in the numerical study over the 

non-dimensional frequency range of 0.2 <  ≤ 2.6. It is found from Figures 4.8(a) 

and 4.8(b) that the influence of anisotropy is more evident for both real and 

imaginary parts of the vertical displacement while the influence on horizontal 

displacement is almost negligible. This is due to the fact that the variations of the 

parameters representing the anisotropic properties of transversely isotropic 

poroelastic materials in the vertical direction (e.g., Ev
* and bv

*) between System A 

and System B are different. Thus, the variations of the parameters Eh and bh are 

suggested to be considered in the parametric studies in order to portray the influence 

of anisotropy effect on the horizontal displacement. In addition, the vertical 

displacements of System A are higher than that of System B due to the fact that Ev
* 

of System A is higher than that of System B in all layers. From Figures 4.8(a) and 

4.8(b), both real and imaginary parts of non-dimensional displacements due to 

surface loading are larger than those under buried loading. Thus, the layered 

medium becomes less stiff and less damped under surface loading than buried 

loading. 
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4.3 Conclusion  

In this chapter, the fundamental solutions of a homogeneous transversely 

isotropic poroelastic half-plane subjected to time-harmonic buried loads and fluid 

sources are presented by employing the general solutions for the case of plane strain 

derived in Chapter 3. Those general solutions are employed in the exact stiffness 

matrix scheme to determine the fundamental solutions of a multi-layered transversely 

isotropic poroelastic half-plane under time-harmonic loading. A computer program 

based on an accurate numerical integration scheme is developed, and the accuracy of 

present solution is verified by comparing with existing solutions. Selected numerical 

results under low and high frequencies are presented to demonstrate the anisotropy 

effects in the vertical direction of Young’s modulus (Ev) and the parameter b (bv) on 

dynamic response of homogenous and multi-layered half-planes, and it is found that 

normalized displacements, stresses and pore pressure depend significantly on the 

anisotropic parameters and the frequency of excitation. The present fundamental 

solutions are employed as the influence functions required in the analysis of dynamic 

interaction between strip foundations and transversely isotropic poroelastic soils 

presented in Chapter 6. 
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Table 4.1 Material properties of System A 
 

 
Eh

* Ev
*  h

* vh
* G* h

* v
* 

First layer 2.5 4 0.3 0.3 1 0.95 0.5 

Second layer 1.3 2.5 0.3 0.3 0.5 0.98 0.98 

Half-plane 10 15 0.25 0.25 4 0.9 0.9 

 
* f * mh

*  mv
*  bh

* bv
* M* 

First layer 1 0.5 1.5 1.5 2 3 10 

Second layer 0.5 0.5 0.9 0.9 1 1.5 7.5 

Half-plane 4 0.5 2.4 2.4 6 9 8 
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(a) 

 

  
(b) 

 

Figure 4.1 Comparisons of normalized vertical displacement profiles of an isotropic 

poroelastic half-plane under buried loading (z/a = 1): (a) applied vertical load; (b) 

applied fluid pressure 
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(a) 

 

 

 
(b) 

 

Figure 4.2 Comparisons of normalized elastic fields of transversely isotropic elastic 

half-planes: (a) vertical displacements and vertical stress under surface vertical 

loading; (b) horizontal displacement and horizontal stress under buried horizontal 

loading (z/a = 1) 
  

-0.6

-0.4

-0.2

0.0

0.2

0.4

0 2 4 6 8 10

u
z*

x/a

Present study

Ai and Zhang (2015)

Real part

Imaginary part

0

1

2

3

4

5

6

-1.5 -1.0 -0.5 0.0 0.5 1.0

z/
a

zz
*

Present study

Ai and Zhang (2015)

Real part

Imaginary 

part

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0 1 2 3 4 5

u
x*

x/a

Present study

Rajapakse and Wang (1991)

Real part

Imaginary part

0

1

2

3

4

5
-0.9 -0.6 -0.3 0.0 0.3 0.6 0.9

z/
a

xz
*

Present study

Rajapakse and
Wang (1991)

Real part

Imaginary part



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 41 

 

 

(a) 

 

  

(b) 

 

Figure 4.3 Normalized displacement profiles along the x-axis under buried loading 

(z/a = 1): (a) vertical displacements under vertical loading; (b) horizontal 

displacement under horizontal loading 
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(a) 

 

 

 

(b) 

 

Figure 4.4 Normalized vertical stress profiles along the z-axis under buried loading 

(z/a = 1): (a) applied vertical load; and (b) applied fluid pressure 
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(a) 

 

  

(b) 

 

Figure 4.5 Normalized pore pressure profiles along the z-axis under buried loading 

(z/a = 1): (a) applied vertical load and (b) applied fluid pressure 
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Figure 4.6 Geometry of a multi-layered transversely isotropic poroelastic half-plane 

under time-harmonic loading 
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(a) 

 

 
(b) 

 

Figure 4.7 Comparison of: (a) normalized vertical displacement profiles of a multi-

layered transversely isotropic half-plane under surface vertical loading (h/a = 0); (b) 

normalized vertical displacement of a multi-layered poroelastic half-plane under 

buried loading (h/a = 1) 
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(a) 

 

  
(b) 

 

Figure 4.8 Non-dimensional displacements due to surface (h/a = 0) and buried loading 

(h/a = 1): (a) vertical displacement due to vertical loading; (b) horizontal 

displacement due to horizontal loading 
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CHAPTER 5  

AXISYMMETRIC FUNDAMENTAL SOLUTIONS OF 

TRANSVERSELY ISOTROPIC POROELASTIC MEDIA 

 

The general solutions derived in Chapter 3 are used to obtain the fundamental 

solutions of a homogeneous half-space and multi-layered medium under 

axisymmetric deformations. For a homogeneous half-space, the boundary-value 

problems corresponding to axisymmetric deformations of a transversely isotropic 

poroelastic half-space subjected to time-harmonic buried loading are presented. For a 

multi-layered medium, an exact stiffness matrix method is employed to determine 

the fundamental solutions of a multi-layered transversely isotropic poroelastic half-

space under axisymmetric loading. Selected numerical results are presented to 

portray the influence of anisotropic and poroelastic effects on dynamic response of 

transversely isotropic poroelastic media. 

 

5.1 Fundamental Solutions for Homogeneous Half-Space 

5.1.1 Boundary-value problems  

The fundamental solutions for axisymmetric problems can be obtained by 

solving boundary value problems for a transversely isotropic poroelastic half-space 

subjected to time-harmonic buried loading. Four loading types, i.e. a vertical load fz, a 

tangential load fr, a fluid source fq and applied fluid pressure fp, applied at the depth z 

= h below surface are considered. Similar to the case of homogeneous half-plane 

under buried loading presented in Section 4.1, the boundary value problems are 

solved by treating it as two-domain boundary-value problem. The domain "1" is 

bounded by 0 ≤ z ≤ h, and the domain "2" by h ≤ z ≤ ∞. The boundary and continuity 

conditions corresponding to a transversely isotropic poroelastic half-space subjected 

to buried axisymmetric a vertical load, a tangential load, a fluid source can be 

expressed as,  

(1)( ,0) 0 ( , )nz r n r z          (5.1a)  
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(1)( ,0) 0rp          (5.1b) 

(1) (2)( , ) ( , ) 0 ( , )n nr h r h n r zu u        (5.1c)  

(2) (1) 0( , ) ( , )r h r hp p        (5.1d)  

(1) (2) ( )( , ) ( , ) ( , )nz nz n rr h r h f n r z        (5.1e)  

(1) (2)
( )

( , ) ( , )z z
q ri

r h r h
f

w w


        (5.1f)  

For the case of a transversely isotropic poroelastic half-space subjected to applied 

pore fluid pressure, the boundary and continuity conditions are given by Eqs. (5.1a) to 

(5.1c) together with the following continuity conditions: 

(2) (1) ( )( , ) ( , ) p rr h r h fp p        (5.1g) 

(1) (2)( , ) ( , ) ( )zz zz v pr h r h rf         (5.1h)  

(1) (2)( , ) ( , ) 0rz rzr h r h          (5.1i)  

(1) (2)( , ) ( , ) 0z zr h r hw w         (5.1j)  

where 

( )( ) ( , , , )n Hr a r n z r q pf                 (5.2)  

and a denotes the radii of the circular loading respectively.  

The boundary value problem corresponding to four types of loading cases are 

considered separately, i.e. fr = fq = fp = 0 for the applied vertical loading case. The 

application of the Hankel integral transform, Eqs. (3.20a) to (3.2f), together with the 

substitution of the general solutions, Eq. (3.27), for each loading case yields the 

solutions to the four boundary value problems. The general solutions for the domain 

"1" are given by Eq. (3.27), whereas for the domain "2", the general solutions are also 

given by Eq. (3.27) with the arbitrary functions Aj and Bj ( 1, 2,3)j   being replaced 

by the arbitrary functions Cj and Dj ( 1, 2,3)j  respectively. Note that Cj ≡ 0 to ensure 

the regularity of the solutions at infinity. The substitution of the general solutions for 
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the two domains into the boundary and continuity conditions, Eq. (5.1), yields a set of 

linear simultaneous equations to determine the arbitrary functions Aj, Bj and Dj 

( 1, 2,3)j  . The arbitrary functions for each loading case are similar to those 

presented in Eq. (4.4) for the applied vertical loading case, Eq. (4.5) for the applied 

tangential loading case (by substituting fx by fr), Eq. (4.6) for the fluid source case and 

Eq. (4.7) for the applied fluid pressure case. Note that all variables in Eqs. (4.5) to 

(4.7) are given by Eq. (3.28) for a transversely isotropic poroelastic half-space under 

axisymmetric deformation.  

 

5.1.2 Numerical solutions and discussions 

The solution procedure outlined in the previous section is implemented into a 

computer program to compute the dynamic response of transversely isotropic 

poroelastic half-space under circular loading. The major computational effort 

required in the analysis involves the computation of influence functions which are 

expressed in terms of semi-infinite integrals of the Hankel transform parameter ξ by 

using a globally adaptive numerical quadrature scheme (Piessens 1983) as described 

in Chapter 4. 

As the influence functions have a direct effect on the accuracy of the current 

solution scheme, their accuracy is verified first by considering the case of an 

isotropic poroelastic half-space subjected to uniformly distributed vertical loading 

of intensity f0 applied over a circular area of radius a at a depth h/a = 1. The solution 

to this problem was given by Zeng and Rajapakse (1999) who presented numerical 

solutions for the isotropic case with Eh
* = Ev

* = 2.6, h = v = 0.3, h = v = 0.95, 

f
* = 0.53, mh

* = mv
*

 = 1.1, M* = 12.2, and bh
* = bv

* = 2.3. Comparison of the 

profiles of normalized vertical displacement 0

*
( )/

z z
Gu fu a  shown in Figure 5.1 

confirms excellent agreement with the solution of Zeng and Rajapakse (1999) for 

different frequencies ( = 0.5 and 2).  

To demonstrate the basic features of dynamic response of an anisotropic 

poroelastic soil, we consider the case of Berea sandstone (Rice and Cleary 1976) 
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which is isotropic with the properties, Eh
* = Ev

* = 2.6, h = v = 0.3, h = v = 0.95, 

f
* = 0.53, mh

* = mv
*

 = 1.1, M* = 12.2, and bh
* = bv

* = 2.3. In the absence of 

experimental results for properties of anisotropic poroelastic materials, we consider 

a hypothetical Berea sandstone with n = 0.5, 1 and 2 and other material properties 

unchanged to illustrate the coupled influence of anisotropy and poroelasticity.  

Figures 5.2(a), 5.2(b) and 5.2(c) show the profiles of non-dimensionalized 

vertical displacement 0

*
( )/

z z
Gu fu a , pore pressure 0

*
( )/p fp  and vertical stress 

0

*
/( )zz zz f   along the z-axis  fo a soil  under uniformly distributed time-harmonic 

circular load of radius a and magnitude f0 applied on the surface (h/a = 0). The 

variation of displacement, pore pressure and stress along the depth is generally 

smooth at lower frequencies ( = 0.5) but show a higher degree of oscillations at 

higher frequencies ( = 2). The influence of anisotropy (i.e., n) is also more 

significant at higher frequencies and displacements decrease as n increases. The 

profiles of displacements and stress confirm that poroelastic effects are also 

significant at higher frequencies. The pore pressure profiles show substantial 

influence of anisotropy. The peak values of pore pressure occur within z/a ≤ 2 and it 

is less than 20% of the peak total stress values.   

 

5.2 Fundamental Solutions for Multi-Layered Half-Space 

5.2.1 Exact Stiffness Matrices 

Consider a multi-layered transversely isotropic poroelastic half-space 

under axisymmetric deformations consisting of N layers with different properties 

and thicknesses overlying a homogenous transversely isotropic poroelastic half-

place as shown in Figure 5.3.  A superscript n is used to denote quantities associated 

with an nth layer (n = 1, 2,..., N), where the top and bottom levels are denoted by nz  

and 1nz   respectively. The relationship for the nth layer can be established by using 

Eq. (3.27) as follow, 
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(5.4) 

In above equations, the elements in Eq. (5.4a) are the Hankel transforms of 

displacements and pore pressure at the top and bottom surfaces of the nth layer while 

the elements in Eq. (5.4b) are the Hankel transforms of traction and fluid 

displacements at the top and bottom surfaces of the nth The matrices of displacements 

and pore pressure as well as traction and fluid displacements in Eqs. (5.4a) and (5.4b) 

can be expressed in the following forms.    

 ( )

1 1 1( , ) ( , ) ( , ) ( , ) ( , ) ( , )
Tn

r n z n n r n z n nu z u z p z u z u z p z       u     (5.5) 

 ( )

1 1 1( , ) ( , ) ( , ) ( , ) ( , ) ( , )
Tn

rz n zz n z n rz n zz n z nz z w z z z w z              σ     

(5.6) 

Then, the relationship between vectors 
( )n

u  and 
( )n

σ  for the nth layer can be 

established as follow,  

    
   ( ) , 1, 2, 3, .... ,
n nn n Nσ =K u ,    (5.7) 

where 
 n

K  is an exact stiffness matrix in the frequency-wave number domain. It is 

found that the elements in matrices 
 n

K  and 
 1N 

K  are similar to that shown in 
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Appendix A and Appendix B respectively except 12K , 13K , 15K , 16K , 12K  

and 13K  that have to multiply with –i (imaginary number).  

The global stiffness matrix of a multi-layered transversely isotropic 

poroelastic half-space under axisymmetric deformations as shown in Figure 5.3 

can be assembled by using the layer and half-space stiffness matrices together 

with the continuity conditions of traction and fluid flow at the layer interfaces. 

The global equation system can be expressed as  

K*U*=F*                                             (5.8)  

where K* is the global stiffness matrix and U* is the global vector of generalized 

displacements. In addition, F* is the global vector of generalized forces defined as 

(1) (2) ( ) ( 1)
T

n N    F* T T T T     (5.9) 

In Eq. (5.9), the sub-matrix 
( )n

T = [
( )

i
n

rT
( )n

zT  

( )

i

nQ


]. In addition, 

( )n

jT  and 
( )nQ  

denote the Hankel transforms of applied traction in the j-direction (j = r, z) and 

applied fluid source at the nth interface, respectively. For example, if a multi-layered 

half-space is subjected to normal traction of uniform intensity f0 applied over a 

circular area with a radius a at the top surface of n layer, all elements of F* are zero 

except that 

( )

1 0( )
1

( )
n

z fT aJ a 


          (5.10) 

Note that normal traction of a unit vertical point load applied at top surface of n layer 

can be expressed as,  

( )

( ) 1
n

zT              (5.11) 

For the case of a multi-layered transversely isotropic poroelastic half-space subjected 

to applied pore fluid pressure fp at a depth z = h, the boundary and continuity 

conditions similar to what given by Eqs. (5.1a) to (5.1c) and (5.1g) to (5.1j) for a 

homogeneous half-space have to be employed. The global equation, Eq. (5.8), has to 

be slightly modified in order to satisfy the continuity condition of pore pressure at that 
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level since the pore pressure is typically an unknown of the equation. The pore 

pressure variable at the layer interface with a depth z = h is now given in the matrix 

U*. It is then moved to the right hand side of Eq. (5.8). A global stiffness matrix K* is 

altered accordingly and the modified global equation is then solved for the solution 

corresponding to the applied fluid pressure case. As a results, the fundamental 

solution is obtained, and can be used as a required influence function in the 

formulation of dynamic interaction problems between an impermeable circular 

foundation and a multi-layered transversely isotropic poroelastic half-space. 

 

5.2.2 Numerical solutions and discussions 

A computer code based on the solution procedure presented above has been 

developed. The major computational effort in the analysis involves the computation 

of influence functions from exact stiffness matrix method that are expressed in 

terms of semi-infinite integrals of the Hankel transform parameter ξ by using a 

globally adaptive numerical quadrature scheme described in Chapter 4. The 

accuracy of the present solution scheme is verified by comparing with existing 

solutions. Zheng et al. (2013) presented vertical profiles of vertical displacements in 

a multi-layered poroelastic half-space under a time-harmonic vertical point load. 

The layered half-space consists of two poroelastic layers overlying a homogeneous 

poroelastic half-space, in which the normalized thicknesses of the first and the 

second layers are one and two respectively. The normalized properties are i = 0.9, 

M = 2,  = 1, f = 0.5, mi = 2 and bi = 1 (i = v, h) for the two layers and the half-

space. In addition, the normalized Lame' constants  and  are equal to 1.5, 2, and 

3, respectively, for the first layer, the second layer, and the half-space. The 

comparison in the case of homogeneous poroelastic half-space was also presented, 

in which the parameters  and  are equal to one in the two layers and the half-

space. The vertical point load is applied at the depth of h = 2. Note that only real 

parts are given in the works by Zheng et al. (2013). It is evident from Figure 5.4 that 

the numerical solutions from the present study agree very closely with those 

presented by Zheng et al. (2013).  
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The two layer systems, System A and System B identical to that presented in 

Chapter 4, are considered in the numerical study. Figures 5.5(a) and 5.5(b) 

respectively show non-dimensional vertical displacement 0

(1)*
( )/zz G uu f a  and 

non-dimensional radial displacement 0

(1)*
( )/rr G uu f a  due to a uniformly 

distributed vertical load of magnitude f0 applied on the surface (h = 0) and at the 

level h/a = 1. Figures 5.5(a) and 5.5(b) present the vertical and radial displacements 

respectively of System A and System B under vertical loading over the non-

dimensional frequency range of 0.2 <  ≤ 2.6. It can be seen that the difference in 

transversely isotropic poroelastic materials in the vertical direction (e.g., Ev
* and bv

*) 

between System A and System B has a significant influence on both vertical and 

radial displacements. It is found that System A is basically stiffer than System B. In 

addition, the multi-layered medium under surface loading is less stiff and less 

damped than that under buried loading as illustrated in Figures 5.5(a) and 5.5(b). 

 

5.3 Conclusion  

The fundamental solutions of homogeneous and multi-layered transversely 

isotropic poroelastic half-spaces subjected to time-harmonic axisymmetric loading are 

presented in this chapter. The fundamental solutions for the homogeneous half-space 

are explicitly derived by solving the boundary value-problems based on the 

axisymmetric general solutions, whereas the exact stiffness matrix method is 

employed to obtain the fundamental solutions of the multi-layered half-space under 

axisymmetric deformations. Note that the arbitrary functions obtained for the 

axisymmetric fundamental solutions are akin to what obtained for the plane strain 

solutions presented in Chapter 4, except that all parameters involved in the 

expressions are given by Eq. (3.28) for a transversely isotropic poroelastic half-space 

under axisymmetric deformation. The accuracy of fundamental solutions for both 

homogeneous and multi-layered half-spaces are confirmed by comparing with their 

isotropic poroelastic counterparts. Selected numerical results indicate that anisotropic 

properties has a significant influence on vertical displacement, vertical stress and pore 

pressure in a transversely isotropic poroelastic half-space under vertical loading. In 
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addition, it is also the multi-layered half-space under surface loading is less stiff and 

less damped than that under buried loading. The axisymmetric fundamental solutions 

presented in this chapter are the required influence functions in the formulation of 

dynamic interaction between circular foundations and transversely isotropic 

poroelastic soils presented in Chapter 7.  
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Figure 5.1 Comparison of non-dimensional vertical displacements of isotropic 

poroelastic half-space under applied vertical load 
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(a) 

  
(b) 

  
(c) 

Figure 5.2 (a) Vertical displacement; (b) pore pressure and (c) vertical stress along z-

axis under a surface vertical load 
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Figure 5.3 Geometry of a multi-layered transversely isotropic poroelastic half-space 

under time-harmonic loading 
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Figure 5.4 Comparison of normalized vertical displacement profiles of a multi-layered 

isotropic poroelastic half-plane under buried loading at h = 2 
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(a) 

 

  
(b) 

 

Figure 5.5 Non-dimensional displacements due to surface (h/a = 0) and buried loading 

(h/a = 1): (a) vertical displacement due to vertical loading; (b) radial displacement due 

to vertical loading 
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CHAPTER 6  

INTERACTION BETWEEN STRIP FOUNDATIONS AND 

TRANSVERSELY ISOTROPIC PORORELASTIC SOILS 

 

In this chapter, the fundamental solutions of homogeneous and multi-layered 

transversely isotropic poroelastic half-plane derived in Chapter 4 are employed to 

solve soil-structure interaction problems involving strip foundations and transversely 

isotropic poroelastic soils. Three problems, namely a rigid strip foundation embedded 

in a homogeneous half-plane, multiple rigid strip foundations on a homogeneous layer 

with rigid base and multiple flexible strip foundations on a multi-layered medium, are 

presented. Selected numerical results are presented to portray the influence of 

anisotropic and poroelastic properties on dynamic response of strip foundations. 

 

6.1 Rigid Strip Foundation in Homogeneous Half-Plane 

6.1.1 Formulation of interaction problem 

The analysis of soil-structure interaction problems involving a rigid strip 

foundation and a transversely isotropic poroelastic half-plane is presented in this 

section. Consider a rigid strip foundation with a width of 2a embedded in a 

transversely isotropic poroelastic half-plane with a depth h below the surface as 

shown in Figure 6.1(a). The strip foundation is assumed to be rigid, massless and 

subjected to time-harmonic line loading [see Figure 6.1(a)]. In addition, the 

foundation is assumed to be perfectly bonded to the supporting soil with either fully 

permeable or impermeable contact surface. The displacements at an arbitrary point on 

the contact surface ( x a and z = h) can be expressed as,  

( , )
x x

u x h           (6.1a) 

( , )z zu x h x         (6.1b) 

where ( , )
i

i = x z  represents the displacement amplitude in the i-direction at the center 

of the foundation; and  denotes the amplitude of the rotation about the y-axis. 
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The traction and the pore pressure jump generated at the contact surface 

between an impermeable foundation and the supporting soil in the i-direction are 

denoted by Ti (i = x, z) and Tp respectively. To determine the unknowns Tx, Tz and Tp, 

the contact surface is discretized into N equally spaced nodes as shown in Figure 

6(b). It is assumed that the contact stresses and pore pressure are distributed 

uniformly over the tributary length of each node. The displacement ( )iu i = x, z  at the 

node with the coordinate ( , )kx h  can be expressed as, 

1 1 1

( , ) ( ; ) ( ) ( ; ) ( ) ( ; ) ( )

              

N N N

x k xx k l x l xz k l z l xp k l p l

l l l

x

u x h U x x T x U x x T x U x x T x
  

  

 

             (6.2a) 

1 1 1

( , ) ( ; ) ( ) ( ; ) ( ) ( ; ) ( )

                      

N N N

z k zx k l x l zz k l z l zp k l p l

l l l

z

u x h U x x T x U x x T x U x x T xx
  

 



 



    (6.2b) 

In addition, the zero flow condition under the impermeable foundation is given by, 

1 1 1

( , ) ( ; ) ( ) ( ; ) ( ) ( ; ) ( )

              0

N N N

z k px k l x l pz k l z l pp k l p l

l l l

w x h U x x T x U x x T x U x x T x
  

  



           (6.2c) 

where ( , , )( ; )
ij k l

i j z x pU x x    denotes the influence function, which is the vertical (i = 

z) or horizontal (i = x) displacement or the relative fluid displacement (i = p) at the 

nodal location ( , )kx h  due to a unit vertical (j = z) or horizontal (j = x) line load or a 

line fluid source (j = p) applied at the nodal location ( , )lx h . The influence functions 

( ; )
ij k l

U x x  are obtained from the fundamental solutions presented in Section 4.1.  

For vertical vibrations, a rigid foundation is only subjected to vertical loading, 

and the contact surface between the foundation and the supporting soil is assumed to 

be smooth. The following relationship can be established from Eqs. (6.2b) and (6.2c): 

           
        

zz zp zz

ppz pp

U U TΔ

T0 U U
      (6.3)  
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where  ...
T

z z z   zΔ  is a column vector of size N×1 containing the 

amplitude of the vertical displacement, and 0 is a zero vector of size N×1. In 

addition, Tz and Tp are column vectors of size N×1 whose elements are the contact 

traction ( )z lT x  and the pore pressure jump ( )p lT x  respectively, and ij
U  (i = j = z, p) is 

a matrix of size N×N  whose elements are the influence functions ( ; )
ij k l

U x x . 

Once the contact traction (Tz) and pore pressure jump (Tp) are obtained, the 

equation of equilibrium of vertical forces applied to the rigid strip foundation can then 

be expressed as,  

 
a

z v

a

z pF T T dx


       (6.4) 

where v is Biot’s parameter defined in Eq. (3.1).  

For a rigid foundation with fully permeable contact area, Eq. (6.3) is reduced 

to:  

z zz zΔ U T        (6.5) 

and the equation of equilibrium of vertical forces in Eq. (6.4) involves only the 

normal contact traction (Tz). 

For the analysis of a rigid foundation under horizontal and moment loading, 

the influence of hydraulic boundary conditions on dynamic response of the 

foundation is negligible, and the fully permeable condition is usually assumed. The 

following relationship can be established from Eqs. (6.2a) and (6.2b) for a rigid 

foundation under horizontal and moment loading and fully bonded to a poroelastic 

half-plane with fully permeable contact surface: 

        
     
         

x xx xz x

zx zz z

Δ U U T

U U TΦ
      (6.6)  
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where  ...
T

x x x   xΔ  and  1 2 ...
T

Nx x x  Φ  are column vectors 

of size N×1, and ( , )kx h  is the location of the nodal point of the kth element (k = 1, 2, 

…, N). In addition, the elements of the matrices ij
U  and i

T  (i = j = x, z) are defined 

similarly to what given for the two matrices ij
U  and i

T  (i = j = z, p) respectively in 

Eq. (6.3). 

After the normal traction Tz and the shear traction Tx are obtained, the 

equations of equilibrium for horizontal forces and moment can then be computed as, 

 
a

x

a

xF T dx


        (6.7a) 

 
a

a

zM T xdx


        (6.7b) 

Thereafter, the relationship between applied loading Fz, Fx and M, and the 

displacement amplitudes z, x and  can be expressed in the following matrix form: 

0 0

0

0

V

H HM

HM M

z z

x x

C F

C C F

x C C M

     
    
     
         

    (6.8) 

where CV, CH, CM and CHM represent vertical, horizontal, coupling and rocking 

compliances of rigid strip foundation respectively. 

 

6.1.2 Numerical solutions and discussions  

A computer code based on the formulations presented above has been 

developed in order to investigate dynamic response of a rigid strip foundation. 

Figure 6.2(a) shows the comparison of non-dimensional vertical compliance 

 *
/

V z z
C Ga F   of a rigid strip foundation resting on the surface of a transversely 

isotropic poroelastic half-plane between the present solutions and the solutions given 

by Ai and Zhang (2016). The material properties of the half-plane are Eh
* = 2/3; Ev
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= 1/3; h = vh = 0.25. In addition, the contact surface is divided into a number of N 

elements, where N = 4, 8, 16, and 32. It can be seen that the present solution 

converges to the solution by Ai and Zhang (2016) with increasing number of N, and 

accurate numerical results can be obtained when N ≥ 32. In Figure 6.2(b), the 

impedances, which are obtained from the inversion of the compliances, of a fully 

permeable strip foundation resting on a surface of a homogeneous poroelastic half-

plane are presented for a comparison between the present solution and the existing 

solutions given by Senjuntichai and Rajapakse (1996) with N = 32. The comparison 

of vertical, horizontal, rocking and coupling impedances, denoted by KV
*, KH

*, KM
* 

and KHM
* respectively, presented in Figure 6.2(b) indicates a very good agreement 

between the two solutions for both real and imaginary parts of all impedances. Thus, 

all numerical results presented in Figures 6.3 to 6.5 are obtained with the discretized 

contact area of N = 32. 

The vertical compliance of a rigid strip foundation resting on a transversely 

isotropic poroelastic half-plane are presented in Figures 6.3(a) and 6.3(b) for fully 

permeable or impermeable contact surfaces respectively. In addition, all three types 

of materials which are similar to those in Section 4.1 are considered in the two 

figures over the frequency range 0.2 ≤  ≤ 3.  Numerical results presented in Figure 

6.3 reveal that the anisotropic material properties and the hydraulic boundary 

condition have a significant influence on the vertical compliance, particularly in the 

imaginary part at low frequency. The vertical compliances vary smoothly over the 

frequency range 0.2 ≤  ≤ 3 for both real and imaginary parts. In addition, the 

impermeability at the contact surface makes the soil-foundation system stiffer and 

less damped when compared to the case of fully permeable condition.  

The influence of embedded depth “h” on non-dimensional vertical 

compliances of a rigid strip foundation is also investigated. Figures 6.4(a) and 6.4(b) 

respectively show CV
* for the cases of fully permeable and impermeable foundations 

embedded in the half-plane of Mat B at various depths of h/a = 0, 1, 2, 5 and 10. 

Numerical results indicate that vertical compliance  of strip foundations depends 

significantly on the depth of embedment. Similar to what observed in Figure 6.4, 

non-dimensional compliances of the impermeable foundation are smaller than those 
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of the fully permeable one. Numerical results presented in Figure 6.4 also indicate 

that both real and imaginary parts of CV
* for surface (h/a = 0) and deeply buried (h/a 

= 20) foundations vary smoothly with frequency whereas, for foundations with 

intermediate embedded depths (h/a = 1, 2 and 5), they show oscillatory variation 

with . This is due to the effects of standing waves generated between the free 

surface and the embedded foundation that virtually diminish as the embedded depth 

increases. Non-dimensional rocking (
* 3 /M xC Ga M ), horizontal  

(
*

/
H x x

C Ga F  ), and coupling (
* 2 /HM zC Ga M  ) compliances of a rigid 

surface strip foundation (z/a = 0) are presented in Figures 6.5(a), 6.5(b) and 6.5(c) 

respectively over the frequency range 0.2 ≤ d ≤ 3 under the condition of fully 

permeable contact surface. Numerical results presented in Figure 6.5 indicate that 

both real and imaginary parts of all compliances vary smoothly with the frequency. 

It is evident that both real and imaginary parts of the moment and coupling 

compliances depend significantly on the anisotropic material properties. On the 

other hand, the influence of the anisotropic material parameters Ev and bv on the 

horizontal compliances is almost negligible due to the fact that these two parameters 

represent the anisotropic properties of poroelastic materials in the vertical direction. 

Thus, the variations of the parameters Eh and bh would also be considered in the 

parametric studies to investigate the influence of anisotropic properties on 

horizontal vibrations of embedded foundations in poroelastic soils. 

 

6.2 Multiple Rigid Strip Foundations on Homogeneous Layer with Rigid Base 

6.2.1 Formulation of interaction problem 

Consider a system of N strip foundations, subjected to time-harmonic 

loading resting on a homogeneous transversely isotropic poroelastic layer as shown 

in Figure 6.6(a). All strips are assumed to be rigid, massless, and undergoing time-

harmonic translational and rotational displacements. In addition, they are assumed 

to be bonded to the underlying layer with fully permeable contact surface. Under 

this condition, both normal traction and shear traction on the contact area under each 
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strip are unknown. If the contact area is impermeable, pore pressure jump is also an 

unknown in addition to the contact traction. The modelling of impermeable contact 

surface was employed in the past for vertical vibrations of rigid foundations. It was 

found that the variation of vertical compliances with frequency for fully permeable 

and impermeable contact surfaces show similar trends with the maximum difference 

being less than ten percent. Furthermore, the influence of hydraulic conditions at the 

contact area of rigid foundations under other loading types is typically negligible. In 

view of this observation, the current assumption of fully permeable contact surface is 

acceptable for the interaction problem under consideration.   

Consider a rigid strip i ( 1,2,..., )i N  with a width of 2ai and the center of its 

contact surface being located at ( , 0)
i

c
x  as shown in Figure 6.6(a). The horizontal and 

vertical displacements, denoted by 
i

xu  and 
i

zu  respectively, at an arbitrary point on 

the contact surface of the strip i are given by, 

( ,0)      ,  i i i i

c c

i i

x xu x x a x x a           (6.9a) 

, ( ,0)       
i i i i

c c

i i i

z zu x x x a x x a          (6.9b) 

where ( , )  i
j j = x z  represents the displacement amplitude in the j-direction at the 

center of the strip; and 
i denotes the amplitude of the rotation about the y-axis of the 

strip. Let define the unknown traction in the j-direction generated at the contact 

surface between the strip i and the underlying layer as ( , ) i
jT j = x z . To determine the 

unknowns 
i
xT  and 

i
zT , the contact surface under the strip i is discretized into NE

i 

equally spaced nodes with the tributary length ti (= ai/NE
i) as shown in Figure 6.6(b). 

It is assumed that 
i
xT  and 

i
zT  are uniformly distributed over each discretized 

element. The displacements at the node k, with the coordinate (xk, 0) on the contact 

surface under the strip i ( 1,2,..., )i N , can be expressed as, 
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1 1 1

( ,0) ( ; ) ( ) ( ; ) ( )
E E

j j
N NN

j j j j j ji i ij i ij i
x k xx k xz kl xl l l zl l

j l l

u x U x x T x U x x T x
  

 
  

  
      (6.10a) 

1 1 1

( ,0) ( ; ) ( ) ( ; ) ( )
E E

j j
N NN

j j j j j ji i ij i ij i
z k zx k zz kl xl l l zl l

j l l

u x U x x T x U x x T x
  

 
 

  

      (6.10b) 

where ( ; )
ij i j
mn k lU x x  denotes the influence function, which is the horizontal (m = x) or 

vertical (m = z) displacement at the nodal location ( ; 0)
i

kx  at the contact surface under 

the strip i due to a uniform horizontal (n = x) or vertical (n = z) strip load of unit 

intensity applied at the nodal location ( ; 0)
j

lx  at the contact surface under the strip j. In 

addition, 
j

xlT  and 
j

zlT  (l = 1, 2, …, NE
j) are the shear and normal contact tractions at 

the node l of the strip j, which are assumed to be uniformly distributed over the 

tributary length of the node.  

These influence functions 
ij
mnU  can be obtained by solving a boundary value 

problem of a transversely isotropic poroelastic layer subjected to uniformly 

distributed vertical and horizontal strip loads of unit intensity, and  the corresponding 

boundary conditions can be expressed as,  

( ,0) ( , )nz nx n x zf       (6.11a)  

( ,0) 0xp          (6.11b)  

( , ) 0 ( , )n x h n x zu                        (6.11c)  

0( , )z x hw                              (6.11d) 

where 

   ( ) ; ,( 0.5 ) ( 0.5 )n x n z xf H x t H x t      (6.11e) 

and 0.5t is the half-width of the applied loads. The arbitrary functions for the applied 

vertical and horizontal loading cases can be obtained by solving the boundary-value 

problem for each case separately, i.e. fx = 0 for the applied vertical ring load and fz = 

0 for the applied horizontal load. The application of the Fourier integral transform, 

Eq. (3.8a), together with the substitution of the general solutions, Eq. (3.16), for 
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each loading case yields the solutions of the six arbitrary functions Aj and Bj (j = 1, 

2, 3). The influence functions in the Fourier transform domain are then obtained by 

substituting those arbitrary functions into Eq. (3.16). 

The equilibrium equations of applied forces on a rigid strip j (j = 1, 2, …, N)  

can then be expressed as, 

1

j
EN

j

l

j
xl

j
xF T t



         (6.12a) 

1

j
EN

j

l

j
zl

j
zF T t



         (6.12b) 

 
1

j
EN

j j j

c l

l

j
zl

j
yM T t x x



        (6.12c) 

Finally, the relationship between the applied loading on the strip j, and the 

displacement amplitudes of the strip i, can be expressed in the following matrix form: 

 

1 11 12 1 1

2 21 22 2 2

1 2

N

N

N N N NN N

     
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    (6.13a) 

where 
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; 0 ; (  and 1,2,..., )

0 j

y
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z z

ij j ji i
x x

i i

C F

C C F i j N

a C C M

    
    

        
    

    

D C F

(6.13b) 

In Eq. (6.13), 
ij

V
C , 

ij

H
C , 

ij

M
C  and 

ij

HM
C  respectively represent the vertical, horizontal, 

coupling and rocking compliances of the strip i due to the loading applied on the strip 

j (i and j = 1, 2, …, N). 

 

6.2.2 Numerical solutions and discussions  
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Note that the expressions for all those the non-dimensional compliances are 

the same as those defined in Section 6.1.2.  Figure 6.7 shows the comparison of non-

dimensional vertical, horizontal and rocking compliances of a rigid strip of a width 

2a bonded to a transversely isotropic layer with a thickness of  h/a = 1 between the 

present solution and the solution given by Gazetas (1981). The material properties of 

the layer are given as follows: Eh/Ev = 2; G/Ev = 0.5; h = vh = 0.45. In addition, the 

compliances from the present study are obtained by setting all poroelastic material 

parameters to be negligibly small with the number of discretized contact area equal 

to NE = 32. It can be seen from Figure 6.7 that very good agreement between the 

two solutions is obtained for both real and imaginary parts of all compliances. 

Senjuntichai and Rajapakse (1996) presented non-dimensional impedances of a rigid 

strip bonded to an isotropic poroelastic layer with h/a = 1. Note that the impedances 

of a rigid strip can be obtained from the inversion of the compliance matrix Cij given 

by Eq. (6.13). The material properties of the layer are defined as, Eh
* = Ev

* = 2.6; h = 

vh = 0.3; h = v = 0.95; f
* = 0.53; mh

* = mv
*

 = 1.5; M* = 12.5; and bh
* = bv

* = 

3.16. It is evident that non-dimensional vertical, horizontal, rocking and coupling 

impedances, denoted by KV
*, KH

*, KM
* and KHM

* respectively between the present 

solution with NE = 32 and the solution reported by Senjuntichai and Rajapakse 

(1996) agree very closely for both real and imaginary parts as shown in Figure 6.8.  

Consider a system of two rigid strip foundations with the same width of 2a 

on a transversely isotropic poroelastic layer with the thickness h overlying an 

impermeable rigid base as shown in Figure 6.9.  The distance between the two strips 

is represented by d, and the contact surface between the strips and the layer is fully 

permeable. Strip 1 is subjected to the time-harmonic vertical, horizontal and 

moment loads with its displacements being given by Eq. (6.9). On the other hand, 

Strip 2 is free of any external loading. In addition, Strip 2 is also restrained such that 

their vertical and horizontal displacements are zero. It should be noted that the 

solution to this case where the loading is applied only to one strip can be 

superimposed to investigate the dynamic interaction problem where both strips are 

loaded. Numerical solution corresponding to the non-dimensional compliances of 

Strip 1 of the double-strip system bonded to a transversely isotropic poroelastic 
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layer, as shown in Figure 6.9, is presented for the rest of the paper. Three types of 

transversely isotropic poroelastic layers are considered in the numerical study, 

namely, Layer A, Layer B and Layer C. The material properties of the three layers 

are given as follows: Eh
* = 3; h = vh = 0.3; h = v = 0.95; f

* = 0.5; mh
* = mv

*
 = 1; 

M* = 12.5; and bh
* = 2. In addition, Layer A is chosen as an isotropic poroelastic 

layer, thus Ev
* = 3 and bv

* = 2, whereas Ev
* = 3 and bv

* = 1 for Layer B and Ev
* = 1.5 

and bv
* = 2 for Layer C respectively to portray the anisotropic effects in Young’s 

modulus and the parameter b on the this dynamic structure-soil-structure interaction 

problem. 

Figure 6.10 shows the non-dimensional compliances of Strip 1 of the double-

strip system on the three transversely isotropic poroelastic layers of the same 

thickness h/a = 1 over the frequency range 0 <  ≤ 5 and the distance between the 

two strips is d/a = 0.5.  Numerical results presented in Figure 6.10 indicate that 

similar variations of the compliances with the frequency are observed in Strip 1 on 

the three layers. It is evident that the variations in Ev and bv have a significant 

influence on the vertical, rocking and coupling compliances. However, a negligible 

dependence of the real and imaginary parts of CH
* on Ev and bv is observed as these 

two parameters represent the anisotropic properties of poroelastic materials in the 

vertical direction. In addition, it can be seen from the non-dimensional compliances 

shown in Figure 6.10 that the consideration of anisotropic properties yields the strip-

poroelastic soil system that is less stiff and less damped under vertical and rocking 

motions. 

The influence of the distance between the two strips, d/a, on the non-

dimensional compliances of Strip 1 is presented in Figure 6.11 for the frequency 

range 0 <  ≤ 3. Two rigid strips, as shown in Figure 6.9, resting on the transversely 

isotropic poroelastic Layer C with a thickness of h/a = 1 is considered for different 

values of d/a = 0.25, 0.5, 1, and 4. The case of single strip foundation is also shown 

in Figure 6.11 for comparison. It can be observed that the influence of d/a on the 

compliances is less significant when the distance between the two strips is larger. It 

is found that the compliances of Strip 1 for the cases of d/a = 4 and those of single 

strip are virtually identical implying that the influence of adjacent foundations could 
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be ignored if the distance between the two strips are at least four times greater than 

their width. It should be noted that the case of three-strip system has also been 

investigated by preparing similar plots of all compliances of the Strip 1 to those 

presented in Figure 6.11 with the distances between Strip 1 and Strip 2 and between 

Strip 2 and Strip 3 being d/a = 0.25. It is found that the compliances of Strip 1 

corresponding to the three-strip system are practically the same as those of the two-

strip system. Thus, only the case of the double-strip system is considered to 

investigate the interaction between adjacent foundations. 

The numerical results corresponds to the compliances of Strip 1 on the Layer 

C with d/a = 0.5 for various thicknesses h/a are presented in Figure 6.12 over the 

non-dimensional frequency range 0 <  ≤ 3. The numerical results of all 

compliances of Strip 1 on a relatively thin layer (h/a ≤ 5) show oscillatory variations 

with the frequency due to the standing waves generated within the layer, which 

practically vanish for the thick layer (h/a > 15). In addition, it is found that the 

compliances of Strip 1 on transversely isotropic saturated layers with h/a = 15 and 

20 are practically identical, and they vary smoothly over the frequency range under 

consideration. The analysis of the dynamic interaction between a multiple strip 

system and a transversely isotropic poroelastic layer with h/a > 15 could then be 

carried out by treating the layer as a half-space. 

 

6.3 Multiple Flexible Strip Foundations on Multi-Layered Half-Plane 

6.3.1 Formulation of interaction problem 

Consider a system of NS flexible strip foundations resting on a multilayered 

transversely isotropic poroelastic half-plane as shown in Figure 6.13. The ith strip 

foundation has a width of 2ai, and a local coordinate  as  = (x −xi)/ai, where xi is 

the x-coordinate at the center of the ith foundation (i = 1, 2, 3,…, NS). The contact 

area between the flexible strip foundations and the half-space is assumed to be 

smooth, and either fully permeable or impermeable. The vertical displacement of the 

ith foundation is denoted by  iw  , and can be expressed in the following form.  
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 
0

, 1,2,3,...,
TN

i i n

n

n

sw i N 


              (6.14)  

where i

n  (n = 0,1,…,NT) denotes a set of generalized coordinates. Hence, the 

bending moment per unit length acting on the ith foundation is in the following form. 

    2

0

1 , 1,2,3,...,
TN

i i i n

n

n

sM D n n i N  



       (6.15)  

where 

 

 

3

2

12 1

i i
st sti

i
st

E h
D

 
  




      (6.16)  

where i

sth  denotes thickness of the ith foundation, and i

stE  and i

st  represent Young’s 

modulus, and Poisson’s ratio of the ith foundation material respectively.  

 For an ith impermeable foundation, there are two unknowns, which are normal 

traction ( )i

zT   and ( )i

pT   pore pressure jump. In order to solve for these unknowns, 

the contact surface between ith foundation is then discretized into a total number of  

i

EN  strip elements with equally spaced nodes, where the tributary length ti is equal to 

ai/NEi as shown in Figure 6.6(b). The vertical displacement compatibility and the 

impermeable condition are then imposed at the contact surface between the strip 

foundation and the half-plane. This is done by taking each term of the deflection 

approximation of the ith foundation with 1i

n   (n = 0,1,…,NT and i = 0,1,…, NS). 

Thereafter, the resulting deflection variation and zero flow condition are imposed on 

the nodal locations at the contact surface of the half-plane by applying contact traction 

i

znkT  and pore pressure 
i

pnkT  at the kth node of  ith foundation, where n = 0,1,…,NT and 

k = 0,1,…, i

EN . The following relationship between the normal traction, pore 

pressure jump and the generalized displacement can be established on the contact 

surface of all impermeable foundations.  
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1 1 111 11 1
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where 
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E
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qr qr qr N
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 

  
 
 
 

     (6.18) 

where the elements ,

ij

qr klG  (i, j = 1, 2,…, NS; k, l = 1, 2,…, NE) denote the influence 

functions, which are the vertical displacement (q = z) and the relative fluid 

displacement (q = p) at any point of the kth strip element on contact surface of ith 

foundation due to a unit vertical load (r = z) and applied pore fluid pressure (r = p) of 

unit intensity, which are uniformly distributed over the lth strip element of jth 

foundation. The influence functions 
ij

klG
 
can be obtained from the exact stiffness 

matrix method under plane strain deformations presented in Section 4.2. In addition, 

the elements of displacement and traction are expressed below. 

1 2 1 2,
E E

i i i i i i i i i i

zn zn zn znk znN pn pn pn pnk pnN

TT
T T T T T T T T T T       

(6.19) 

1 2 1 2,
E E

i i i i i i i i i i

zn zn zn znk znN pn pn pn pnk pnN

TT
u u u u u u u u u u       

 (6.20) 

For a fully permeable contact surface on which no pore pressure is generated, Eq. 

(6.17) is then reduced to, 

1 1 111 12

2 2 221 22
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 The Lagrangian function   of the system of NS flexible strip foundations as 

shown in Figure 6.13 can be expressed as, 

        
1

1

2

S
aN

i i i i i

z v p st

i a

T T f w dV U      
 

  
       

  
            (6.22)  

In the above equation, Vi and Ui denote the kinetic and strain energies of the ith strip 

foundation respectively which can be expressed in term of the generalized 

coordinates, i

n  (n = 0,1,…,NT; i = 0,1,…, NS), in the following matrix form: 

   , , 1,2,3,...,
T T

i i i i i i i i

st st sV U i N  ΔM Δ Δ H Δ    (6.23) 

The elements i

stH  and i

stM  can be expressed respectively as, 

 
 

1

1

2( 1)
1 1 ,

m n
i i i

m nst sti

mn
m n

h a
M


 

 

 
   
 

     (6.24a) 
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2
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( 1)( 2)( 1)( 2)
1 1 ,

( 5)1 ( )

m n
i i i

m nst sti

mn i

st

E h a m m n n
H

m n

 

        
    

 (6.24b) 

where i

st  denotes  mass density of the ith foundation, and qi() denotes the external 

loading acting on the ith foundation and can be written as, 

 
0

L
i i m

m

N

m

q  


                (6.25) 

In addition, 
i

m  (m = 0,1,…,NL) denotes coefficients of loading function.  

 The Lagrangian’s equations of motion for this problem are determined from the 

following equation.  

0,
AA

d

dt

  
  
 

               (6.26)  

where 
1 2 SN

T
     A . As a results, it leads to the following equations of 

motion for determination of A. 

QA B         (6.27) 

where  

 2 T T T

st st st st      Q M M Η Η S S     (6.28) 
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and 

1 2diag , diag , diag , SNi i i

st st st st

T
                M M Η Η S S B B B B

(6.29) 

In above equations, the element i

mnS  and i

mB  of i
S  and i

B  (m,n = 0,1,…,NT+1; i = 

0,1,…, NS) can be expressed as, 

   
1

( 1) ( 1)
1

1
,

2

E m
i i i i
mn vk k z n k p n k

N

k

S l T T 


 


      (6.30a) 
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1 1
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m k
i iN

m kki
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B

m k


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

 
 
 
 

 
             (6.30b) 

where 
i

kl  denotes the width of the kth strip element of the ith foundation. 

 The solution of a linear simultaneous equation system given by Eq. (6.27) 

yields the solution of the generalized coordinates i

n  (n = 0,1,…,NT; i = 0,1,…, NS). 

By substituting the generalized coordinates of ith foundation into Eq. (6.14), the 

vertical displacement of the ith is then obtained. 

 

6.3.2 Numerical solutions and discussions  

To study a soil-structure interaction problem between multiple flexible strip 

foundations and multi-layered transversely isotropic poroelastic half-planes, 

corresponding to System A and System B similar to that in Section 4.2, are selected. 

The dynamic interaction between a system of strip foundations subjected to a 

uniform vertical load of intensity q0 resting on a multi-layered transversely isotropic 

poroelastic half-plane as shown Figure 6.13 is presented next. A non-dimensional 

deflection (compliance) and a relative flexibility parameter of the foundation defined 

as    (1)*

0
/w x G w x aq  and 

3 2 (1)3/12(1 )st st stE h Ga    respectively are presented. Figure 

6.14(a) shows a comparison of inverted central deflection 1/w*(0) for two values of  

= 0.5 and  = 1 for a strip footing resting on the surface of homogeneous 

transversely isotropic half-plane between the present study and the solutions given by 

Ai et al. (2017). The material properties of the half-plane are Eh
* = 6; Ev

* = 3 and h 
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= vh = 0.25. The converged solution is attained when NE ≥ 32 and NS ≥ 8. It can be 

obsevered from Figure 6.14(a) that the solution of the current formulation is in good 

agreement with that given by Ai et al. (2017) for both flexibility values. A system of 

strip footings on multi-layered poroelastic half-plane by Senjuntichai and Kaewjuea 

(2008) are also employed to verify the present solution scheme. Note that the 

comparisons in Figure 6.14(b) consist of single foundation and two foundations with 

 = 1 resting on a multi-layered poroelastic half-space. The multi-layered poroelastic 

half-plane consists of first and second layers with same thickness of a and 

underlying half-plane. Note that the distance (d) between two foundation is d/a = 1. 

It is evident from Figure 6.14(b) that very good agreement between both solutions is 

obtained for both real and imaginary parts. The proposed numerical scheme is thus 

verified through these independent comparisons. 

The effect of footing flexibility and permeability on the dynamic response of 

multiple flexible strips is investigated next. Numerical results in Figures 6.15(a) and 

6.15(b) respectively present the vertical displacement w*(0) and bending moment 

M*(0) at the center of a flexible impermeable strip on the multi-layered transversely 

isotropic poroelastic half-plane identified as System A with the material properties 

shown in Table 4.1. In this investigation, a set of footing flexibilities, which are  = 

0.2, 0.5, 1, 10 and 100, is considered in Figure 6.15. Strip footings with larger  are 

stiffer and less damped compared to more flexible footings for both real and 

imaginary parts as shown in Figure 6.15(a). In addition, the numerical results of 

central bending moment M*(0) show that stiffer footings (higher values) experience 

higher bending moments. 

Figure 6.16 shows the profiles of non-dimensional contact traction 

 *

0z zT T q
 
and pore pressure jump  *

0p pT T q
 
under an impermeable strip with 

 = 100. The selected examples correspond to the cases of  = 0.5 and 2, and traction 

and pore pressure profiles are plotted along the x-axis. It can be seen from Figure 

6.16 that the profiles of contact traction
 
and pore pressure jump depend significantly 

on the frequency. Both real and imaginary parts of contact traction are singular near 

the boundary of the strip. The magnitude of pore pressure jump is relatively small 
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for both real and imaginary parts. In addition, both real and imaginary parts of pore 

pressure jump converge to zero near the boundary of the strip implying that no 

singular pore pressure jump takes place at the strip edge.  

Figures 6.17(a) and 6.17(b) respectively show w*(0) and M*(0) of an 

impermeable flexible strip footing with  = 1 resting on different transversely 

isotropic poroelastic systems. Four transversely isotropic poroelastic systems, namely 

a homogenous half plane, a homogenous layer of thickness a with an impermeable 

rigid base, and multi-layered System A and System B, are considered in the figure to 

investigate the influence of layering and transversely isotropic poroelastic material 

parameters. The material properties of the homogeneous half-plane and the 

homogenous layer are identical to those of the first layer defined in Table 4.1. The 

geometries and material properties of the multi-layered System A and System B are 

identical to those used in Chapter 4. It can be seem from Figures 6.17(a) and 6.17(b) 

that substantial differences among strip foundations on three poroelastic systems are 

clearly observed. Both real and imaginary parts of w*(0) and M*(0) for the strip on the 

homogenous half-plane and layer vary smoothly with  whereas those of System A 

and System B show oscillatory variations. The difference in the strip displacements 

between System A and System B is mainly due to the anisotropy effect, where System 

A corresponds to a transversely isotropic medium while System B corresponds to an 

isotropic medium. It is found that central vertical displacement of strip foundation on 

System B is higher than that on System A since the System A has a stiffer properties 

in the vertical direction.  

Figures 6.18(a) and 6.18(b) respectively present w*(0) of two flexible 

impermeable strip footings with  = 0.2 and 100 resting on the System A for different 

distances between two footings, i.e. d/a = 1, 2, 4 and 8.  In addition, the case of 

single-footing is also shown in Figure 6.18 for comparison. It is evident from Figure 

6.18 that w*(0) depend significantly on the distance d. The central vertical 

displacements of closely spaced strips with d/a ≤ 4 show oscillatory variations with 

frequency. The variation of w*(0) becomes smoother when the distance d is larger. It 

can be seen that the values of w*(0) converge to those of single foundation when d/a > 
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8 implying that two strip system could be studied as a single strip when the distance 

from adjacent foundations is larger than two time of their width. 

 

6.4 Conclusion  

In this chapter, three problems, namely a rigid strip foundation embedded in a 

homogeneous half-plane, multiple rigid strip foundations on a homogeneous layer 

with rigid base and multiple flexible strip foundations on a multi-layered medium, are 

presented. For rigid strip foundations, vertical, horizontal, rocking, and coupling 

compliances are presented, whereas for the case of multiple flexible strips only the 

case of vertical loading is considered. The interaction problem is investigated by 

employing a semi-analytical discretization technique together with the fundamental 

solutions obtained in Chapter 4. Accuracy of the present solution scheme is confirmed 

by comparing with existing solutions. Selected numerical solution on non-

dimensional compliance is presented to show the influence of the two anisotropic 

parameters Ev and bv on the compliances. Numerical results indicate that all 

compliances except the horizontal compliance show a strong dependence on the two 

parameters. It is also found that the impermeable hydraulic boundary condition at the 

contact area makes a strip foundation under vertical loading stiffer and less damped 

than the fully permeable one. In addition, the compliances also depend significantly 

on the distance between adjacent foundations, the layer thickness, the frequency of 

excitation and the relative rigidity (in the case of flexible strips). 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 80 

 

(a) 

 

(b) 

Figure 6.1 (a) Rigid strip foundation embedded in a transversely isotropic poroelastic 

half-plane under time-harmonic loading; (b) Discretization of contact area 
  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 81 

 

 

(a) 

 

 
 

(b) 

 

Figure 6.2 Comparison of (a) non-dimensional vertical compliances of a rigid strip 

resting on a transversely isotropic half-plane; and (b) non-dimensional impedances of 

a rigid strip resting on an isotropic poroelastic half-plane   
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(a) 

 

  

(b) 

 

Figure 6.3 Non-dimensional vertical compliances of surface strip foundation (h/a = 

0): (a) permeable foundation; (b) impermeable foundation 
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(a) 

 

  

(b) 

 

Figure 6.4 Non-dimensional vertical compliances of strip foundation embedded in 

Mat B with various embedded depths: (a) permeable foundation; (b) impermeable 

foundation 

  

-0.3

0.0

0.3

0.6

0.9

1.2

1.5

1.8

0 1 2 3

R
e[

C
V

*
 ]



h/a = 0

h/a = 1

h/a = 2

h/a = 5

h/a = 10

-1.5

-1.2

-0.9

-0.6

-0.3

0.0

0 1 2 3

Im
[C

V
*
 ]



-0.3

0.0

0.3

0.6

0.9

1.2

1.5

1.8

0 1 2 3

R
e[

C
V

*
 ]



h/a = 0

h/a = 1

h/a = 2

h/a = 5

h/a = 10

-1.5

-1.2

-0.9

-0.6

-0.3

0.0

0 1 2 3

Im
[C

V
*
 ]





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 84 

  

(a) 

  

(b) 

 

 

(c) 

 

Figure 6.5 Non-dimensional compliances of surface strip foundation (h/a = 0): (a) 

rocking compliance; (b) horizontal compliance; (c) coupling compliance 
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(a) 

 

 

(b) 

 

Figure 6.6 (a) A system of N rigid strips on a transversely isotropic poroelastic layer 

under time-harmonic loading; (b) Discretization of the contact surface under strip i 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 86 

 

 

 

Figure 6.7 Comparison of non-dimensional compliances of a rigid strip on a 

transversely isotropic elastic layer (h/a = 1)  
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Figure 6.8 Comparison of non-dimensional impedances of a rigid strip on an isotropic 

poroelastic layer (h/a = 1) 
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Figure 6.9 Two-strip system considered in the numerical study 
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Figure 6.10 Non-dimensional compliances of Strip 1 with d/a = 0.5 on different 

transversely isotropic poroelastic layers with h/a = 1  
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Figure 6.11 Non-dimensional compliances of Strip 1 with various distances (d/a) on 

transversely Layer C with h/a = 1  
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Figure 6.12 Non-dimensional compliances of Strip 1 with d/a = 0.5 on Layer C with 

various thicknesses (h/a) 
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Figure 6.13 Multiple flexible strip foundations on a multi-layered transversely 

isotropic poroelastic half-plane under time-harmonic loading 
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(a) 

 

  
(b) 

 

Figure 6.14 Comparison of central displacement of surface strips on: (a) transversely 

isotropic half-plane; (b) poroelastic half-plane 
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(a) 

 

  
(b) 

 

Figure 6.15 (a) Central vertical displacement and (b) Bending moment at the center of 

a flexible impermeable strip on System A for different foundation flexibilities 
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Figure 6.16 Profiles of contact traction and pore pressure jump under flexible 

impermeable strip with  = 100 on System A 
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(a) 

 

  
(b) 

 

Figure 6.17 Dynamic responses of a flexible impermeable strip with  = 1 resting on 

different system: (a) center vertical displacement; (b) bending moment at the center 
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(a) 

 

  
(b) 

 

Figure 6.18 Central vertical displacement of two flexible impermeable strips on 

System A with various distance (d/a): (a)  = 0.2; (b)  = 100 
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CHAPTER 7  

INTERACTION BETWEEN CIRCULAR FOUNDATION AND 

TRANSVERSELY ISOTROPIC PORORELASTIC SOILS 
 

In this chapter, the fundamental solutions of homogeneous and multi-layered 

transversely isotropic poroelastic half-space under axisymmetric deformations derived 

in Chapter 5 are employed in the analysis of dynamic interaction between a circular 

foundation and transversely isotropic poroelastic soils. Three problems, namely a 

rigid circular foundation on a homogeneous layer with rigid base, a flexible circular 

foundation embedded in a homogeneous half-space and a flexible circular foundation 

embedded in multi-layered medium, are considered in this chapter. Selected 

numerical results are presented to portray the influence of relevant parameters on the 

foundation response. 

 

7.1 Rigid Circular Foundation on Homogeneous Layer with Rigid Base 

7.1.1 Formulation of interaction problem 

Consider the dynamic interaction between a surface circular foundation of 

radius a subjected to time-harmonic vertical loading and a transversely isotropic 

poroelastic layer with rigid base as shown in Figure 7.1. The foundation is assumed 

to be rigid, massless and undergoing time-harmonic vertical displacement of 

amplitude z. The contact surface between the foundation and the layer is assumed 

to be smooth, and either fully permeable or impermeable. The discretization 

technique is employed to solve this soil-structure interaction problem. Let S denote 

the contact surface between the foundation and the saturated layer. The contact area 

S is then divided into a total number of Ne annular elements, with the width of each 

element being rl (l = 1, 2,…, Ne). In addition, the inner and outer radii of the lth 

annular element are expressed as rli and rlo, respectively (see Figure 7.2). Note that 

for the first element (l = 1) r1i is zero, and the contact area is then a circular area. The 
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following relationship can be established on the contact surface S under an 

impermeable foundation:   

zpzz

pz pp

z

p

     
     
       


H H Δ

H H

T

0T
  (7.1a)  

In the above equation, the elements 
ij

klH (k = l = 1, 2,…, Ne) in Hij denote the 

influence functions, which are the vertical displacement (i = z), and the relative fluid 

displacement (i = p) at the center of the annular element k on S due to a unit vertical 

ring load (j = z) and ring fluid pressure of unit intensity (j = p) applied at the center of 

the annular element l on S; each element in the column matrix  is the displacement 

amplitude z; and 0 is a zero column matrix.  

These influence functions 
ij

klH  can be obtained by solving a boundary value 

problem corresponding to a transversely isotropic poroelastic layer overlying a rigid 

base. Two loading cases are considered to obtain the influence functions, i.e., a unit 

vertical ring load fz, and applied ring fluid pressure of unit intensity fp, which are 

distributed over an annular area. The boundary conditions for both loading cases are 

given as follows: 

( ,0) 0rz r         (7.1b)  

( ,0)zz z v pr f f        (7.1c)  

( ,0) prp f        (7.1d) 

( , ) 0 ( , )i r ru h i z       (7.1e)  

( , ) 0z rw h         (7.1f) 

where    

( ) ( ) ( , )n lo li pf H r r H r r n z          (7.1g)  

and the inner and outer radii of the annular loading are expressed as rli and rlo, 

respectively (see Figure 7.2). The arbitrary functions for the two loading cases can be 

obtained by solving the boundary-value problem for each case separately, i.e. fp = 0 

for the applied vertical ring load and fz = 0 for the applied ring fluid pressure. The 
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application of the Hankel integral transform, Eqs. (3.20a) to (3.20f), together with the  

substitution of the general solutions, Eq. (3.27), for each loading case yields the 

solutions of the six arbitrary functions Aj and Bj (j = 1, 2, 3). The influence functions 

in the Hankel transform domain are then obtained by substituting those arbitrary 

functions into Eq. (3.27).  

In addition, the elements Tzl and Tpl in the matrices Tz and Tp respectively 

denote the normal contact traction and pore pressure jump generated at the annular 

element l on S. Note that Tzl and Tpl are assumed to be constant within each annular 

element. The required influence functions,
ij

klH , are determined by employing an 

accurate numerical inversion scheme. Thereafter, the unknown contact traction Tzl 

and pore pressure jump Tpl
 at each annular element can be solved from the discrete 

version of Eq. (7.1a). 

The applied vertical force F can then be calculated from the contact traction 

and pore pressure jump generated at the contact area S from the following equation: 

2 2

1

( )( )
Ne

lo li z

l

zl plF r r T T 


     (7.2)  

where 
2 2( )lo lir r   is the contact area of the lth annular element (l = 1, 2, …, Ne). 

Finally, the vertical vibrations of a rigid circular foundation is characterized by 

the vertical compliance CV, in which,  

z
VC

F


   (7.3)  

For a fully permeable foundation, Eq. (7.1a) reduces to  

zz z  ΔH T   (7.4) 

and Eq. (7.2) involves only Tzl in the calculation of vertical load F applied to a fully 

permeable foundation.  

 

7.1.2 Numerical solutions and discussions  
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The accuracy of the present numerical scheme is then verified with the 

existing solutions for rigid circular foundations. Figure 7.3(a) presents the 

comparison of non-dimensional vertical compliances, defined as 
* 4 / (1 )V V vhC GaC   , 

between the present solution and the solution given by Zeng and Rajapakse 

(1999). The material properties employed in the present solution are as follows: Eh
* 

= Ev
* = 2.6; v = vh = 0.3; h = v = 0.95; f

* = 0.53; mh
* = mv

*
 = 1.1; M* = 12.2; 

and bh
* = bv

* = 2.3. Convergence and stability of the proposed solution scheme was 

studied with respect to the number of annular elements, Ne, employed in the 

discretization of the contact area. It was found that numerically stable and 

converged solutions can be obtained when Ne = 16. In addition, the half-space can 

be modeled from the present study by using the layer thickness of h/a > 15. It can be 

clearly seen from Figure 7.3(a) that the present solution, with Ne = 16 and h/a = 20, 

agrees very closely with the existing solution for both real and imaginary parts of 

the compliance. 

The accuracy of the present study is also examined by comparing with 

existing solutions for a transversely isotropic elastic material. Figure 7.3(b) presents 

the comparison of the non-dimensional vertical impedance, 
* / zVK F Ga  , of a rigid 

circular plate resting on a transversely isotropic elastic half-space between the 

present solution and Ai et al. (2016), where the material properties of the half-space 

are defined as Eh
* = 5; Ev

* = 2.5; and v = vh = 0.25. In addition, Ne = 16, h/a = 20, 

and all poroelastic material parameters are set to be negligibly small in the present 

solution. It is evident from Figure 7.3(b) that very good agreement between the two 

impedances is obtained for both real and imaginary parts. The proposed numerical 

scheme is thus verified through these independent comparisons. 

In this subsection, numerical results for non-dimensional vertical compliance, 

CV
*, of a rigid circular foundation on a transversely isotropic poroelastic layer 

are presented to portray the influence of anisotropic material properties on CV
*. The 

following variables are introduced to investigate the anisotropic effects of the 

saturated layer, i.e., the ratio between the two drained Young’s moduli, n1 = Ev/Eh, 

and the ratio between the parameters accounting for the internal friction due to 
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relative motion between solid and fluid phases, n2 = bv/bh. In addition, the following 

parameters are employed, Eh
* = 3; bh

* = 2; v = vh = 0.3; h = v = 0.95; f
* = 0.5; 

mh
* = mv

*
 = 1; M* = 12.5; and Ne = 16, for all numerical results presented hereafter. 

The influence of hydraulic boundary conditions at the contact surface is also 

investigated with both fully permeable and impermeable foundations being 

considered in Figures 7.4 to 7.6.  

Non-dimensional vertical compliance of a rigid circular foundation resting 

on a transversely isotropic poroelastic layer with finite thickness h/a = 1 are 

presented in Figures 7.4 and 7.5 for the non-dimensional frequency 0 < 5. 

Figures 7.4(a) and 7.4(b) show the vertical compliances of fully permeable and 

impermeable foundations, respectively, for different values of n1, i.e., n1 = 0.5, 1 and 

2, and n2 = 1 to consider the influence of anisotropy in the Young’s moduli. 

Comparison between the vertical compliances of fully permeable and impermeable 

foundations, presented in Figures 7.4(a) and 7.4(b) respectively, show similar trend 

with increasing difference between CV
*of different hydraulic conditions at the contact 

surface being observed at high frequencies (> 2). It is clearly seen that non-

dimensional vertical compliances depend significantly on the ratio of Ev/Eh for both 

pervious and impervious foundations. The maximum responses of both real and 

imaginary parts of CV
* decrease with increasing n1 since the Young’s modulus in the 

vertical direction Ev increases with increasing n1 rendering the layer stiffer and more 

damped. In addition, the peak values of CV
* are attained at higher frequencies with 

increasing value of n1 for both types of foundations.  

To study the influence of the parameters bv and bh, non-dimensional vertical 

compliances of rigid circular foundation on a transversely isotropic poroelastic layer 

with h/a = 1 and various values of n2 = bv/bh are presented in Figure 7.5. Figures 

7.5(a) and 7.5(b) show the vertical compliances of fully permeable and impermeable 

foundations respectively on the saturated layer with n2 = 0.5, 1 and 2, and n1 = 1 for 

0 < 5. Since the parameter b is inversely proportional to permeability, the layer 

with n2 = 2 is then the least permeable among all layers considered in Figure 7.5. 

Numerical results shown in Figure 7.5 indicate that the influence of the parameter n2 

on both real and imaginary parts of the vertical compliance is less significant than 
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what observed from the effect of n1 shown in Figure 7.4. In addition, the influence of 

n2 becomes almost negligible on CV
* at low frequency (1.0. The influence of 

the hydraulic boundary condition at the contact surface, on the other hand, is more 

evident on the solutions shown in Figure 7.5 when compared to those in Figure 7.4 

as the value of n2 directly relates to the permeability of the layer. A notable feature 

observed in Figure 7.5 is the fact that difference between pervious and impervious 

foundations is decreased with increasing the value of n2. This is physically realistic 

since the layer becomes less permeable with increasing the value of n2, the hydraulic 

boundary condition at the contact surface then becomes less relevant. Therefore, Eq. 

(7.4) could be employed to study vertical vibrations of rigid foundation, irrespective 

of its permeable condition, on the layer with a large value of n2 (or bv/bh). 

The final set of numerical results corresponds to the case of a rigid circular 

foundation resting on transversely isotropic poroelastic layers of various thicknesses  

h/a. Non-dimensional vertical compliances of fully permeable and impermeable 

foundations are presented in Figures 7.6(a) and 7.6(b) respectively for the layers 

with h/a = 1, 2, 5, 15 and 20, and n1 = n2 = 0.5 for the non-dimensional frequency 0 

< 3. Numerical results presented in Figure 7.6 reveal that both real and 

imaginary parts of CV
* for the foundation on the layer with h/a < 5 show oscillations 

with the frequency due to the standing waves generated within the layer, which 

practically vanish for a deep layer. The difference of CV
* between pervious and 

impervious foundations is reduced with increasing the layer thickness h/a. In 

addition, non-dimensional vertical compliances of the foundation on the layers with 

h/a = 15 and 20 are practically identical implying that the vertical vibrations of a 

rigid foundation resting on a transversely isotropic poroelastic layer with h/a > 15 

could be investigated by considering the layer as a transversely isotropic poroelastic 

half-space.  

 

7.2 Flexible Circular Foundation in Homogeneous Half-Space 

7.2.1 Formulation of interaction problem 
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Consider a flexible embedded circular foundation under time-harmonic 

vertical loading as shown in Figure 7.7. The contact surface is assumed to be 

smooth, and either fully permeable or impermeable. The deflection, w(r) of the 

foundation is expressed in the following form:  

  2

0

, 0
N

n

n

n

w r r r a


                (7.5) 

where n  (n = 0,1,…,N) denotes a set of generalized coordinates.  

The strain and kinetic energies of the foundation denoted by Up and Vp 

respectively can be expressed as (Timoshenko & Woinowsky-Krieger 1959),  

2
2 2

2 2

0

2(1 )1 1
2

2

a
p

p

d w dw dw d w
U D rdr

dr r dr r dr dr




   
    

  
   (7.6a)

2

0

1
2 ( )

2

a

p p pV h w r rdr           (7.6b) 

where 
3 2/12(1 )p p pD E h   , and hp denotes thickness of the plate; and Ep, p, and p 

denote Young’s modulus, Poisson’s ratio, and the mass density of the foundation 

respectively. 

In view of Eq. (7.5), the strain and kinetic energies of the foundation can be 

expressed in terms of n in the following matrix form. 

   
T

pU    
p

Δ H Δ ,    
T

pV  
  pΔ M Δ     (7.7) 

In the above equations,    0 1 2, , ,..., N    Δ  is a column vector containing the 

generalized coordinates, and the elements 
p

ijH  and 
p

ijM  of HP and MP are given by, 

4 ( 1)( 1)
4( 1)( 1) 2(1 )(2 3) 2 , ( 1)

2 2 6
p

p

ij

D i j
i j i i j N

i j
H




 
       

 
        (7.8a) 

1 , ( 1)
2( 1)

p pp

ij i j N
i j

h
M

 
  

 
      (7.8b) 
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Let S denote the contact area between the foundation and the soil.  For an 

impermeable foundation, the applied vertical loading is resisted by the normal contact 

traction Tz(r) and a pore pressure jump Tp(r) across S. They can be written in terms of 

the generalized coordinates as follows: 

       
0 0

,
N N

z n nz p n np

n n

T r T r T r T r
 

                 (7.9)  

where Tnz(r) and Tnp(r) denote the normal contact traction and the pore pressure jump 

on S corresponding to the foundation displacement field r2n. 

 A solution for Tnz and Tnp can be obtained by discretizing S into Ne annular 

elements. It is assumed that Tnz and Tnp are constant within each annular element. The 

following relationship can be established.  

, 0,1,2,...,n N
    

    
     

zz zp
nz nz

pz pp
np np

T uG G
=

T uG G
  (7.10) 

where the elements 
ij

klG  (k = l = 1, 2,…, Ne) in Gij denote a set of influence 

functions, which are the vertical displacement (i = z) and the relative fluid 

displacement (i = p) at the centre  of the kth annular element on S due to uniformly 

distributed unit vertical pressure  and a unit  pore  pressure jump  over the lth annular 

element. The example of an annular element is shown in Figure 7.8.  

The influence functions 
ij

klG   were derived in Section 4.2 and are directly 

used in Eq. (7.10). The elements Tnzi, Tnpi, unzi and unpi of Tnz, Tnp, unz and unp are 

given respectively below. 

   ,nzi nz i npi np iT T r T T r              (7.11a)  

2 , 0n

nzi i npiu r u               (7.11b)  

 For a fully permeable foundation no pore pressure jump is generated on S, Eq. 

(7.10) is then reduced to, 

   , 0,1,2,...,n N   
zz

nz nz
G T = u    (7.12) 
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 The energy corresponding to the tractions on Uh of the soil can be expressed as 

follows:   

     
0

1
2

2

a

h z v pU T r T r w r rdr                (7.13)  

 The potential energy W due to an applied load q(r) on the foundation can be 

expressed as, 

   
0

2
a

W q r w r rdr               (7.14a) 

where 

 
0

ψ , 0
qM

m
m

m

q r r r a


               (7.14b) 

 and  ψm  (m = 0,1,…,Mq) denotes coefficients of the loading function.  

 The Lagrangian L of the foundation is given by (Washizu 1982),  

p p hL V U U W                 (7.15) 

 The equation of motion of the foundation is obtained from,   

0, 0,1,...,
n n

d L L
n N

dt

  
   

  
            (7.16)  

 In the view of Eqs. (7.5), (7.7) and (7.9), the Lagrangian L can be expressed in 

terms of n . By substituting Eq. (7.15) into Eq. (7.16), the following equations of 

motion for determination of n  

    K Δ X       (7.17) 

where  

       2
T T T

                             
p p p p s s

K M M H H H H   (7.18) 

In above equations, the elements 
s

ijH  and iX  of Hs and X respectively can 

be expressed as, 
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 

2 2

1

2 2

2

e

ok k k ik

s

ij jzk v jpk

i i

N

k

r r r r

H T T
i

 


    
   

     , 
0

ψ

2
2

q

m
i

M

m

X
m i


 

   (7.19) 

where rok, rik and rk denote the outer, inner and center radii of the kth annular element, 

and Tjzk and Tjpk are defined in Eq. (7.11a). 

The solution of Eq. (7.17) yields the solutions for the generalized coordinates 

n  (n = 0,1,…, N). By substituting the generalized coordinates into Eq. (7.5), the 

deflection of foundation can be obtained. Normal traction and pore pressure jump on 

S are obtained from Eq. (7.19). The bending moment M(r) of the foundation is given 

by:  

  2 2

0

2 (2 1) 2 , 0
N

n

n p

n

M r D n n n r r a 



                   (7.20)  

 

7.2.2 Numerical solutions and discussions  

To demonstrate the basic features of dynamic response of an anisotropic 

poroelastic soil, we consider the case of Berea sandstone which is similar to that in 

Section 4.2. Note that that the range of the ratio n = Ev/Eh varies from 0.5 to 2 which 

are identical to that in Section 4.2. Consider a uniformly loaded circular foundation 

as shown Figure 7.7. A non-dimensional deflection (compliance) and a relative 

flexibility parameter of the foundation are defined as    *

0/w r Gw r aq  and 

3 /Ga D  , respectively. Note that the foundation mass density is set to a negligible 

value to eliminate the foundation inertia effects and examine the influence of soil 

anisotropy, poroelasticity and other relevant parameters on the vertical response. 

Figure 7.9 shows a comparison of central deflection w*(0) for two  values for an 

embedded impermeable foundation (h/a = 1) with the solutions given by 

Senjuntichai and Sapsathiarn (2003) for an isotropic soil (Berea sandstone). For the 

foundation, p = 0.25 and  = 0 (rigid) and 100 (elastic). The solution scheme is found 
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to converge for Ne ≥ 32 and N ≥ 8. Comparisons shown in Figure 7.9 confirm the 

accuracy of the current formulation for both flexible and rigid foundations. 

Next, we examine the effect of foundation permeability on the dynamic 

response by considering fully permeable and impermeable rigid surface foundations 

(h/a = 0) in Berea sandstone. The influence of anisotropy is also shown by 

considering n = 0.5, 1 and 2. Figure 7.10 shows the solutions for foundation 

compliance w*(0) in the non-dimensional frequency range,  = 04. The influence of 

foundation permeability is negligible in the low frequency range (≤1.0 and 

become significant as the frequency increases. Impermeable foundations are stiffer 

and dissipate more energy with increasing frequency. The influence of anisotropy is 

more visible in the imaginary part of the compliance and generally tend to reduce as 

frequency increases for the different hydraulic boundary conditions of the foundation. 

Based on these results, it can be concluded that foundation permeability itself is not a 

significant factor affecting the dynamic response. In the ensuing sections, only 

impermeable foundations are considered.   

The influence of depth of embedment on the dynamic compliance, w*(0) is 

investigated next by considering h/a = 0, 1, 2, 10 and 100 for rigid foundations in an 

isotropic Berea sandstone and an anisotropic Berea sandstone with n = 2. Figures 

7.11(a) and 7.11(b) show the solutions for the isotropic and anisotropic cases 

respectively. The foundation in anisotropic Berea sandstone is stiffer and has more 

damping compared to a foundation on isotropic soil as the modulus in vertical 

direction is twice the value for the isotropic case. The variation of compliance with 

frequency is generally smooth for surface (h/a = 0) and deeply buried (h/a = 10 or 

100) foundations whereas shallow foundations (h/a = 1 and 2) show oscillatory 

variations as frequency increases. This behaviour is due to the wave reflection at the 

free surface for shallow foundations whereas for both deeply buried and surface 

foundations such wave reflections are minimal. The foundation stiffness and 

damping increase with the depth of embedment for low frequencies. The influence 

of frequency decreases as the depth of embedment increase. For h/a ≥ 10, the 

foundation can be considered deeply buried.  
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Figure 7.12 shows the profiles of a non-dimensional contact traction 

 *

0z zT T q
 

and pore pressure jump  *

0p pT T q
 

under a rigid impermeable 

foundation with  = 0. The selected examples are the case of n = 0.5 and 2, where a 

rigid foundation is embedded at h/a = 2. Traction and pore pressure profiles along 

the r-axis are presented for different frequencies, i.e.,  = 0.5 and 2. Numerical 

results presented in Figure 7.12 reveal that the imaginary part of 
*

zT  shows more 

dependence on frequency and hydraulic boundary conditions than the real part. Both 

real and imaginary parts of 
*

zT
 

are singular near the boundary of the rigid 

foundation. For pore pressure jump, the magnitude of 
*

pT  is relatively small except 

the imaginary part at higher frequency ( = 2). This reveals that the applied load is 

essentially transferred through the solid skeleton, particularly at a low frequency. In 

addition, both real and imaginary parts of 
*

pT
 
converge to zero near the boundary of 

the foundation indicating no singular pore pressure jump occurred at the foundation 

edge. 

The influence of foundation flexibility on the dynamic response is investigated 

next by considering foundations with  = 0.1, 10, 100 and 1000. Figure 7.13 shows 

that the central compliance depends significantly on both  and . For a given value of 

the real part of the compliance decreases with increasing frequency whereas the 

absolute value of the imaginary part of the compliance initially increases with 

frequency for  < 2 and thereafter decreases. Stiffer foundations are more damped 

compared to softer foundations at higher frequencies but the influence of frequency 

on the imaginary part of compliance is negligible at very small frequencies. As 

observed in Figure 7.10, soil anisotropy with n ≥ 1 makes the response stiffer with 

higher damping compared to an isotropic case. Central bending moment is an 

important parameter in the design of foundations. Figure 7.14 shows the influence of 

the foundation flexibility on the central bending moment M*(0). Bending moment 

shows a significant influence of both foundation flexibility and frequency of 

excitation. Stiffer foundations (smaller values) correspond to higher bending 
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moments and very flexible foundations show negligible bending moment. The soil 

anisotropy has a small effect on M*(0).  

The force-displacement relationship of a rigid circular foundation of radius a 

with mass m can be expressed as (Das, 2011), 

0

zGaA
Z

Q
                 (7.21) 

where Az denotes the amplitude of vertical vibration; Q0 denotes the amplitude of 

the time-harmonic force acting on the foundation; and Z denotes the dimensionless 

amplitude, which is given by, 

2 2

1 2

* 2 2 * 2 2

1 2(1 ) ( )

f f
Z

m f m f 




 
          (7.22) 

In addition, 
* 3m m a ; and f1 and f2 can be directly obtained from Re[w*/] and 

Im[w*/] respectively given in the preceding section.  

The amplitude of the force transferred to soil, denoted by P0, can be 

expressed as,  

* 2

0 0 0P Q m ZQ                 (7.23) 

Richart (1962) presented the solutions for Z for a rigid circular foundation on 

the surface of an isotropic soil for δ ≤ 1.5. To illustrate the coupled influence of 

anisotropy and poroelasticity on vertical vibrations, Figures 7.15(a) and 7.15(b) show 

the dimensionless amplitude Z and the dimensionless force transferred to soil, P0/Q0. 

The response curve given by Richart (1962) is also shown (Eh
* = Ev

* = 2.5, h = vh 

= 0.25).  In these figures, for the transversely isotropic elastic soil, the value of Ev
*= 

5 (n = 2) is used. For poroelastic materials, the values of h, v, f
*, mh

*, mv
* and M* 

are identical to the properties of Berea sandstone (Rice and Cleary, 1976), whereas 

the values of bh
* and bv

* equal to 2.3 and 11.5 are considered to illustrate the 

influence of b on the response. Figure 7.15 confirms that the degree of anisotropy 

has a major effect on the vertical response. Presence of poroelasticity also reduces 

the vertical amplitude as fluid friction serves as a damper and a reduction of 

displacement is seen as bh
* and bv

* increase. The influence of poroelasticity is 
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relatively higher in the case of isotropic soils compared to an anisotropic soil. The 

effects of poroelasticity and anisotropy on the vertical response become negligible 

for  > 2.0. The force transferred soil increases with frequency and reaches a peak 

value which is over the twice the static force for isotropic soils. The force 

transferred reaches an asymptotic value when δ > 2.0. The results also show that 

force amplification with frequency is smaller for poroelastic and anisotropic soils.   

 

7.3 Flexible Circular Foundation in Multi-Layered Half-Space 

7.3.1 Formulation of interaction problem 

Consider a flexible circular foundation under time-harmonic vertical loading 

embedded in a multi-layered transversely isotropic poroelastic half-space as shown in 

Figure 7.16. The formulation of dynamic interaction between a flexible circular 

plate and a homogeneous half-space outlined in Section 7.2 can be adopted for this 

problem, where only the influence functions in Eq. (7.10) are obtained by employing 

the exact stiffness matrix method outlined in Section 5.2.  

 

7.3.2 Numerical solutions and discussions  

The accuracy of the present study for dynamic response of a flexible circular 

foundation of radius a resting on a multi-layered transversely isotropic elastic half-

space is examined next. Ai and Liu (2014) reported displacement profiles  *w r  of a 

circular plate, subjected to a uniformly distributed load of constant magnitude q0, 

resting on a multi-layered transversely isotropic half-space. The multi-layered half-

space consists of the first and second layers with the same thickness of 3a overlying a 

homogeneous half-space. The normalized parameters are: Eh
* = Ev

* = 3 and for first 

layer; Eh
* = Ev

* = 4 for second layer; Eh
* = Ev

* = 3 for underlying half- space. In 

addition, h and vh are equal to 0.25 and G* is equal to 1 for all layers, whereas 

other poroelastic parameters are set to be negligibly small. The material properties of 

foundation are  = 11.25, and the normalized frequency is  = 1. By using Ne = 32 and 
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N = 8, it can be seen from Figures 7.17 that a very good agreement between the 

displacement profiles obtained from the present study and that reported by Ai and Liu 

(2014) is obtained for both real and imaginary parts. 

Figures 7.18(a) and 7.18(b) respectively show the central displacement of  

permeable and impermeable flexible circular plates in multi-layered transversely 

isotropic poroelastic half-space under time-harmonic vertical loading. Both System 

A and System B, which correspond to a transversely isotropic and isotropic 

poroelatic media respectively, are presented in Figure 7.18. In addition, p = 0.25 

and  = 10 for the flexible plate and Ne = 32 and N = 8 with both surface (h = 0) and 

embedded (h/a = 1) foundations being considered. The influence of anisotropy is 

clearly seen on dynamic response of flexible foundations. Moreover, the embedded 

foundation (h/a = 1) is less stiff and less damped than surface foundation (h = 0) as 

illustrated in Figures 7.18(a) and 7.18(b). It is also found that central displacement 

of the foundation depends significantly on the hydraulic boundary conditions, where 

the impermeable contact surface makes the soil-foundation system stiffer and less 

damped when compared to the case of fully permeable condition. Figure 7.19 shows 

vertical displacement profiles of circular impermeable foundations at h/a = 0 and 1 for 

different systems, where  = 10 and  = 0.5. It is also evident from Figure 7.19 that 

the effects of anisotropy and the level of embedment are clearly noted on the vertical 

displacement profiles of flexible foundations. 

 

7.4 Conclusion  

The discretization technique and the fundamental solutions obtained in 

Chapter 5 are used in the formulation of dynamic interaction between vertically 

loaded rigid and flexible circular foundations and transversely isotropic poroelastic 

soils presented in this chapter. The soil-structure interaction problems considered here 

are a rigid circular foundation on a homogeneous layer with rigid base, and a flexible 

circular foundation embedded in homogeneous and multi-layered half-spaces. 

Numerical results indicate that non-dimensional vertical compliances of circular 

foundation depend significantly on anisotropic material properties Ev and bv. For a 
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rigid foundation on a homogeneous layer with rigid base, the thickness of the layer 

significantly influences the vertical compliance of a foundation, and it is found that 

for a layer with h/a > 15 this case could be investigated by considering the layer as a 

half-space. For a flexible foundation embedded in a half-space, the foundation 

flexibility is an important factor and the central displacement increases as the 

foundation becomes more flexible. It is also found that the foundation can be 

considered deeply buried when h a ≥ 10.  

The response curves for the cases of a flexible circular foundation embedded 

in a homogeneous half-space show that the highest response corresponds to isotopic 

soils and the presence of poroealsticity reduces the foundation displacement for 

increasing values of the pore fluid friction. Anisotropy also reduces the 

displacement when n > 1 and the influence of poroelasticity on anisotropic soils is 

similar to isotropic soils. The force transferred to soil is amplified with increasing 

frequency but reaches an asymptotic value. A lower force is transferred in the case 

of poroealstic and anisotropic soils. 
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Figure 7.1 Rigid circular foundation on transversely isotropic poroelastic layer  
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Figure 7.2 Unit vertical ring load fz and applied ring fluid pressure fp 
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(a) 

 

 
 

(b) 

 

Figure 7.3 Comparison with existing solutions for: (a) isotropic poroelastic half-

space; (b) transversely isotropic elastic half-space 
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(a) 

 

 

 

(b) 

 

Figure 7.4 Influence of n1 = Ev/Eh on non-dimensional vertical compliance with h/a = 

1 and n2 = 1: (a) permeable foundation; (b) impermeable foundation 
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(a) 

 

 

 

(b) 

 

Figure 7.5 Influence of n2 = bv/bh on non-dimensional vertical compliance with h/a = 

1 and n1 = 1: (a) permeable foundation; (b) impermeable foundation 
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(a) 

 

  

(b) 

 

Figure 7.6 Influence of layer thickness on non-dimensional vertical compliance with 

n1 = n2 = 0.5: (a) permeable foundation; (b) impermeable foundation 
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Figure 7.7 Vertically loaded circular foundation in a transversely isotropic poroelastic 

soil  
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Figure 7.8 Vertical annular load fz and annular fluid pressure fp acting in the interior of 

soil half-space  
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Figure 7.9 Comparison of central displacement of embedded foundations on isotropic 

poroelastic soil (h/a = 1) 
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Figure 7.10 Effect of foundation permeability on vertical compliance of a rigid 

foundation (h/a = 0) 
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(a) 

 

  
 

(b) 

 

Figure 7.11 Central vertical compliance of a rigid impermeable foundation for 

different depths of embedment: (a) n = 1; (b) n = 2 
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Figure 7.12 Profiles of vertical stress and pore pressure jumps under a rigid 

impermeable foundation with h/a = 2  
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(a) 

 

  
 

(b) 

 

Figure 7.13 Central vertical compliance of a rigid impermeable foundation for 

different foundation flexibilities (h/a = 0): (a) n = 1; (b) n = 2 
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(a) 

 

  
 

(b) 

 

Figure 7.14 Bending moment at the center of foundation for different foundation 

flexibilities (h/a = 0): (a) n = 1; (b) n = 2 
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(a) 

 

(b) 

Figure 7.15 (a) Dimensionless amplitude of and (b) dimensionless force transferred to 

soil for a rigid impermeable massive foundation on different soils (h/a = 0) 
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Figure 7.16 Vertically loaded circular foundation in a multi-layered transversely 

isotropic poroelastic half-space 
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Figure 7.17 Comparison of displacement profile of flexible circular foundations on 

multilayered transversely isotropic elastic half-space  
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(a) 

 

  
 

(b) 

 

Figure 7.18 Central vertical displacement of a circular foundation at h/a = 0 and 1 for 

different systems, where  = 10: (a) permeable; (b) impermeable 
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Figure 7.19 Vertical displacement profiles of a circular impermeable foundation at h/a 

= 0 and 1 for different systems, where  = 10 and  = 0.5 
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CHAPTER 8  

CONCLUSIONS 
 

This dissertation presents poroelastodynamic fundamental solutions of 

transversely isotropic poroelastic materials. The general solutions for transversely 

isotropic poroelastic media under time-harmonic loading are derived analytically by 

applying appropriate integral transform techniques. The fundamental solutions of a 

homogeneous half-space under plane strain and axisymmetric deformations are then 

explicitly obtained by solving relevant boundary value-problems based on the derived 

general solutions. An exact stiffness matrix method is also employed to obtain the 

fundamental solutions of multi-layered transversely isotropic poroelastic media. 

Selected numerical results corresponding to dynamic response of transversely 

isotropic poroelastic media under time-harmonic loading. In addition, the obtained 

fundamental solutions are then employed in the analysis of various dynamic 

interaction problems between foundations and transversely isotropic poroelastic soils. 

Conclusions for each problems are given at the end of Chapter 4-7 based on the 

numerical results presented in those chapters. The major findings and conclusions of 

this study can be summarized as follows: 

1. The fundamental solutions are obtained in the Fourier and Hankel 

transform spaces for plane strain and axisymmetric problems respectively. 

An exact stiffness matrix method is successfully applied to determine the 

fundamental solutions for multi-layered media. The numerical inversion of 

Fourier and Hankel transforms is carried out by employing an adaptive 

numerical quadrature scheme using a 21-point Gauss–Kronrod rule. 

Accuracy of the present numerical scheme is verified by comparing with 

various existing solutions for each problem. Numerical results indicate that 

anisotropic and poroelastic material properties have a significant influence 

on the dynamic response of transversely isotropic poroelastic media. 

2. A semi-analytical discretization scheme is successfully adopted to 

investigate dynamic interaction problems between foundations and 

transversely isotropic poroelastic soils. Numerical results reveal that the 
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dynamic interaction between strip and circular foundations and 

transversely isotropic poroelastic soils are substantially different from the 

interaction with isotropic poroelastic soils. In addition, dynamic response 

of foundations also depends significantly on frequency of excitation, 

hydraulic boundary conditions, foundation flexibility, and distance 

between adjacent foundations.  

The fundamental solutions obtained in this dissertation can be used to assess 

the accuracy of approximate methods such as finite element and boundary element 

methods that are applied to study more complicated problems in geotechnical 

engineering. In addition, the present solution scheme can also be extended to study 

other geomechanics problems such as arbitrary-shape foundations or laterally-loaded 

piles with the development of required fundamental functions that are related to three-

dimension dynamic response of transversely isotropic poroelastic soils.   
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APPENDIX 

 

Appendix A: Element of the layer stiffness matrix K(n) 

1st row: 
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n n n n n n

m m m p p p

n n n n n n

m p p p m m

n n n n n n

e e e e e e
R

e e e e e e

e e e e e e

e e e e e e

K      

     

     

    


 


 

 

 

  

  

 

  

  

  

  

3 3

2 2

1 1

9

1 2 2 1 1 2

1 3 3 1 2 3

3 2 2 3 1 3

        4

        4

        4

m p

n n

m p

n n

m p

n n

e e

e e

e e



    

   

    

  

  

  


   (A2) 

  

  

  

 

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

13 1 10 2 13 3 14 10

1 10 2 12 3 15 2

1 11 2 13 3 15 3

1

i

        

        

        

m p m p m p

n n n n n n

p p m m m p

n n n n n n

m m m p p p

n n n n n n

p m m m p p

n n n n n n

e e e e e e
R

e e e e e e

e e e e e e

e e e e e e

K      

     

     




 


 

 

 

   

  

 

 

  

  

  

3 3

2 2

1 1

11 2 12 3 14 9

3 1 2 15 2 2 1 3 1 1 1 2 3 2

2 1 3 16 3 3 1 2 3 1 1 2 3 2

1 2 3 17 3 3 1 2 3 2 2 1 3 1

        4

        4

        4

m p

n n

m p

n n

m p

n n

e e

e e

e e

    

         

          

          

   

   

  


 



  (A3) 
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  

  

  

  

1 3 1 3

1 3 1 3

2 3 2 3

2 3 2 3

1 2

14 3 22 1 2 2 2 11 6

3 2 3 1 2 2 2 19 4

53 1 3 1 2 23 9

73 1 3 1 2 1 1 8

2

        

        

        

        

m m p p

n n n n

p m m p

n n n n

m m p p

n n n n

p m m p

n n n n

m m

n n

e e e e
R

e e e e

e e e e

e e e e

e e

K       

      

      

       

 


 

 

 



  

 

 

 

  

  

 

1 2

1 2 1 2

73 6 3 20

53 8 3 18

3 1 2 14 2 1 3 13 1 2 3 12

        

        4

p p

n n

p m m p

n n n n

e e

e e e e

    

    

         



 

  







   (A4) 

  

  

  

  

 

1 2 1 2

2 3 2 3

2 3 2 3

1 2 1 2

1 3

15 3 20 3 6 3

53 21 2 1 1 1 2

73 1 3 2 1 1 1 2

3 8 3 18 3

3 22 1 2 2 2

2i

        

        

        

        

m m p p

n n n n

m m p p

n n n n

m p p m

n n n n

m p p m

n n n n

m m

n n

e e e e
R

e e e e

e e e e

e e e e

e e

K     

       

       

    

     

 


 

 

 



 

 

 



  

  

  

  

1 3

1 3

1 3

11 1

3 2 3 1 2 2 2 19 1

3 22 1 2 2 2 19 1

3 2 3 1 2 2 2 11 1

        

        

        

p m

n n

m p

n n

p p

n n

e e

e e

e e



      

      

      








 

 

 

    (A5) 

  

  

  

  

2 3 2 3

1 3 1 3

1 3 1 3

2 3 2 3

1

716 3 21 2 1 1 1 10

3 2 3 1 2 2 2 19 12

3 2 3 1 2 2 2 11 13

53 1 3 2 23 1 11

2i

        

        

        

        

p m m p

n n n n

p m m p

n n n n

m m p p

n n n n

m m p p

n n n n

e e e e
R

e e e e

e e e e

e e e e

e

K        

      

      

      


 


 

 

 



  

 

 

 

  

  

 

2 1 2

1 2 1 2

3 20 3 6 15

53 18 3 3 3 3 14 14

3 1 2 15 2 1 3 16 1 2 3 17

        

         + 4

m m p p

n n n n

p m m p

n n n n

e e e

e e e e

    

        

         



 

 



 



   (A6) 

2nd row: 

   

   

1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3 1 2 3

1
22 4 2

3 10        

p m m m m p p p m m m p

n n n n n n n n n n n n

m m m p p p m p m p m p

n n n n n n n n n n n n

e e e e e e e e e e e e
R

e e e e e e e e e e e e

K


 

 


   


   



  

 (A7) 
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  

  

  

 

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

23 3 15 2 12 1 10 2

3 15 2 13 1 11 3

3 14 2 12 1 11 9

3 14 2

1

        

        

        

m m p p p m

n n n n n n

p p p m m m

n n n n n n

p m m m p p

n n n n n n

m p m p m p

n n n n n n

e e e e e e
R

e e e e e e

e e e e e e

e e e e e e

K      

     

     

  

 


 

 

 

  

 

 

 

  

  

  

3 3

1 1

2 2

13 1 10 10

3 2 3 15 1 2

3 1 3 2 1 1 1 17 2 3

3 2 3 2 16 1 2 2 1 3

        4

        4

        4

m p

n n

p m

n n

m p

n n

e e

e e

e e

  

    

         

         

  

 

 




  

  

   (A8) 

24 15K K           (A9) 

 

 

 

1 2 1 2 1 2 1 2

1 3 1 3 1 3 1 3

2 3 2 3 2 3 2 3

1
25 3 3

2 1

1 2

        

        

2
m m p p p m m p
n n n n n n n n

p m m p m m p p
n n n n n n n n

m m p p p m m p
n n n n n n n n

e e e e e e e e
R

e e e e e e e e

e e e e e e e e

K


 

 

 







  

   

   



    (A10) 

   

   

   

1 2 1 2 1 2 1 2

1 3 1 3 1 3 1 3

2 3 2 3 2 3 2 3

1
26 3 15 3 14

2 13 2 12

1 11 1 10

2
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
   


   

   




   (A11) 

3rd row: 

  

  

  

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1

33 1 10 1 2 13 1 3 14 10

1 11 4 2 12 4 3 14 9

1 10 2 2 12 2 3 15 2

1
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e e e e e e
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K         

        

        

 


 

 

 

   

  

  

  

  

  

  

2 3

3 3

2 2

1 1

1 11 3 2 13 3 3 15 3

1 1 2 3 2 2 2 1 3 1 3 1 2 15

1 1 2 3 2 2 1 3 16 3 3 1 2 3

1 2 3 17 2 2 1 3 1 3 3 1 2 3

        4

        4
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n n
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n n
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n n
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n n

e e

e e

e e

e e

        

          

         

         

 

 

 


  

  

  

 

  (A12) 

34 16K K            (A13) 

35 26K K           (A14) 
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  

    

  

 

1 3 1 3

1 3 1 3

2 3 2 3

2 3 2 3

36 3 2 3 13 2 13 11 1 2 2 13

3 2 3 12 2 12 2 12 2 4 1 2 2 12

53 1 3 11 2 1 1 11 1 11

3 1

2

        

        

        

m m p p

n n n n

p m m p

n n n n

m m p p

n n n n

p m m p

n n n n

e e e e
R

e e e e

e e e e

e e e e

K          

            

          

  


 


  

 

 

  

 

  

  

  

    

 

1 2 1 2

1 2 1 2

3 10 2 1 1 10 1 10 1 10 1 8

3 15 6 2 3 1 15 1 3 2 15

53 14 3 14 3 2 3 1 14 1 3 2 14

3 1 2 15 2 1 3 16 1 2 3 17

        

        

         + 4

m m p p

n n n n

p m m p

n n n n

e e e e

e e e e

          

         

            

        



 

 

 

 

 

  



 (A15) 

4th row: 

44 11K K          (A16) 

45 12K K          (A17) 

46 13K K          (A18) 

5th row: 

55 22K K          (A19) 

56 23K K           (A20) 

6th row: 

66 33K K          (A21) 

where 

     

   

   

1 1 2 2 3 3

1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3 1 2 3

2 3 1 3 1 3 2 3 1 2 1 2

2 2
1 2

2 2
3 4

8 m p m p m p

n n n n n n

p m p m p m p p m m m p

n n n n n n n n n n n n

m m m p p p m p p p m m

n n n n n n n n n n n n

e e e e e e

e e e e e e e e e e e e

e e e e e e e e e e e e

R        

 

 

     
 

   

   



 (A22) 

, 1,2,3, 1,2,...,nim
in

h
i n Ne e 
  , , 1,2,3, 1,2,...,nip

in

h
i n Ne e    (A23) 

1 3 2 1 2 3 1 3 1 2 1 3 2 2 1 3 1 2 3                         (A24)  

2 3 2 1 2 3 1 3 1 2 1 3 2 2 1 3 1 2 3                       (A25)  

3 3 2 1 2 3 1 3 1 2 1 3 2 2 1 3 1 2 3                       (A26)  

4 3 2 1 2 3 1 3 1 2 1 3 2 2 1 3 1 2 3                       (A27)  

5 3 2 1 2 3 1 1 3 2 1 2 3                        (A28)  
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6 3 2 1 3 1 2 2 1 3 1 2 3                     (A29)  

7 3 2 1 2 3 1 1 3 2 1 2 3                    (A30)  

8 3 2 1 3 1 2 2 1 3 1 2 3                     (A31)  

     9 1 3 2 2 3 2 3 1 1 3 3 2 1 1 2                       (A32)  

     10 1 3 2 2 3 2 3 1 1 3 3 2 1 1 2                      (A33)  

11 2 3 1 3 1 2 1 3 2 2 1 3                     (A34)  

12 3 1 2 2 1 3 1 2 32            , 
13 3 1 2 2 1 3 1 2 32             (A35)  

14 3 1 2 2 1 3 1 2 32            , 
15 2 3 1 1 3 2 1 2 32             (A36)  

16 2 3 1 1 3 2 1 2 32            , 
17 2 3 1 1 3 2 1 2 32            (A37)  

18 2 3 1 1 3 2 2 1 3 1 2 3                        (A38)  

19 2 3 1 3 1 2 1 3 2 2 1 3                     (A39)  

20 2 3 1 1 3 2 2 1 3 1 2 3                       (A40)  

21 2 1 1 1 1 2        , 22 2 2 1 1 2 2        ,
23 3 1 1 1 1 3      (A41)  

1 3 1 1 3      , 
2 3 2 2 3      , 

3 2 1 1 2      , 
4 3 1 1 3         (A42)  

5 2 1 1 2      , 
6 3 1 1 3      , 7 2 1 1 2      , 

8 3 2 2 3        (A43)  

9 3 2 2 3      , 
10 3 2 2 3          (A44) 

 
11 3 2 2 3    , 

12 3 1 1 3          (A45)  

13 3 1 1 3    , 
14 2 1 1 3     , 

15 2 1 1 3        (A46)  

1 3 2 1 2 3 1 3 1 2 1 3 2 2 1 3 1 2 3                          (A47)  

2 2 3 1 2 1 3 1 3 2 1 2 3                        (A48)  

 

Appendix B: Element of the layer stiffness matrix K(n+1) 

1st row: 

 11
3 2 1 2 3 1 3 1 2 1 3 2 2 1 3 1 2 3

1
K

H
                  (B1) 
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 12 3 2 1 2 3 1 3 1 2 1 3 2 2 1 3 1 2 3

i
K

H
                                (B2) 

 13 3 2 1 2 3 1 3 1 2 1 3 2 2 1 3 1 2 3

i
K

H
                              (B3) 

2nd row: 

 22
3 2 1 2 3 1 3 1 2 1 3 2 2 1 3 1 2 3

1
K

H
                 

     (B4) 

 23
3 2 1 2 3 1 3 1 2 1 3 2 2 1 3 1 2 3

1
K

H
             

     (B5) 

3rd row: 

 33
3 2 1 2 3 1 3 1 2 1 3 2 2 1 3 1 2 3

1
K

H
                 

(B6) 

where 

3 2 1 2 3 1 3 1 2 1 3 2 2 1 3 1 2 3H                            (B7) 
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