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Red blood cell morphology analysis plays an essential role in diagnosing
many diseases caused by RBC disorders. This manual inspection is a long process
and requires practice and experience. Since recent computer vision and image
processing in the medical imaging area can provide efficient tools, it can help
hematologists to automatically analyze images from a microscope in a reduced
time and cost. This research presents a new method to segment and classify RBCs
from blood smear images. The process started from data collection, which a new
application was created for precisely labeling. The normalization was done
to reduce the color space and allowed the trained model to not be biased on
color. Then, overlapping cells were separated using a new method to find concave
points and use direct ellipse fitting to estimate the shape of a single RBC. Lastly,
classification using EfficientNet-B1 on 12 red blood cell classes was done. However,
to classify multiple classes with deep learning, imbalance problems are common
in medical imaging because number of normal samples is always higher than
number of rare disease samples. The imbalanced handling techniques were
analyzed to deal with this problem. Experimental results showed that the weight

balancing technique with augmentation had the potential to deal with imbalance

problems.
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1. Introduction

In a hospital, red blood cell (RBC) morphology analysis is a subprocess in the
Complete Blood Count (CBC) process. This analysis plays an essential role in
diagnosing many diseases, caused by RBC disorders, such as anemia, thalassemia,
sickle cell disease, etc. The analysis mainly focuses on the shape, size, color,
inclusions, and arrangement of RBCs (Ford, 2013). Generally, the normal RBC shape is
round, biconcave, with a pale central pallor and of 6-8 #m diameter. A hematologist
manually analyzes the blood cells under a light microscope from blood smear slides.
This manual inspection is a long process and also requires practice and experience.
Since recent computer vision and image processing in the medical imaging area can
provide efficient tools, it can help hematologists to automatically and less

subjectively analyze RBC images from a microscope in a reduced time and cost.

For the student training process in the Faculty of Allied Health Sciences at
Chulalongkorn university, to expert in RBC morphology, students need to practice
with microscopes and be guided by staff and professors that take a lot of time to
thorough care of every student. The students must take a picture of the RBC slide
through the microscope lens and learn how to classify RBCs by themself that can
lead to misunderstanding. Automating RBC counting and classifying would help to
guide the students so they can learn by themselves which also reduces the

workload for professors and staff.



Figure 1-1 Students manually take a photo of the blood smear slides using a

smartphone to do the laboratory test by themself.

Most of the previous RBC imaging research works were to classify RBCs to
identify the type of RBCs in the images. Normally, the image, captured from a
microscope, contains many cells so the cell segmentation must be done before
proceeding to the cell classification process. The previous works have employed
typically image processing techniques to the recent state-of-the-art deep learning
techniques which have improved accuracy significantly. However, there are still
several challenges to achieve this goal. Since RBCs in the image may overlap with
each other, it is hard to find the edge of the cell. In the manual process, the
hematologist usually avoids selecting an area that has a lot of overlapping cells. But
in some situations, especially in automated methods, it is difficult to avoid these
areas because the cells stick together leading to incorrect predicted results. Thus,
automated segmentation must be able to handle the overlapping cells so that it can
cover the real situation. In addition, blood smear slides may not have the same

environment, such as lighting, zoom scale, and camera.



Figure 1-2 Sample of RBC image from a microscope.

Recently, a deep convolutional neural network for object detection and
semantic segmentation has begun to be used for RBC detection (Qiu et al., 2019;
Shakarami, Menhaj, Mahdavi-Hormat, & Tarrah, 2021; Wong et al,, 2021). The benefits
of these deep end-to-end methods are that, first, they allow training a possibly
complex learning system represented by a single model, bypassing the intermediate
layers usually found in the traditional pipeline approach. Secondly, it is possible to
design a model that performs well without deep knowledge about each sub-
problem in the complex system. However, the end-to-end approach is an infeasible
option in some cases, for example, a huge amount of data is not available, the

intermediate results are needed, as well as the computational resources are limited.

For this research, our goal is to develop the RBC segmentation and
classification that require low computational complexity resources such as mobile
phones and tablets so that mobile application can run in reasonable time for the
hematologist training. Secondly, the application requires to have an interface that
shows individual cell colored based on its type, for a real-time user interaction
feature. By using end-to-end deep learning object detection or instance

segmentation would not be feasible to serve this purpose well comparing to the



very efficient and accurate traditional low-level computer vision approach we

proposed in this research.

Although deep learning has shown remarkable results in computer vision,
these approaches still need lots of data to achieve a good outcome. Nevertheless,
RBC datasets are difficult to collect because some RBC types can only be found in
specific diseases, and these may only be found in specific geographic regions.
Accordingly, each dataset usually has an imbalance problem. Moreover, even then
different specialists might give different results, depending on their expertise, and so

shifts the analytical balance towards being subjective.

This research presents a new framework for RBC data collection, RBC
segmentation using ellipse fitting, and classification via the use of EfficientNet (Tan &
Le, 2020). The main contributions of this thesis are: (i) an application for helping
labelers to label the ground truth in blood smear images, (i) a new method to
separate the overlapping cells based on the concave points of the border of RBCs,
and (i) RBC classification with analysis of imbalanced datasets using data
augmentation, weight normalization, upsampling, and focal loss (Lin, Goyal, Girshick,

He, & Dollar, 2018) on multi-class classification.



(a)

Figure 1-3 (a) Input image, (b) Expected output image



1.1. Aims and Objectives
The objective of this study is to develop a method for red blood cell

segmentation and classification from microscopic images.

1.2. Scope of study

- The images that were used to train and test in this study were collected and
labeled by specialists from the Faculty of Allied Health Sciences,
Chulalongkorn University.

- This study focuses on RBCs in the image that do not rip by borders of the
image and RBCs are not overlapped by other objects such as scale bar and

pointer from microscope software.



2. Literature Survey

In this chapter, previous studies that are related to this study are reviewed.
We organize the chapter into three sections. The first section summarizes recent
related works in the literature in order of published year. The next two sections
review techniques used in RBC segmentation and classification respectively. The

conclusion of each topic technique is then described at the end of this chapter.

2.1. Previous studies
(Ritter & Cooper, 2007) proposed RBC segmentation on blood smear slides of
canine blood using graph algorithm-based to find the edge of the RBCs. The
algorithm firstly threshold the greyscale images. Then, connected components were
found by Dijkstra’s shortest path algorithm. 47 images were tested with both normal
and diseased RBCs with 97.3% accuracy and 51 images also were tested with 99.0%
accuracy. The proposed method is faster than prior works. The results work well for

single cells and torching cells. It cannot handle or separate overlapping cells.

(Khashman, 2008) presented blood cell classification which classifies into 3
major blood types, RBC, white blood cell (WBC), and platelet. The classifier is an
artificial neural network (ANN) with 196 neurons for input, 40 neurons for one hidden
layer, and 3 neurons for output. Global pattern averaging, by dividing the image into
196 blocks then the pixels in the block were average, was used to extract features
from a single cell image as the input for ANN. 99.17% accuracy was achieved with 60

training images and 300 testing images.

(Soltanzadeh & Rabbani, 2010) presented 3 types of RBC classification,
ovalocytes, dacrocytes, and burr cells using average and variance distance from mass
center to edges of the cell. The results were tested with 100 single cell images from

each RBC type that shows a low error rate in all 3 types. This work used only 2



statistic values to classify 3 types. To classify more classes, this method needs more

features to improve predict more types of RBC.

(Kareem, Morling, & Kale, 2011) proposed a counting method without
preprocessing. First, the image was converted to grayscale. Next, dilation was used
to remove small objects such as platelets or noises, using a ring shape kernel with
70% of RBC size. According to the image without preprocessing, the background
pixels had higher values than object pixels, so dilation made objects smaller or
disappearing. Then, erosion using a disk shape kernel recovers the cell from the
previous step. The image was converted into a ratio transformed image in which the
center of RBC has high intensity by average values of pixels in the ring shape kernel
to disk shape kernel inside the ring. Finally, the result was achieved by counting the
peak intensities. This method seems to be suitable for RBC with a circular shape
because it used a circle base for dilation, erosion, and finding the ratio. However,
there can miss detecting RBC that is not a circular shape such as sickle cell,

ovalocyte, etc.

(Habibzadeh, Krzyzak, Fevens, & Sadr, 2011) segment using Watershed
algorithm on grayscale and classify RBC and WBC using the size of RBCs. This work
also did de-noising with Bivariate wavelet and edge-preserving with Kuwahara filter.
Better counting result was shown compared with the Otsu threshold and Canny edge
algorithm in 10 blood smear images. They were claimed better performance and

lower complexity than previous works but did not show accuracy results.

(Cai, Wu, Zhang, Fan, & Ruan, 2012) proposed an RBC segmentation using an
active appearance model (AMM) which can extract the cells from the background
precisely. The output was shown that it can use for counting and measurement of
the cell. The AMM was built from training images and landmarks which work quite

well in the study because of the circular shape of RBC. Though the work does not



provide statistical results, only showed output sample images. For other RBC types,

the single AMM cannot totally match all RBC types.

(Rakshit & Bhowmik, 2013) presented a detection of sickle cell anemia. Sobel
edge detection was used on grayscale, and only one manual roundness feature was
used to classify 2 classes: normal cells and sickle cells. The accuracy is 95.8% on 5

samples which is quite lower than other works.

(Mazalan, Mahmood, & Razak, 2013) used the circular Hough transform (CHT)
to count RBCs from blood smear images. This algorithm is a circle finding which is
work best on circular shape object with a known radius, so it is work best for Normal
cells. This work has achieved 91.87% accuracy from 10 sample images. The miss-

detected cells were overlapping cells and non-circular RBC.

(Tomari, Zakaria, Jamil, Nor, & Fuad, 2014) proposed RBC detector and
classifier. First, they used the Otsu threshold on a green channel of a blood smear
image to extract RBC regions from the background. They perform three steps for
post-processing to remove other objects, morphological operation (erosion and
dilation), connected component labeling, and bounding box filter. Besides, the
overlapping cells were identified by finding large regions. After that, features were
calculated from RBCs to train a neural network. There were two main features,
compactness, and moment invariant (seven Hu moments). The neural network was
trained on 100 images and tested on 50 images to classify into two types, normal
and abnormal. The accuracy, precision, and recall were 83%, 82%, and 76%
respectively. They ignored the overlapping cells by selecting the cells that have a
size approximate to a normal cell, then classified only single cells. The neural
network had only one hidden layer. According to the number of features and the
number of layers in this model, it might need more features and layers to increase

accuracy or classify more types.



(Lee & Chen, 2014) proposed the hybrid neural network architecture for RBC
classification. First, the overlapping cells were segmented and separated by finding
edges inside the cells. The top cell was extracted by considering the smoothness of
endpoints between the edge. After that, RBCs were extracted by applying a closed
region mask based on edge. Then, the features were generated from RBCs for
feeding into the neural network. The features were divided into two groups, shape
feature, and texture feature. Both features were used in the hybrid neural network.
The difference between a neural network and this network is this network predicts
the cells that are normal or abnormal cells by shape features with higher priority
than texture features. Finally, both features had the same priority to classify four
types if the cell was abnormal. In this study, overlapping segmentation was
described, but it was not evaluated. The result of classification into five types is
better than the neural network with the same number of layers which is 88.25%
accuracy on 200 single-cell images. This architecture seems to make sense with a
human visual concept. The method used a small neural network and manual
feature extraction. Therefore, it might not be sufficient to classify more types

according to the number of layers.

(Chandrasiri & Samarasinghe, 2014) used Otsu thresholding to segment RBC
and used rule-based with 4 features to classify 5 types of RBCs. To separate
overlapping cells, extended-minima transform is used to find markers and separate
touching cells, then, Euclidean distance transform following by Watershed
transformation. The segmentation accuracy on 10 images is 99.68% which is better
than only distance transform, marker controlled, and Blob detection. In the
classification step, 4 features were created to classify Normal cells, Macrocyte,
Spherocyte, and Microcyte. The features involve length, diameter, area, the ratio
between cell area and central pallor. The accuracy of 4 abnormal types is in the

range of 91% - 97% but the Normal cell is not evaluated. In this study, the features



are created to only classify these RBC types which make sense for the shape of the

selected RBC types. It might classify more types if it does not have more features.

(Gonzalez-Hidalgo, Guerrero-Pena, Herold-Garcia, Jaume-i-Capd, & Marrero-
Fernandez, 2015) proposed a method to separate overlapping cell clusters using
concave points. First, RBC contours were extracted from a background image using
an edge finding. The k-curvature technique was used to find the concave points by
considering a slope of the interesting point. After that, the curve between concave
points was used to estimate an ellipse by the ellipse fitting method with the
proposed constraints. This study was tested on three different types of images,
generated ellipse cluster images, real RBC images, and synthetic images. The
synthetic images were generated by single-cell combining. The result seems good
for all tested images, and the accuracy was 100% on synthetic samples and 96.52%
on real images with 2— and 3-object clusters. However, the undetected objects

occurred due to non-detect of concave points or highly overlapping.

(Nugroho, Akbar, & Murhandarwati, 2015) proposed a method to detect
malaria cells. First, the blood smear image was converted from RGB to HSV color
space, then selecting the S channel because of the quality of contrast. Next, to
enhance the images, the contrast stretching method is followed by a median filter
for denoising. In the segmentation process, the K-means algorithm was used to
separate the cells of background, however, the study does not show how to select
the K parameter or evaluate the performance. To classify 3 types of malaria, a neural
network with 1 hidden layer was used. 6 features were calculated as an input. The
overall accuracy is 87.8 on 60 images. It used K-cross validation to evaluate the

performance, but it does not tell how to separate the dataset.

(Sharma, Rathore, & Vyas, 2016) proposed a method to detect sickle cell
anemia and thalassemia. First, the blood smear image was pre-processed by the

median filter. Next, the marker-controlled watershed was used for segmentation.



Finally, the k-nearest neighbor was used to classify the cells into four types using
metric value, aspect ratio, and radial signature between radial distance and polar
coordinate. The accuracy was 80.6%. In this study, the classifier was trained and
tested using 100 images. It might overfit the result because there are only a few
images.  For segmentation, it used manual points to make seed points before

applying the watershed method. It takes time for pointing to the entire image.

(Romero-Rondon, Sanabria-Rosas, Bautista-Rozo, & Mendoza, 2016) proposed
a method to detect overlapping cells that was based on K-means clustering. The first
step is a preprocess which removes WBCs and platelets by applying subtraction
between the image and morphologic operation on the S channel in HSV. To
separated overlapping cell contour, the number of cells in contour determines by
cell area distribution between 1 - 3 cells. For more than 3 cells in a cluster, the
Hough circle transform was used for the trade-off between the number of cells
defined by area. After that, to find the marker for using Watershed, 3 approaches
were used: erosion, Hough, and K-means respectively. The last step after applying
Watershed, Bézier was used to estimate the missing edge. The sensitivity is 98.37%
tested on 50 images. The study shows error images that occurring on the wrong

marker number.

(Ahmad, Abdullah, & Sabudin, 2016) compared 3 overlapping cell algorithms:
lterative randomized irregular circle detection (IRIC), Circle Hough transform (CHT),
and Edge drawing circle (EDCircle). IRIC shows the best result while the lowest is

EDCircle on 2 — 5 overlapping cells.

(Liang et al, 2016) detected malaria cells using a convolutional neural
network (CNN). The network has 6 convolutional layers, 2 pooling, and 3 connected
layers. The output is sigmoid for binary classification: uninfected and infected cells.
This dataset has 27,578 single RBC images with a 1:1 ratio for both classes. 97.37%

accuracy was achieved with 90% training and 10% testing sample on 10-fold cross-



validations. The study also shows better performance compared with the transfer

learning model which is the AlexNet model pre-trained on the CIFAR-100 dataset.

(Tyas, Ratnaningsih, Harjoko, & Hartati, 2017) compared the results between
ANN and CNN. The ANN has 43 inputs computed from Invariant moments, GLCM
(Grey Level Co-occurrence Matrix), and color features. It has 1 hidden layer with 10
maximum neurons in experiments. CNN is based on the LeNet-5 model. The CNN
input images are 32*32 pixels. However, the accuracy on ANN is better than CNN,
93.22% and 92.55% respectively. The dataset consists of 256 single-cell images. In
this study, the dataset quite has a small number of samples. The CNN model needs

more samples for training to achieve high accuracy.

(Xu et al,, 2017) proposed a method to segment touching cells, and classify
RBC using the convolutional neural network (CNN) into 8 types. First, to segment the
RBCs, the entropy of grayscale level was computed within overlapping sliding
windows, then, high entropy was extracted as an ROl mask image. They separated
touching cell contours using a distance transform to find seed points for each cell.
Then, the seed points were used for the segmentation of the cell by the random
walk method. As a result, it could separate touching cells but not for overlapping
cells. Lastly, the image was normalized and fed into CNN with ten layers to classify
into eight types. The mean accuracy of 5-fold cross-validation is 87.50% on 7224

single cells.

(Acharya & Kumar, 2017) presented a method to classify 11 types of RBC
disorders. First, WBCs were identified by the minimum intensity of the L layer in LAB
color space, and platelets also were removed by erosion operation with a disk shape
element. The blood smear images were segmented by Otsu’s thresholding. To
separate overlapping cells, the modified distance transform was applied and the
“regionprops” function was used for recovering the cell area. For classification, ruled

based operation was used to classify 11 types using 8 features. The features are



mostly based on geometric shapes. The accuracy was 98% on over 1000 single cells
with 8 blood smear images. However, the data is imbalanced, mostly normal cells,
macrocytes, and spherocytes, with only a few sickle cells, hypochromia, and
elongated cells. The difference in this study is the types that were selected are
concerned with central pallor based on the focused diseases, such as normocyte

and normocyte with central pallor, etc.

(Zhang, Li, Xu, & Li, 2017) used deformable U-net to segment and classify a
sickle cell (normal cell and sickle cell). U-net is a fully CNN that is popular in
medical computer vision research for the semantic segmentation problem. Also, it
can classify the image at a pixel level. The architecture of U-net can be divided into
2 parts, encoder, and decoder. The encoder performs convolution operation
following by max-pooling to down-sampling the data which reduces the resolutions
but increases depths. The decoder performs a deconvolution operation to up-
sampling the data which increases resolution but reduces depts back to the same as
the input. Though, the deformable convolution was used instead of normal
convolution which can help the U-net model robust for translation and rotation. This
technique is better than augmentation on training times. The dataset has 128
samples, 88 for training and 40 for testing. The result of this network is better than
the baseline U-net model, 82.7% over 73.1% for classification and 97.8% over 94.7%
for only segmentation. However, this model also used four times longer of training
than U-net. In this study, in a single RBC, the model can predict 2 types because it

classifies every pixel.

(Durant, Olson, Schulz, & Torres, 2017) proposed a very deep CNN for
classifying ten types of RBC (including overlapping cells). This network had more
than 150 layers with dense shortcut connections, called DenseNet (Huang, Liu, van
der Maaten, & Weinberger, 2018). The shortcut connection helps CNN avoiding a
vanishing gradient problem on the very deep networks. Accordingly, the problem

occurs when CNN has a lot of layers; the gradient will be led to zero after applying



10

many non-linear functions. The dataset has 4032 labeled cell images which is divided
into 2989 training data and 748 testing data. The result was shown with 90.60%
overall accuracy. However, the dataset is highly imbalanced. Further evaluation was

done that on low sampling class had low F1-score, precision, and recall.

(Gopakumar, Swetha, Siva, & Subrahmanyam, 2018) presented automated
slide scanner to detect malaria cells using CNN. The proposed method started with
Otsu’s thresholding ROI out of the background. To separate overlapping cells, the
distance transform was used to locate the RBCs as markers, and Watershed was used
to segment the cell area from the markers. For classification, 4 manual designed CNN
was used to classify non-infected and infected cells. The low CNN layer was
designed for low-performance edge computing. The evaluation was compared with
SVM with 14 feature inputs: 4 texture, 4 statistics, 2 computed gradients, and 4
computed subregions constituting. The CNN outperforms SVM by 98.81% and 96.38%

sensitivity on 11,200 training images.

(Alom, Yakopcic, Taha, & Asari, 2018) used Inception recurrent residual
convolutional neural network (IRRCNN) to classify WBC and RBC. The model is a
hybrid deep CNN based on inception, residual networks, and recurrent neural
network. For RBC classification, the model classified 10 RBC classes which is a dataset
of (Durant et al,, 2017). The accuracy is 99.94% that outperformed all previous

studies.

(Sadafi, Radolko, Serafeimidis, & Hadlak, 2018) used Fully-AlexNet deep
learning model to segment RBCs from blood smear images. The model was
converted from AlexNet (Krizhevsky, Sutskever, & Hinton, 2012) which is for
classification by (Long, Shelhamer, & Darrell, 2015). The images were divided into
multiple tiles that have overlapping parts, then, fed into the network. The accuracy is
93.12% on 52 blood smear images which 10% is for validation. However, the

limitation of the segmentation method for RBCs is the overlapping cells. In this study,
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it did not have post-processing to separate the overlapping cells but, from
observation on sample ground truth images, the labels were done by keeping a
space between the cells that closed to each other. For this cause, the results seem

to not have a perfect shape, but it can identify the location of RBCs.

(Aliyu, Razak, & Sudirman, 2019) compared RBC segmentation techniques for
sickle cells. The segmentation techniques are Watershed, edge detection, Laplacian
of Gaussian, and Otsu thresholding. The result was shown that the Otsu thresholding
had the highest accuracy, sensitivity, and specificity among the rest on 30 blood

smear images.

(Qiu et al.,, 2019) proposed multi-label RBC detection which is an object
detection problem using Faster R-CNN (Ren, He, Girshick, & Sun, 2016). Faster R-CNN
is an object detection based on a region proposal network. For this study, Resnet-101
(He, Zhang, Ren, & Sun, 2015) was used as a backbone of the classification model.
Normally, other studies used multi-class problems, 1 object for 1 class. In a multi-
label task, 1 object can have multiple classes. The evaluation was done with 313
blood smear images with 0.899 average precision (AP). Further analysis also was done
on multi-label classification using Resnet-50. The best accuracy is 0.932. However,
the Faster R-CNN identified overlapping cells as 1 connected component. Watershed
seems to separate the overlapping cells better. Moreover, U-net, which is FCNN, was
discussed that it can segment the precise shape of RBCs but still cannot separate

overlapping cells.

(Pasupa, Vatathanavaro, & Tungjitnob, 2020) used a focal loss (Lin et al., 2018)
for 3 class canine RBC classification which helped to improve the performance on
the imbalance dataset. First, the blood smear images were segmented based on the
Hough circle transform. Next, for classification, ResNet-50 and DenseNet-121 were
evaluated the performance with normal cross-entropy loss and the focal loss. The

result was shown that DenseNet-121 with the focal loss performs the best accuracy
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and fl-score, 95.60% and 92% respectively. The dataset has 22 dog blood smear
images contained 3392 single cells, which divided into 70% training data and 30%
training data. Moreover, Over-sampling and under-sampling techniques also were
evaluated. It was shown that the over-sampling had slightly lower performance than

the focal loss.

(Batitis et al,, 2020) used a decision tree to classify 10 types of RBCs. The
process started with finding contours using Canny edge detection on grayscale. For
classification, 6 features were calculated for the input of the decision tree. The
decision tree has 9 nodes for classifying 10 RBC types. The evaluation was done on
40 blood smear images that have 600 labeled single cells. The average accuracy is
89.31%. The computed reliability of each node in the decision tree was also shown.
The lowest performance is on Target cells and Stomatocytes because the difference
in both types is on central pallor which difficult to segment the precise shape.
However, the dataset is highly imbalanced, the minimum is only 3 cells, but the

maximum is 173 cells.

(Parab & Mehendale, 2020) used the CNN to classify 10 types of RBC. The pre-
processing was used Canny edge detection on grayscale for extracting the edge of
RBCs. For classification, the CNN model had only 2 convolution layers. The
performance was tested on a validation set which has 5000 images, 500 for each
type. The accuracy is 98.5. However, the study was described the training dataset,
validation dataset, and testing dataset, but it does not specify the number of RBCs,

only in the validation dataset.

(Abdulkarim, Razak, Sudirman, & Ramli, 2020) used AlexNet model to classify
15 RBC types. First, the individual RBC was extracted from blood smear images by
Otsu thresholding. The dataset has over 9,000 single RBC images which each type has

750 cells from 130 patients. The accuracy is 95.92%. In this work, the abnormal types
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contained a cluster of RBCs which is different from other works that focus on only

single cell types.

(Alzubaidi, Fadhel, Al-Shamma, Zhang, & Duan, 2020) proposed 3 type RBC
classification using CNN including normal, sickle cells, and others. Three CNN models
were designed and compared the performance. The best model has 23 layers and it
was trained on 3 different datasets including the dataset from (Gonzalez-Hidalgo et
al., 2015). The model achieved 99.54% accuracy and 99.98% accuracy on the model
plus a multiclass SVM classifier. The model also used transfer learning and several

augmentation techniques to overcome the small dataset for training.

(de Haan et al., 2020) proposed an automated screening for sickle cells using
semantic segmentation. The proposed method has 2 U-net models. The first model
is for enhancing the blood smear images. The second model is for segmentation into
2 types which are normal and sickle cells. For the results, the method was evaluated

on 96 patients including 9,630 RBCs and achieved ~98% accuracy.

(Delgado-Ortet, Molina-Borras, Alférez, Rodellar, & Merino, 2020) used fully
convolutional neural networks to segment RBCs from blood smear images and CNN
to classify malaria. The segmentation model has 7 layers including down-sampling
and up-sampling layers. The classification model has 13 layers. Both models are self-
designed. The evaluation was done on 331 images dataset with 98.72% and 75.39%

accuracies on segmentation and classification, respectively.

(Rahman et al., 2021) proposed 15 type RBC classification using a rule-based
method on color, morphology variation, and central pallor of RBCs. First, the blood
smear image was preprocessing and segmented WBCs, RBCs, and platelets by XOR
operation between a binary image and a cell mask. After that, each feature was
extracted by image processing. Then, the rule-based condition was used to classify
into each RBC type. The performance was tested on 250 blood smear images. The

average accuracy was 97%.
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(Shakarami et al., 2021) used YOLOvV3 to detect RBCs, WBCs, and platelets.
EfficientNet was used as the backbone of the YOLOv3. The dataset in this work has
364 images with 3,943 cells and 945 cells for training and testing. The activation
function also was modified to the Swish activation function instead of LeakyRelU.
The average precisions are 90.25%, 80.41%, and 98.92% for platelets, RBCs, and

WBCs respectively.

(Wong et al.,, 2021) proposed RBC classification with 3 methods. Our dataset
also was used in this work. First, to segment RBCs from blood smear images, Otsu
thresholding was used and then SVM for dividing a single cell and overlapping cells.
SVM and TabNet were used as a classifier for 11 RBC types with 78.2% and 73.0%
average F2-scores for SVM and TabNet respectively. To overcome the imbalance
problem, SMOTE with cost-sensitive learning was used while training. Lastly, U-net

was used to classify 6 RBC types which achieved a 78.2% F2-score.

From our survey, most of blood smear imaging research works can be divided
into 3 groups (Hegde, Prasad, Hebbar, & Sandhya, 2018) based on subtypes of blood
cells: RBCs, WBC, and platelets. Most of the works have a common objective which is
to help hematologists who must count and analyze RBCs manually to detect
diseases. The number of research apparently correspond to the degree of the
disease. WBCs studies mostly focus on leukemia. RBCs studies focus on malaria,
sickle cell disease, and other abnormalities. Platelet studies are only counting and

classification on normal and abnormal.

In the next sections, previous works on RBCs segmentation and RBCs

classification, which are the area that this thesis focuses on, are reviewed.
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2.2. RBC Segmentation

The objective of RBC segmentation is to extract RBCs from blood smear
images. The images are usually captured from a microscope at several magnification
levels. The scale suitable to observed RBC is 400x to 1000x. The 400x magnification
level can see an area with 0.45mm, or 450 microns (lLm) diameters while the 1000x
can see an area with 180 Wm diameters. The RBCs normally have a diameter around

6 — 13 Wm. Although, the RBC shape is a biconcave disk, in the microscope, it looks
like a donut, circular shape with a white area in the middle as central pallor. The
color of the cells is red to slightly purple which is much high contrast compared to

the background which has lower contrast.

Table 2-1 summarizes the segmentation and overlapping cell separation
methods used in the previous research. The methods can be divided into 2 groups:

traditional image processing, and deep learning methods.

For traditional image processing methods, the first step of segmentation
usually was converting the color blood smear images to grayscale. Then, image
normalization, blurring, and thresholding were performed to enhance the
segmentation. To extract the precise shape of RBCs, several methods had been
proposed such as thresholding, edge detection, and circular shape detection
algorithms. After that, the overlapping cell separation was performed to separate
single cell from a group of the RBC contour. The characteristics of clusters of RBCs
are used to detect and split each cell such as the circular shape of individual RBC or
concave point of overlapping cells. Then, morphology operation was done for

extracting RBC contours.

Recently, the deep learning approaches have been wused for RBC
segmentation. The most model used in many works was a fully convolutional neural

network where input is the blood smear image, and the output is also an image that
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each pixel is predicted to be either RBC pixel or a background pixel. However, the
limitation of this method is that it cannot separate a cluster of RBCs or it needs post-
processing for this task. Moreover, creating a dataset for training requires a manual

label process for all the pixels which is very labor-intensive task.

Table 2-1 Summary of RBC segmentation methods and overlapping separation

methods of previous research

Overlapping
Author Segmentation Method
Separation Method

Dijkstra’s shortest path on
(Ritter & Cooper, 2007) }
RBC border

(Soltanzadeh & Rabbani,
Otsu thresholding -

2010)
(Habibzadeh et al., 2011) Otsu thresholding Watershed
(Kareem et al,, 2011) Ring dilation and erosion -

Active appearance model
(Cai et al,, 2012) -
(AAM)

(Rakshit & Bhowmik, 2013) | Sobel edge detection -

(Mazalan et al., 2013) Circle Hough transform -

Canny edge inside
(Lee & Chen, 2014) Otsu thresholding

contour
(Tomari et al., 2014) Otsu thresholding -

Extended-minima
(Chandrasiri & transform, Euclidean

Otsu thresholding

Samarasinghe, 2014) distance transform,

Watershed

K-means with marker based
(Nugroho et al., 2015) -
on distance

(Gonzalez-Hidalgo et al,, - K-curvature for
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Author

Segmentation Method

Overlapping
Separation Method

2015)

concave point then

ellipse fitting

(Sharma et al., 2016)

Marker-controlled Watershed

(Ahmad et al., 2016)

Otsu thresholding

IRIC, Circle Hough

transform, EDCircle

(Romero-Rondén et al.,

2016)

Otsu thresholding

erosion, Hough, K-

means

(Tyas et al,, 2017)

Histogram equalization

(Xu et al., 2017)

The entropy of grayscale

level on sliding windows

Distance transform,
then random walk

method

(Acharya & Kumar, 2017)

Otsu thresholding

Distance transform

(Gopakumar et al., 2018)

Otsu thresholding

Distance transform,

then Watershed

(Sadafi et al., 2018)

FCN-AlexNet

(Aliyu et al., 2019)

Otsu thresholding

(Pasupa et al., 2020)

Circle Hough transform

(Batitis et al., 2020)

Canny edge detection

(Parab & Mehendale, 2020)

Canny edge detection

(Abdulkarim et al., 2020)

Otsu thresholding

(Delgado-Ortet et al., 2020)

Fully convolutional neural

network

(Rahman et al., 2021)

XOR with mask

(Wong et al,, 2021)

Otsu thresholding
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2.3. RBC Classification

Hematologists can use RBC classification to automate a complete blood
count (CBC) process leading to time and cost saving. The automatic classifier can also
help detecting various diseases associated with RBC abnormalities, such as Malaria
and Thalassemia. The works in this discipline can be split into three categories based

on their intended use.

1. Blood cell classification which classifies into RBCs, WBCs, and platelets.
2. Multi-type RBC classification which classifies into multi types.
3. Specific disease classifications such as Malaria, Thalassemia, Sickle cell

disease.

Table 2-2 summarizes the methods, datasets, RBC types, and results of
previous works on RBC classification. Almost every research was evaluated using
their-own dataset yielding nearly perfect results. Moreover, each research also
focuses on a different set of RBC types. Thus, it is hard to compare each method in
a straightforward way. Below we review the research works on RBC classification
grouping by approach into 2 groups: traditional image processing techniques and

modern deep learning approaches.

1. Image processing approaches

In this approach, the RBCs are classified based on manual features that were
observed on RBC appearance such as size, roundness, color, etc. After that, the
features are used to classify on condition probability algorithms such as rule-based
and decision tree. The limitation of this method is varieties of environments. It might
not tolerate different environments. To add multiple classes, the complex rule-

based method increases the difficulty of the research.
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2. Deep learning approaches

RBC classification using deep learning was started to use on a neural network.
The manual feature extraction was still used in this step. After that, CNN was used
since AlexNet outperformed on ImageNet competition.  The CNN model can be
trained without manual feature extraction. The classification model on general tasks
can also be used with high performance on other tasks including RBC classification.
To develop the RBC CNN classification model, the model architecture and RBC
dataset are the most important parts instead of fully designing all the steps likes the
previous method. For this reason, the model can classify multiple types with ease

only provide RBC images.

In the recent research, semantic segmentation and object detection was used
to detect and classify RBC which is an end-to-end deep learning. For semantic
segmentation, the model can segment and classify the whole blood smear image at
pixel level, but it was difficult to create a dataset for this task. Moreover, the
research nowadays still has only a small dataset. For object detection, the outputs
are the type of RBCs and bounding box. The dataset for object detection is easier

than semantic segmentation.

To train the RBC classification, the data imbalance is a problem that is
difficult to avoid when adding multiple RBC types because some rare types, which
are difficult to find, always have less than normal RBC. This problem also is a
common problem in a medical classification task. To handle the imbalance problem,
several techniques can be added to the training step. Augmentation is a must step to
generalize the model, but it can use to perform upsampling and downsampling to
handle the imbalanced dataset. In the training step, weight balancing is used when
backpropagation. Adjusting the loss function also can help the model not bias to the

main class.
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3. Related Theories

3.1. Red Blood Cell morphology

Red blood cell morphology (Ford, 2013) divides red blood cells into various
subtypes by abnormalities of RBC shape, and other RBC features such as size, color,
inclusion, and arrangement. Shape, size, and color features were focused on the
classification method in this study. This thesis will not cover all the RBC types
because each type can be found in different diseases, so some of RBC disorders are
difficult to find in some regions making it hard to collect the data. The interested

RBC types are described in Table 3-1.

Table 3-1 RBC type images and descriptions

Image Description

Normal cell
The cell has a circular shape with

circular central pallor.

Macrocyte

It like @ normal cell but bigger.

Microcyte

It like a normal cell but smaller.




28

Hypochromia
Central polar is more than 1/3 the

diameter of the RBC.

Ovalocyte
RBC with oval shape.

Schistocyte
It is a fragment of RBC. It usually shows
another shape with no central pallor

instead of a circular shape.

Spherocyte
The cell is smaller than normal. There is

no central pallor.

Sickle cell
There are several sickle cell shapes.
Generally, it looks like a boat, or

crescentic with two sharp endpoints.

Stomatocyte
The central pallor is linear, rather than

circular.

Target cell
The cell has a central area within the

central pallor.
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Teardrop cell

The shape looks like a drop of water.

Burr cell
The cell has serrated edges projection

off its surface.
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3.2. Ellipse Fitting

To estimate ellipse shape from a set of coordinate, (Aw Fitzgibbon & Fisher,
1995) proposed ellipse fitting algorithm minimizes an algebraic cost function on an

ellipse equation

F(x,y) =ax’+ bxy+ cy’+ dx+ ey + f

With a constraint

b2— 4ac <0

where X, y are the coordinate of each point and a, b, ¢, d, e, f are coefficients of the
ellipse equation. This problem can be solved using the least-squares approach. The
algorithm is well known and low resource computing. However, the algorithm can

return a general conic shape, not specific on only the ellipse shape.

After that, (A. Fitzgibbon, Pilu, & Fisher, 1999) proposed a direct least-square

fitting of the ellipse by adding a new constrain.

dac—bl=1

The new algorithm ensures that the result will be an ellipse even on the noisy set of

points which is very robust.
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3.3. Convolutional Neural Network (CNN)

The convolutional neural network was evolved from an artificial neural
network that makes up of multiple neurons that have weights and biases. The
architecture of the neural network is shown in Figure 3-1 consisting of an input layer,
hidden layers, and an output layer. Each neuron receives values from the previous
layer then performs a dot product follow by a non-linear function (optional). The
data is put through the network called "forward propagation”. After that, the network
is trained by calculus-based called "back propagation” which learns how to correct

the result comparing with ground truth.

:.\\\;.\
o0
AW

Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer

~
A

N7
o

Figure 3-1 Artificial neural network

To implement image classification with the neuron network, the input layer is
the set size of input neurons equal to the size of pixels of the image. In this case, the
hidden layers will have a large number of neurons making it is computationally

expensive. However, CNN solves this problem. CNN consists of 2 groups, feature
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extractor layers, and fully connected layers. The architecture of CNN is shown in

Figure 3-2.

Convolution Pooling Convolution Pooling

Fully-Connected

Figure 3-2 CNN architecture

The Feature extractor layers have 2 components, convolution, and pooling.
Convolution is done by the dot product between each feature map and kernel then
apply a non-linear function. The dot product is shown in Figure 3-3. Pooling is used
to reducing the size of the feature map by reducing the layer size. There are two

traditional types, max pooling, and average pooling. Pooling samples are shown in

Figure 3-4.
Feature map Kernel
1201} 24+08+——7F7 73 212 |-4|2
3|02 (1|01 1 3 ol o
11110 /1}2 3 +—7+— 1 3 (-4
1|0 |-2|1 |42 2|-5(-2|7 1| 8
Ox1+ 2x2 + 1x(-1) + Ox0 = 3

3 (1|22 1 3(5|5|¢5
201 ]|-3|-1|1

Figure 3-3 Sample of convolution between 6x6 feature map and 2x2 kernel
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Figure 3-4 (a) 2x2 max pooling (b) 2x2 average pooling

The fully connected layers are the final step for predicting the result. This
layer like the typical neural network which connects every neuron from the previous
layer. For image classification, typically convolution and pooling are connected and
repeated multiple times then a few fully connected layers are placed at the end
which the last one has a size equal to the class size. In the early layer of
convolution, each kernel detects low-level objects such as line, edge, curve, etc. In
later layers, it will detect more complex objects. The CNN reduces computationally
cost compare to the typical neural network because each kernel applies to all entire
images to reduce unnecessary connections in the early layers and add more kernel

making the network can go more in-depth instead.
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3.4. Image Classification Model

3.4.1. AlexNet

AlexNet (Krizhevsky et al., 2012) was introduced to the world in 2012 with the
winner in the ImageNet Large Scale Visual Recognition Competition (ILSVRC) which is
an image classification competition. The AlexNet model outperformed all non-deep
learning algorithms with a significant margin. The model has 8 layers, as shown in
Figure 3-5. The convolution layers in this model are 11x11, 5x5, and 3x3 in dimension
sizes. The total parameters to be trained are 60 million parameters. In addition, the
RelLU activation function was introduced in AlexNet for the first time instead of TanH.
The ReLU helps the model has to reach a lower error rate and also trains 6 times

faster than TanH.

128 204 2048 dense
13
NS
: 13 dense dense|
1000
128 Max L
Max 28 Max pooling 294 2048
pooling pooling

Figure 3-5 Architecture of AlexNet (Krizhevsky et al., 2012)
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3.4.2. VGGNet

VGGNet (Simonyan & Zisserman, 2015) was introduced in 2014 as the winner
in ILSVRC 2014. The VGGNet increases the number of model layers to 16 and 19, as
VGG16 and VGG19 respectively. The model uses only 3x3 convolution layers instead
of a larger convolution size because multiple 3x3 convolution layers have the same
effect to one larger layer, but it needs fewer parameters to be trained. The total
parameter for VGG16 is approximately 138 million parameters and for VGG19 is

approximately 144 million parameters.
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Figure 3-6 Architectures of VGG16 and VGG19 (Simonyan & Zisserman, 2015)

3.4.3. ResNet

ResNet (He et al., 2015) is the first CNN model that shows better than human
performance. It was introduced as the winner in ILSVRC 2015 and COCO2015.
Previous research had shown that the deeper CNN can achieve higher performance.
However, training a model needs backpropagation. The gradients that pass through
the deep model become smaller and show insignificant updates to the model,
called the vanishing gradient problem. To handle this problem, ResNet uses the
residual block, as shown in Figure 3-7, that adds a skip connection between the first
layer of the block to the last layer of the block. These skip connections are the

shorter paths to send back the gradient when backpropagation. The ResNet is a
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connection of the residual block and it can go deep up to 150 layers, called

ResNet152 which has 60 million parameters.

X
A 4
weight layer
F(x) Jrelu .
weight layer identity

Figure 3-7 the Residual block in ResNet (He et al., 2015)

3.4.4. DenseNet

DenseNet (Huang et al,, 2018) is a connection of dense blocks. Within the
block, each layer connects to all previous layers, as shown in Figure 3-8. Instead of
summing the previous layer like ResNet, DenseNet concatenates all previous feature
maps, so the model does not need wide layers and it can reduce the number of
feature maps. The DenseNet201, which has 201 layers, outperforms ResNet152 with

fewer parameters and higher performance.
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Figure 3-8 Dense block in DenseNet (Huang et al., 2018)

3.4.5. EfficientNet

Previous CNN architecture usually is a manual desired. EfficientNet was
proposed with a set of models, EfficentNet-BO - EfficientNet-B7, to fit a resource. Not
only increase the deep layer of the model, the EfficientNet balances the width,
depth, resolution of the model, as shown in Figure 3-9 using AutoML. The AutoML
performs a grid search to find a relationship to scale the baseline network, which is
mobile inverted bottleneck convolution (MBConv). For the performance, EfficientNet

beats all previous models and also has lower computational power.
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Figure 3-9 (a) is a baseline network, (b)-(d) show scaling in only one dimension, (e)
compound scaling, including: wide, depth, and resolution, that was used in

EfficientNet (Tan & Le, 2020)

3.5. Imbalance handling techniques

The most common problem for image classification in the medical area is an
imbalanced dataset. Abnormal cases always have lower samples than normal cases.
To handle the imbalance problem, several techniques have been invented to make
the model does not bias to the majority classes. This section shows 3 methods that

were used in this study to handle the imbalanced dataset.
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3.5.1. Upsampling & downsampling

To handle the imbalanced dataset at the data level, all classes in the dataset
should have samples equally. Downsampling decreases the sample in the classes
that have many samples while upsampling increases the sample in the classes that
have a low number of samples. It is easier to decrease the sample than to increase

the samples. The augmentation technique is usually used to generate new samples.

(a) Original dataset (b) Downsampling (c) Upsampling

Figure 3-10 (a) Imbalanced dataset (b) Downsapling technique that scales down the
size of samples until equal to the lowest class (c) Upsampling technique that scales

up the size of samples until equal to the highest class

3.5.2. Weight balancing

Weight balancing balances the training process in the loss function. Usually,
the weight was assigned by the number of samples, low samples have higher weight,
high samples have lower weight. The weights are multiplied with the loss to make

the model less focused on the majority classes.

3.5.3. Focal loss

Focal loss is another weight balancing technique that was proposed in (Lin et
al., 2018). First, it was used for object detection that the background class has much

more pixels than the objects. However, it was modified to use in the image
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classification task. The focal loss was modified from the cross-entropy loss, that
commonly uses in image classification. The loss less focuses on the well-classified
samples, as shown in Figure 3-11, making the model focuses on the sample with

higher loss.
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Figure 3-11 focal loss (Lin et al., 2018)
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4. Proposed Methods

This chapter includes our data collection, normalization, segmentation, and
classification. It covers a process from the blood smear is captured from a
microscope to each RBC is classified to a type. The main contribution of this study is
on data collection, segmentation, and classification. In data collection, we developed
a software tool that helps experts label the RBCs. To the best of our knowledge, the
dataset contains most classes of RBCs in the literature, and we plan to share this
dataset to research community. In segmentation, a method for overlapping cell
separation is proposed based on concave point findings. In classification, the
EfficientNet model, which is the recent state-of-the-art for image classification, is

employed.

Although, there have been many deep learning methods used for object
detection, semantic segmentation, instance segmentation which are fully end-to-end
learning based. However, the drawback of these methods is data preparation. To
train the detection model, it needs bounding boxes and labels on every RBCs, but
our dataset contains only some RBCs and coordinates. For these reasons, fully

learning methods might not be suitable for this task.

4.1. Data collection

RBC images were collected from DS-Fi2-L3 Nikon microscope at 1000x
magnification and were saved in the Google firebase database. After that, we have
developed an I0S application for the specialist at the Faculty of Allied Health
Sciences, Chulalongkorn university to label RBC in the images. It has two pages, a

listed image view, and a labeled view, as shown in Figure 4-1.
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Figure 4-1 (a) Listed image view, (b) Labeled view

In the labeled view, users can select RBC types from the bottom of the
screen then click on RBCs of that type in the image. The data will be automatically
saved on Firebase. The data, which consists of x-y coordinate and type, were saved
as JSON files which it can immediately use along with the labeling process. However,
the abnormal RBCs that have an abnormality in shape can be identified with ease
but the RBCs that have an abnormality in size are difficult. The blood smear images
have a different scale when observed from the microscope, smartphone, and tablet.
It is difficult to identify which cells are normal, microcyte, or macrocyte, even for a
specialist. Ovalocyte is another type that needs to specify criteria, if the cells are
slightly ellipse shape, it may confuse the labelers it is oval enough to be the
ovalocyte. Moreover, in real-world situations, hematologists are not used tools to
measure every cell in the slides, they usually use the experience to approximate the
size of RBCs from the majority size of RBCs in the slides. But for labeling the ground

truth. Every label needs to have an accurate label because the model in the image
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classification problem does not have information from other cells, only a single-cell
input. According to the normal RBCs, it has 6 - 8 microns. We have created a simple
tool in our label application. The tool has 2 green circles which are calculated to
have 6 and 8 diameters (16 and 22 pixels respectively) from the microscope

reference scale. The tool is shown in Figure 4-2.

6 microns

8 microns

Figure 4-2 Circular shape tool for RBCs measurement

Labelers can move the tool to measure the cell along with marking the type of RBCs.
The tool can help the labelers to measure 4 types: Normal cell, Macrocyte,

Microcyte, and Ovalocyte by the rule in following.

- Normal cell: edge of the RBC needs to align between 2 circles.

- Microcyte: edge of the RBC needs to align inside the small circle.

- Macrocyte: edge of the RBC aligns outside the big circle.

- Ovalocyte: 2 opposite sides of RBC straight out of the big circle while another

2 opposite sides lie inside the big circle.

These rules can decrease confusion between each labeler. Before having this
tool, labelers sometimes unsure whether the cell size is too big or too small
comparing to the normal cell. The samples of the screen when classifying these 4

types are shown in Figure 4-3.
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Figure 4-3 the circular shape tool in the mobile application for RBC measuring (a)

Normal cell, (b) Microcyte, (c) Macrocyte, (d) Ovalaocyte

In our experiment using dataset before using this tool explained in the next
section, the confusion matrix showed that the majority of the wrong predictions are
especially on Macrocytes and Microcytes. So, relabel process was done on the wrong
prediction cells. To help the specialist to relabel with ease, we created an image
with 3 components: a blood smear image with a rectangle box of the cell, an image
from the rectangle box, and the rectangle box with no background and the circle
tool. The type of the cell is shown in the lower left corner. Sample images were
shown in Figure 4-4. The wrong labeling can happen in several causes. As shown in
Figure 4-4 (a), the interesting cell seems smaller than other cells in the overall image
so the specialist might think it is normal, but it is still Macrocyte. In Figure 4-4 (b), the
interesting cell also seems smaller than other cells, but the majority is Macrocyte not
Normal cell, so labeler assumed it was Microcyte instead of Normal cell. In Figure 4-4
(0), it is shown that the cell is small but also has an oval shape. For this reason,
labelers need to agree to the labeling process because it cannot have 2 labels in 1

cell. The agreement is that abnormal RBC in shape is a priority than the second is
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size. Similar to Figure 4-4 (c), it was relabeled as the Ovalocyte instead of the

Microcyte.

Noi 1432 Typeld imoge 579 1213 Type 2 imnoge 570

(@) (b) (©

Figure 4-4 Sample images of relabel process. (a) Macrocyte was labeled as Normal
cell, (b) Normal cell was relabeled as Microcyte, (c) Ovalocyte was labeled as

Microcyte

The collection process did both blood smear image collection from the
microscope and label the RBCs in parallel. The image collection timeline is shown in
Table 4-1 and the label process timeline is shown in Table 4-2. As shown in the label
process timeline, some types were decreased over time because the labeler
relabeled the previous cells. The huge decreasing between 16/08/2019 and
06/09/2019 on Microcytes is because of a relabel process with the circle tool

recorrect Microcyte as Normal cell.



Table 4-1 Timeline of blood smear image collection

Date Number of blood smear images
13/12/2018 231
20/03/2019 285
30/03/2019 389
20/06/2019 492
16/07/2019 559
31/07/2019 583
01/08/2019 623
09/08/2019 675
16/08/2019 706

a6
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4.2. Normalization

In our blood smear dataset, as shown in Figure 4-5, the images are different in
lisht conditions. Collectors might have different environments, such as camera
settings, microscope light levels, blood smear slide preparation, etc. It can happen
by multiple causes: such as the brightness of light in the microscope, camera
settings, substances that using in slide preparation, or even light from the
environment. The collectors also might collect multiple blood smear slides of a
single RBC type at a time, making each type have its own color space. Although
hematologists can disregard the difference in color space from expertise, the model
can be biased from the different color spaces during the training process instead of
the characteristics of that type. Hence, normalization is needed to preprocess the

images before classification.

Figure 4-5 Samples of blood smear images

Figure 4-6 Samples of blood smear images after normalization
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In this step, the backgrounds were extracted and the three overall average
background values of the RGB channels (Ravg» Gavg» and Bavg) were found for
all the blood smear images. Before training and predicting the results, the different
values of the three average background values of the target image k and the overall
averages values were added to all the pixels of the target image. The normalization
equation of pixel (i, j) for image k is shown in the equation below. Although only the
normalized images were used for improving the classification results, a huge
improvement in the normalization accuracy was found. The results are shown in

Figure 4-6.

k — .k k
;= 1% + (Ravg = mavg)
k /- k _ Ak
) i,j =9 i,j + (Gavg ) avg)

bk = bki’j + (Bavg - bkavg)
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4.3. Segmentation

In this step, the segmentation was done for extracting the RBC area as
contours out of the background. It starts with preprocessing the image. First, the
image was converted to greyscale by selecting the green channel of the RGB image.
It was selected because the green channel has more contrast than the red and blue
channels. The RBCs have purple red color making the green channel has a lower
value while the background contains a high value on all 3 channels. As shown in
Figure 4-7, (a) shows the RBC sample image and (b) - (d) show R, G, and B channels,
respectively. (e) shows a histogram of the RBC color of the image (a). It was shown
that each channel has 2 peaks, the higher peak always has a higher value due to the
background and the lower peak is the RBC area. The farthest distance between the 2
peaks is on the green channel making it has the highest contrast compared with all 3

channels.
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(e)

Figure 4-7 (a) RBC original color image. (b) Image from the red channel. (c) Image
from the green channel. (d) Image from the blue channel. (e) Histogram of RGB

color.

Next, CLAHE (Contrast Limited Adaptive Histogram Equalization) was used to
enhance the image. The grayscale was divided into small blocks (8x8). The small
blocks were done histogram equalization separately, as shown in Figure 4-8. Blur and
threshold were used to extracting the cell area out of the background. The steps are

shown in Figure 4-8 (c) - (d).
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Figure 4-8 (a) Green channel image. (b) CLAHE image. (c) Blur image. (d) Threshold

image

After that, we need to extract the edges of each cell by extracting the
contour using morphology operation. The output is contours of ROl regions contains

coordinates of the border. Finding a closed area was used as shown in Figure 6-5.

Figure 6-5 Closed area image
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4.4. Overlapping separation

In manual RBC analysis, hematologists typically avoid selecting an area in a
blood smear slide that has overlapping cells to evaluate the result. This is because it
is simple to count and identify the type of RBC when their border is not hidden
behind other cells. To separate the overlapping RBCs, the most reliable methods are
based on distance transforming and ellipse fitting. The distance transform approach is
used to find the peak spots furthest from the border. The peak spots are then used
to identify a unique cell by several techniques, such as the random walk method
and watershed transform, and the area of each cell was found. However, although
the distance transform works effectively for a circular shape and a small group of
overlapping cells, the peak area may coexist making it difficult to specify a certain
amount. The ellipse fitting method uses the edge of the RBC to approximate as an

ellipse which identifies the area of RBC.

The method presented herein is based on ellipse fitting and the overall
process was divided into four steps, as detailed below. The steps are shown in Figure

4-11.

4.4.1. Concave point finding

In each point (coordinate) in the RBC contour, (xi,yi), k middle points were
calculated by finding the center of the distance between k pairs of contour points
near the point. If all k points are outside the contour, the point is considered as a
concave point, as shown in Figure 4-9. However, when more than one concave point
can be found in a wide curve, as shown in Figure 4-11 (b), only one concave point
was selected by averaging all near concave points. The concave points function,

f(x), was calculated using Equation (4.1) and (4.2).
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Figure 4-9 Concave point finding

4.4.2. Ellipse estimation

If the contour has more than one concave point, curves between the two
concave points were used to approximate an ellipse shape by direct ellipse fitting (A.
Fitzgibbon et al., 1999), based on the least-square method. The direct ellipse fitting is
recommended instead of the original (Aw Fitzgibbon & Fisher, 1995), which gives an
approximate ellipse that does not relate to the curve in some conditions. The direct
ellipse fitting is constrained by ensuring the discriminant 4ac— 52=0 for the ellipse
equation. The Figure 4-10 shows the incorrect results of the original ellipse fitting

comparing with the direct ellipse fitting.
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(a) (b)
Figure 4-10 (a) shows results of the direct ellipse fitting, (b) shows results of the

original ellipse fitting

4.4.3. Ellipse verification

After finding all the ellipses in each contour, the ellipses were sorted by area
in descending order. Then, each ellipse was verified to be in the RBC contour by
meeting two simple conditions of (i) 80% of the ellipse area is in the contour and (ii)

20% in the remaining area in the contour is not in any previous ellipses.



4.4.4. Two curve ellipse estimation

In highly overlapping RBCs, more than two cells overlap each other and so
the curves might not be able to restore the correct ellipse shape of each RBC. If
there are more than two ellipses that do not pass the conditions, then the two

curves were concatenated and used to estimate an ellipse of the remaining cell.

(a)

(0

(e)

Figure 4-11 Steps in the overlapping cell separation: (a-c) two curves are

concatenated and used to estimate an ellipse of the remaining cell. (d) The two



blue ellipses show an incorrect cell estimation, while (e) shows the correct cell

estimation after ellipse fitting with two curves.
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4.5. Classification
4.5.1. RBC dataset

After the segmentation step, single RBC contours are extracted out of the
blood smear images. To feed to the CNN model, single RBC images are created. The
RBC contour are put in the middle of the output image, as shown in Figure 4-12.
After that, the images are resized to 224x224 pixels which is the default size that the

original work using.

The dataset had 12 classes of RBCs: 11 RBC types and an uncategorized class,
which is other type of RBC. The dataset was labeled by specialists in hematology.
The numbers of RBCs in each class are shown in Table 4-3. The dataset is highly
imbalanced because some classes are rare, such as the Teardrop, Sickle cell, and
Uncategorized types. However, in data collection process, we have collected the
Sickle cell, Polychromasia, Keratocyte, and Acanthocyte. These 4 RBC types still have

small number of samples which is not enough for training.

Figure 4-12 Samples of single RBC images before feeding to the deep learning

model
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Table 4-3 Total number of each RBC class in the dataset

RBC Class Total number of RBCs
Normal cell 6,286
Macrocyte 687
Microcyte 459
Spherocyte 3,445
Target cell 2,703
Stomatocyte 1,991
Ovalocyte 2,137
Teardrop cell 305
Burr cell 783
Schistocyte 861
Uncategorized cell 182
Hypochromia 1,036
Total 20926

4.5.2. Classification model

For classification, the pretrained EfficientNet model (Tan & Le, 2020) was used
as it showed a remarkable level of accuracy and better performance than the older
models. It was designed by carefully balancing the network depth, width, and
resolution. The model has eight different sizes: EfficientNet-B0O to EfficientNet-B7. In
the results section, the EfficientNet-BO to EfficientNet-B4 were observed with a five-

fold cross validation using 80% and 20% for training and testing, respectively.

4.5.3. Augmentation

The data augmentation will be used for this problem. It can generate new

data by applying a function to the data. Only random flips and rotates were used
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for data augmentation because the RBC classes are sensitive to size and color, such

as Normal Macrocytes and Microcytes are different in size.

4.5.4. Imbalanced handing techniques

Further analysis on the imbalanced dataset was then performed an
imbalanced dataset is a common problem in biomedical datasets. Our RBC dataset
was highly imbalanced with a 34.538 imbalance ratio (calculated from highest
sample class/lowest sample class) for the 12 RBC classes from a total of 20,875 RBCs.
In the training step, the model can be overcome by high sample classes with less
focus on the low sample classes. Thus, the weight balancing, up sampling, and focal

loss were investigated in this study.

For weight balancing, normally, every RBC class has the same weight, 1.0.
However, the weight balancing helps a model balances learning gradients in the
backpropagation step between high sample classes and low sample class, by giving a
high weight to low sample classes and a low weight to high sample classes. In this
1Lt
N

respectively, where f is the number of samples in that class.

study, each class was weighted as as weights 1, 2, and 3,

The up sampling makes every RBC class have the same number of samples
by replicating its own data. This helps the trained model to not be overcome by high

sample classes. In this case, every class replicates itself to match the normal class.

For the focal loss, as shown in the Figure 3-11 focal loss , the y parameter
adjusts how the loss function less impact on well-classified samples, higher y less
impact on well-classified samples. 0.5, 1.0, 1.5, 2.0 ,2.5, 3.0 were used in the vy

parameter in our test.
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4.5.5. Evaluation metric

To evaluate the performance, accuracy is commonly used for image
classification. For the imbalanced dataset, the accuracy is insufficient, as it can be
dominated by the majority classes. However, many metrics have been used to
describe an imbalanced dataset (Johnson & Khoshgoftaar, 2019), and the Fl-score
was used in this study. This is a well-known metric that balances precision and recall
by harmonic means that is sensitive to the minority classes. Normally, for binary
classification, precision, recall, sensitivity, specificity, and Fl-score were used to
evaluate the result in imbalance dataset. In contrast, multi-class classification

multiple metrics are hard to compare.



5. Experimental Results

5.1. Overlapping cell separation
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In this section, overlapping cell separation performance was tested in 20

blood smear images. We manually counted the overlapping contours that did not

contain a cell on the border of the images and other artifacts, such as platelets,

white blood cells, or microscope tools in the images. A total of 277 contours were

found. Our algorithm can correctly separate 246 overlapping cells which are 0.8881

accuracies. The incorrect results include undetected overlapping cells, and the result

does not fit the true shape of RBCs. According to the wrong results, it can happen in

incorrect concave point finding and incorrect ellipse fitting. The results are shown in

Table 5-1. Mostly found in the blood smear imasges are the two overlapping cells.

The incorrect results mostly are caused by wrong concave point findings.

Table 5-1 Overlapping cells separation result

Contour | Correct | Incorrect (Concave) | Incorrect (Fitting) | Total
2 RBCs 185 18 a4 207
3 RBCs 38 2 1 a1
> 4 RBCs 23 2 4 29
Total 246 22 9 277

In Figure 5-1, the incorrect overlapping cell separations are shown. (a) is

incorrect because only one concave point is found, (b) and (c) are incorrect due to

incorrect ellipse fitting. In Figure 5-2, the correct overlapping cell separations are

shown. (a) and (b) are simple overlapping cells, while (c) is a complex group of

overlapping cells.
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©

Figure 5-1 (a) shows incorrect overlapping cell separation because of incorrect

concave point finding (b)-(c) show incorrect ellipse fitting because of incorrect ellipse

fitting



(b)

(0)

Figure 5-2 (a)-(c) show correct overlapping cell separation
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5.2. RBC Classification

In the first step, we investigated the different model sizes, EfficientNet-BO to
B4, with and without augmentation. The results (Table 5-2) show that EfficientNet-B1
with augmentation had the highest accuracy and Fl-score. Thus, increasing the
model size did not significantly improve the performance, and the limiting factor was
the sample size of the dataset. Increasing the model size can then lead to an
overfitting problem. Therefore, imbalance handling techniques were investigated,
including weight balancing, up sampling, and focal loss, using EfficientNet-B1 as the

baseline.

Table 5-2 RBC classification results

Model Accuracy | Fl-score
EfficientNet-B0 0.8821 0.8378
EfficientNet-B1 0.8823 0.8426
EfficientNet-B2 0.8842 0.8399
EfficientNet-B3 0.8819 0.8423
EfficientNet-B4 0.8830 0.8405

EfficientNet-BO-aug 0.8996 0.8639

EfficientNet-Bl-aug | 0.9021 0.8679

EfficientNet-B2-aug 0.8988 0.8636

EfficientNet-B3-aug 0.9001 0.8642

EfficientNet-Bd-aug 0.8990 0.8668

The overall training accuracy and Fl-score of EfficientNet-B1 with imbalance
handling techniques are summarized in Table 5-3. However, the baseline model with

augmentation still had the highest accuracy and F1-score, followed by AugWeight3

(augmentation and weight). Up (Up sampling) showed a slightly lower result

\/ 1
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from the baseline while AugUp (Augmentation with up sampling) showed slightly
better results. Augmentation with focal loss (AugFocal0.5-AugFocal3.0) resulted in a

decreasing accuracy and Fl-score with increasing $\eamma$ hyperparameter values.

Table 5-3 Accuracy and F1-Score of our proposed EfficientNet-B1 with various data

imbalance handling techniques

Model Accuracy | F1-score

Baseline 0.8823 0.8426

Aug 0.9021 0.8679

Weight 0.8752 0.8374

Weight2 0.8808 0.8435

Weight3 0.8820 0.8410

AugWeight | 0.8698 | 0.8344

AugWeight2 | 0.8954 | 0.8630

AugWeight3 | 0.8981 | 0.8672

Up 0.8772 0.8403

AugUp 0.8877 | 0.8591

AugFocal0.5 | 0.8947 0.8523

AugFocall.0 | 0.8932 0.8510

AugFocall.5 | 0.8926 0.8543

AugFocal2.0 | 0.8900 0.8480

AugFocal2.5 | 0.8884 0.8486

AugFocal3.0 | 0.8877 0.8488

The average results in the imbalanced handing techniques might not tell
much about the performance of the model. In Table 5-4, Fl-scores of each
technique in classes are shown. The augmentation row is highlishted, and the bold

values are shown that they are better than the augmentation in that class. The
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weight balancing with augmentation shows better F1-score on low sample classes,
AugWeight2 and AugWeight3 have 4 and 6 classes better than only augmentation.
The upsampling with augmentation has 3 classes better than the augmentation. The
result in Table 5-4 shows that the weight balancing with augmentation technique can
help the model focusing on the low sample classes. The reason that the overall F1-
score still lower than the augmentation technique because our dataset is highly
imbalanced, the lowest which is uncategorized and teardrop cell have 182 and 305

samples while the normal has 6,286 samples.

In summary, the difference between this dataset and general datasets in the
RBC classification problem are the dataset is imbalanced and RBC classes have many
similar characteristics. Almost all classes are circular in shape, with only a few
characteristics that are different, such as their size, shape, and color. The best result

was obtained with the EfficientNet-B1 with augmentation.

Further analysis on an imbalanced dataset, weight balancing, and focal loss
were examined for their effect on the loss function. Weight balancing helped to
improve the low sample classes with less focus on the high sample classes.
Otherwise, focal loss showed a decreased performance for this dataset because it
focused on a high value loss, but since the different RBC classes were almost similar
in shape the loss was almost entirely in the middle, which is ignored. Up sampling
was performed at the data level, similar to augmentation. This technique seemed to
work best for unique shape classes, which were the teardrop cell and uncategorized

classes.

The further experiment on background color for feeding into the model was
done, as shown in Table 5-5. Normally the black background was used in the
experiment. The experiment was done with black background, white background,
gray background, and average backeround from the blood smear image background.

The result shows that the black background has the best performance.
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The normalize RBC techniques also was tested, the first row of Table 5-5. The
result has very low performance because our blood smear images have variance of
background color. The blood smear image collector may collect the images type by
type, so each type has their own environment of lighting. For this reason, the

normalization needs to be done before feeding to the model.

In Figure 5-3, samples of segmentation and classification are shown. The
number near each cell shows the number of predicted RBC types. The number is in

Table 5-6
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Table 5-5 Accuracy and F1-score of EfficientNet-B1 with different normalization

techniques

Model Accuracy | Fl-score

AugUnnormalize | 0.6325 0.4241

AugBlackbg 0.9021 0.8679
AugWhitebg 0.8977 0.8634
AugGraybg 0.8969 0.8603
AugAVGbg 0.8979 0.8626

Table 5-6 Average Precision, Recall, and F1-score of five-fold cross validation using

our method on Yale’s dataset

Number of RBC types | RBC types

0 Normal cell

—_

Macrocyte

Microcyte

Spherocyte

Target cell

Stomatocyte

Ovalocyte

Teardrop cell

Burr cell

O [ OO | N | O] UOn| B W | DN

Schistocyte

N
o

Uncategorized cell

—_
—_

Hypochromia
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5.3. RBC classification on other work comparisons

5.3.1. Comparison with (Wong et al., 2021)

(Wong et al.,, 2021) reported the results of using SVM and TabNet to classify
the RBCs into 11 classes on the same dataset as used in this paper. They employed
the SMOTE technique with cost-sensitive learning to handle the imbalanced dataset.
The evaluation was done using F2-Score and the results show that the SVM
outperforms the TabNet with 78.2% and 73.0% respectively. To compare with their
work, we employed our methods, EfficientNet-B1 with augmentation, to classify 11
and 12 classes of RBCs on the same dataset. Our approach yields 88.62% and

87.91% F2-score respectively.

5.3.2. Comparison with Yale’s dataset

Since each of researchers usually has their own datasets which are different
in the number of classes and the number of samples, thus the method comparison
is quite not straightforward. However, we found an available RBC dataset used in
(Durant et al,, 2017) provided by the Yale University School of Medicine. Their
dataset contains 3,737 labeled RBCs with 10 classes including the overlapping cells.
Durant et.al. used DenseNet (Huang et al., 2018) which has more than 150 layers. The

reported accuracy was 0.9692 on the test set. Comparison on the Yale’s dataset

To make a fair comparison, we employed our proposed method based on
the EfficientNet-B1 without the overlapping cell separation. We also used five-fold
cross validation for training because we do not know how the data was partitioned in
the (Durant et al,, 2017). Our result yields 0.9813 on the average accuracy on cross
validation, and the highest and lowest cross validation accuracies are 0.9920 and
0.9733, respectively. Table 5-7 shows our average precision, recall, and F1-Score of

five-fold cross validation on Yale’s dataset. Table 5-8 shows confusion matrix for our
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classifier based on EfficientNet-B1. There were only 6 wrong predicted results, as

shown in Figure 5-4.

According to the comparison result on the same dataset, our proposed
method outperforms the previous work done in (Durant et al., 2017) by yielding the
higher accuracy. The overlapping cells were all correctly predicted in all five-fold
cross validation which is quite obvious because the area of an overlapping cell is
typically larger than other types of a single cell. Although accuracy gain using our
model compared with the previous method is about 0.18% (7/3,737) which is not
quite significant, but our model yields also better performance on both training and

inference due to lots lower number of parameters.

Table 5-7 Average Precision, Recall, and F1-score of five-fold cross validation using

our method on Yale's dataset

RBC Types Precision | Recall | F1-score

Normal 0.995 0.985 0.990
Chinocyte 0.952 0.984 0.968
Dacrocyte 0.889 0.941 0.914

Schistocyte 0.974 0.949 0.961

Elliptocyte 0889 | 0.941 | 0.914

Acanthocyte 0.848 0.933 0.889

Target cell 1.000 0.993 0.997

Stomatocyte 0.955 0.955 0.955

Spherocyte 0.958 0.958 0.958

Overlap 1.000 1.000 1.000




(a) Predicted: Dacrocyte

True class:

Schistocyte

) Al 4
(d) Predicted:
Acanthocyte

True class:

Schistocyte

oY

(b) Predicted:
Schistocyte

True class: Dacrocyte

i
(e) Predicted: Dacrocyte

True class:

Elliptocyte

(0

(f)

78

O«

Predicted:
Schistocyte
True class:

Echinocyte

@
P- i
Predicted:

Spherocyte

True class: Normal

Figure 5-4 Among the 748 test images tested on EfficientNet-B1 using Yale's dataset,

there were six misclassified images (a) - (f)
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Further cross dataset analysis was done with the EfficientNet-b1 model
trained with our dataset but tested on the Yale’s dataset. These two datasets have 8
identical RBC types that our dataset does not have the Acanthocyte and Overlap
classes. In Table 5-9, the confusion matrix for the EfficientNet-B1 model trained on
our dataset but tested on the Yale’s dataset is shown. To test on different dataset,
normalization process was done before classifying. The average accuracy was 0.7373
on 8 classes. 566 Normal RBCs was predicted wrong with Uncategorized class, which
contains several RBC shapes. According to the incorrect Uncategorized class results, it
can happen because many RBCs on Yale’s dataset, even on the same types on our

dataset, is not the same as on our dataset in some characteristic of RBCs.

The confusion matrix for the EfficientNet-B1 model trained on our dataset but
tested on the Yale’s dataset which excludes the Uncategorized class was shown for
the analysis on the second best predicted of RBC types instead of the Uncategorized,
as shown in Table 5-10. The average accuracy was 0.8062 on 8 classes. The result
shows that the correct predicted normal class was huge increased. However, the

incorrect results still have much more than the model trained on Yale’s dataset.

To clarify the incorrect results, the misclassified images in Yale’s dataset were
observed, as shown in Figure 5-5. (a) — (d) are wrong predicted but it is quite
reasonable because the images look similar to the predicted classes. In contrast, (e)
- (g) are Schistocytes but the images only seem like the predicted class. The reason
that our model shows wrong predicted results because the Schistocyte is a fragment

of RBCs which cannot identify the characteristic of the Schistocyte.
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S .
(a) True class: Normal (b) True class: Normal
Predicted class: Spherocyte Predicted class: Ovalocyte

(c) True class: Normal (d) True class: Normal

Predicted class: Microcyte Predicted class: Hypochromia

(e) True class: Schistocyte (f) True class: Schistocyte

Predicted class: Teardrop Predicted class: Ovalocyte
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(g) True class: Schistocyte
Predicted class: Spherocyte
Figure 5-5 Samples of misclassified images from the EfficientNet-B1 trained on our

dataset and tested on Yale's dataset (not included Uncategorized)
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6. Conclusion and Discussion

6.1. Conclusion

In this study, a method to segment RBCs is presented. The proposed method
has the ability to separate overlapping cells based on concave points and classify
RBCs into 12 classes. The process started from data collection with an application
created for labeling RBCs. Color normalization, which reduced the color space and
allowed the trained model to not be biased on color. Next, contour extraction was
used to extract the RBC contour from the background. Then, overlapping cells were
separated using a new method to find concave points and use direct ellipse fitting to
estimate the shape of a single RBC. Lastly, classification using EfficientNet-B1 showed
the best result with augmentation. Moreover, further analysis for handing an
imbalanced dataset revealed that weight balancing can reduce the bias of a trained

model on the majority classes.

6.2. Discussion

Many deep learning studies on RBCs still lack a standard public dataset to
evaluate their performance. Our dataset has more samples and more types of RBCs
than many previous studies, but it still requires to be improved for imbalanced

problems.

For the method presented here, we used the EfficientNet model to classify
the RBCs. However, the segmentation step is not a learning-based method, which is a
trend that has shown better results in many specific computer vision areas. For RBC
diagnose, only the number of RBCs and RBC types are important. The object
detection method, which is provides bounding boxes and classes, can serve this. To
train object detection for RBC images, all of RBCs are needed to label to make the
best performance for the model. The manual labeling process may take much cost

and time. Our work can use to do this labeling and classify with high accuracy for



86

these 12 RBC classes that is a starting point for end-to-end deep learning. However,
RBC images are needed to be collected to solve the imbalanced problem and

improve the performance.
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