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ABSTRACT

5382002063:  Polymer Science Program
Hussaya Maneesuwan: Applications of Silatrane.
Thesis Aavisors: Assoc. Prof. Sujitra Wongkasemiit ,and Asst. Prof.
Thanyalak Chaisuwan 100 pp.
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In this present work, silatrane was prepared and used as a silica source to
synthesize bimetallic MCM-48 and TUD-1 via sol-gel process. Fe-Ce-MCM-48, Fe-
TI-MCM-48 and Fe-Ti-TUD-I mesoporous materials were successfully synthesized.
Bimetallic MCM-48 and TUD-1 obtained had surface areas of over 1000 and 725
mdg, respectively. At high metal contents, the metal oxide agglomerated to form
nanoclusters shielding the active sites and suppressing the catalytic activity.
However, cerium oxide nanocluster was not observed in the case of Fe-Ce-MCM-48
synthesis using cerium glycolate as a cerium source which provides glycolate anions.
These anions facilitated the cubic formation of MCM-48. Fe-Ti-MCM-48 has higher
thermal stability than pure MCM-48 according to higher wall thickness which resists
pore destruction. The application in phenol hydroxylation using Fe-Ti-MCM-48 and
Fe-Ti-TUD-l was also investigated under hydrothermal and uv condition. OIFe-
0.0LTi-TUD-I performed 93.1% conversion at 363 K while the activity of Fe-Ti-
TUD-I dropped under uv light at ambient temperature. For 0.0 1Fe-0.01-MCM-48,
the conversion was 56.9% at 323 K meanwhile the activity slightly increased to
58.2% under uv radiation at room temperature. Larger pore of himetallic TUD-1
showed better activity than bimetallic MCM-48 due to the easier diffusion of more
reactant and product molecules through the pore.
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