PREFERENTIAL CARBON MONOXIDE OXIDATION (PROX) OVER Au-BASED CATALYST

Sasiporn Chayaporn

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University, and Institut Français du Pétrole 2014

-

57 00 47

Thesis Title:	Preferential Carbon Monoxide Oxidation (PROX) over Au-
	based Catalyst
By:	Sasiporn Chayaporn
Program:	Petrochemical Technology
Thesis Advisors:	Assoc. Prof. Apanee Luengnaruemitchai
	Assoc. Prof. Nattaya Pongstabodee

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

..... College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

(Assoc. Prof. Apanee Luengnaruemitchai)

ittagy to dep

(Assoc. Prof. Nattaya Pongstabodee)

ampel 1

(Assoc. Prof. Pramogh/Rangsunvigit)

(Assoc. Prof. Vissanu Meeyoo)

ABSTRACT

 5571027063: Petrochemical Technology
Sasiporn Chayaporn: Preferential Carbon Monoxide Oxidation (PROX) over Au-based Catalyst.
Thesis Advisors: Assoc. Prof. Apanee Luengnaruemitchai, and Assoc. Prof. Nattaya Pongstabodee, 89 pp.
Keywords: Fuel cell/ CO conversion/ CO selectivity/ Au catalyst/ Ceria/ Zirconia/ PROX/ CO oxidation

Preferential CO oxidation (PROX) is the most effective method for removal of CO from the reformate stream. Catalytic activity of Au/CeO₂-ZrO₂ with various atomic ratios of Ce/(Ce+Zr) (0, 0.25, 0.5, 0.75, and 1), prepared by the depositionprecipitation method, was investigated in a reformate gas mixture (1% CO, 1% O₂, 40% H₂, and He) at 50 °C to 190 °C. Catalytic activity depended on the Ce/(Ce+Zr) atomic ratio. Maximum CO conversion of 94.06% was obtained for 1 wt% Au/Ce_{0.75}Zr_{0.25}O₂ at 50 °C. The effect of H₂O in the H₂-feed stream was also investigated. The presence of H₂O had no significant effect on activity. In the stability test, the activity of both 1 wt% Au/CeO₂ and 1 wt% Au/Ce_{0.75}Zr_{0.25}O₂ catalysts were maintained in the simulated dry condition at 110 °C for 28 h.

iii

บทคัดย่อ

ศศิพร ชยาภรณ์ : การเกิดปฏิกิริยาออกซิเดชันแบบเลือกเกิดของการ์บอนมอนอกไซด์บน ตัวเร่งปฏิกิริยาทอง (Preferential Carbon Monoxide Oxidation (PROX) over Au-based Catalyst) อ. ที่ปรึกษา : รศ. คร.อาภาณี เหลืองนฤมิตชัย และรศ. คร. ณัฐธยาน์ พงศ์สถาบคี 89 หน้า

การเลือกเกิดปฏิกิริยาออกซิเดชันของก๊าซคาร์บอนมอนอกไซด์เป็นวิธีที่มีประสิทธิภาพใน การลดปริมาณคาร์บอนมอนอกไซด์ที่เกิดจากแก๊สสังเคราะห์ ซึ่งในงานวิจัยนี้ศึกษาตัวเร่งปฏิกิริยาทอง บนตัวรองรับผสมระหว่างซีเรียออกไซด์และเซอร์ โคเนียออกไซด์ที่อัตราส่วนอะตอมของซีเรียและ เซอร์ โคเนีย (0:1, 1:3, 1:1, 3:1, และ 1:0) ที่เตรียมด้วยวิธีการยึดเกาะควบคู่กับการตกผลึก (Deposition-precipitation) โดยก๊าซที่ป้อนเข้าสู่ปฏิกิริยาประกอบด้วยก๊าซการ์บอนมอนอกไซด์ ร้อยละ 1 ก๊าซออกซิเจนร้อยละ 1 ก๊าซไฮโดรเจนร้อยละ 40 และปรับสมดุลโดยก๊าซฮีเลียมที่ช่วง อุณหภูมิ 50 องศาเซลเซียส ถึง 190 องศาเซลเซียส จากการศึกษาพบว่าความสามารถจองดัวเร่ง ปฏิกิริยาขึ้นกับสัดส่วนของตัวรองรับผสม โดยตัวเร่งปฏิกิริยา 1 wt% Au/Ceo.₇₅Zro.₂₅O₂ ให้ก่าการ เปลี่ยนแปลงของก๊าซคาร์บอนมอนอกไซด์ที่สูงที่สุดคือ 94.06 เปอร์เซนต์ ที่อุณหภูมิ 50 องศา เซลเซียส นอกจากนี้ยังศึกษาผลของน้ำที่มีในก๊าซไฮโดรเจน โดยพบว่าน้ำไม่มีผลต่อความว่องไวของ การเกิดปฏิกิริยา และเมื่อนำไปทดสอบความเสลียรของปฏิกิริยาพบว่าตัวเร่งปฏิกิริยา 1 wt% Au/CeO₂ และ 1 wt% Au/Ce_{0.75}Zro.₂₅O₂ มีความเสถียรในการเกิดปฏิกิริยาที่สภาวะแก๊สสังเคราะห์ ที่อุณหภูมิ 110องศาเซลเซียส เป็นเวลา 28 ชั่วโมง

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to all those who gave the possibility to complete this work.

First of all, I want to thank The Petroleum and Petrochemical College, Chulalongkorn University for providing me the opportunity to work on this special project in the first instance, to do the necessary research work, and to use the laboratory facilities. I also would like to thank The Center of Excellence on Petrochemical and Materials Technology for their support.

I am deeply indebted to my thesis advisors, Assoc. Prof. Apanee Luengnaruemitchai and Assoc. Prof. Nattaya Pongstabodee that provide suggestion and give me an idea to troubleshoot problem, I am so appreciate to intimacy for teaching and helping me to understand and get the knowledge.

My sincere thank are due to the official committees, Assoc. Prof. Pramoch Rangsunvigit and Assoc. Prof. Vissanu Meeyoo, for their detailed review, constructive critisim and excellent advice during the preparation of my thesis work. Also for special senior students in The Petroleum and Petrochemical College, Mr. Chinchanop Pojanavaraphan and Ms. Warapun Nakaranuwattana that I would like to thanks for their kind of teaching and helping in laboratory.

Lastly, this special thesis would not have been possible without the knowledge received from all the lecturers and staffs at The Petroleum and Petrochemical College, plus love and constant support from my family and friends.

v

TABLE OF CONTENTS

.

4

.

	Title	Page	i
	Abstr	ract (in English)	iii
СНА	Abstr	ract (in Thai)	iv
	Ackn	owledgements	v
	Table	e of Contents	vi
	List c	of Tables	x
	List c		xi
CH	APTEI	2	
	I	INTRODUCTION	1
	II	THEORETICAL BACKGROUND AND LITERATURE	
		REVIEW	3
		2.1 Fuel Cell	3
		2.1.1 Classification of Fuel Cells	4
		2.1.2 Proton Exchange Membrane Fuel Cell	- 5
		2.2 Hydrogen Fuel	8
		2.2.1 Production of Hydrogen	8
		2.2.2 Production of Hydrogen from Methanol	12
		2.3 CO Removal	15
		2.3.1 Water-Gas Shift (WGS)	15
		2.3.2 Preferential CO Oxidation (PROX)	16
		2.3.3 Membrane	17
		2.3.4 CO Methanation	18
		2.4 Catalysis by Gold	18
		2.4.1 Physical and Chemical Properties of Gold	19
		2.5 Activity of Supported Gold Catalyst	20
		2.5.1 Size of Gold Particle	20
		2.5.2 Nature of the Active Site and Reaction Mechanism	21
			-

CHAPTER

-

.

-

.

PAGE

....

	2.5.3 Effect of Support	23
	2.5.4 Preparation Methods	26
		20
111		30
	3.1 Materials	30
	3.1.1 Gases	30
	3.1.2 Chemicals	30
	3.2 Equipment	30
	3.2.1 Mass Flow Controller and Gas Blending Section	31
	3.2.2 Catalytic Reactor	31
	3.2.3 Analytical Instrumentation	31
	3.3 Preparation of Catalyst and Support	33
	3.3.1 Precipitation Method	33
	3.3.2 Co-precipitation Method	33
	3.3.4 Deposition-precipitation (DP) Method	34
	3.4 Catalyst Characterization	35
	3.4.1 BET Surface Area Measurement	35
	3.4.2 X-ray Diffractometry (XRD)	36
	3.4.3 Atomic Absorption Spectroscopy (AAS)	37
	3.4.4 Temperature-Programmed Reduction (TPR)	38
	3.4.5 UV-vis Spectrophotometry	38
	3.4.6 The Fourier transform Raman spectra (FT-Raman)	38
	3.5 Activity Measurement	39
	3.5.1 Effect of Support Atomic Ratio	39
	3.5.2 Effect of Feed Stream on Temperature	39
	3.5.3 Effect of Feed Stream Composition	39
	3.5.4 Catalytic Activity for Water-Gas Shift and	
	CO Oxidation Reaction	40
	3.5.5 Effect of Deactivation Test	40

	3.6 Calculation	40
IV	RESULTS AND DISCUSSION	42
	4.1 Catalyst Characterization	42
	4.1.1 Atomic Absorption Spectroscopy (AAS)	42
	4.1.2 Surface Properties	43
	4.1.3 UV-visible Spectroscopy	45
	4.1.4 Temperature-Programmed Reduction (TPR)	47
	4.1.5 X-ray Diffraction (XRD)	50
	4.1.6 Raman spectroscopy	55
	4.1.7 Fourier Transform Infrared spectroscopy (FT-IR)	56
	4.2 Catalytic Activity	59
	4.2.1 Effect of Support Composition on	
	the Catalytic Activity	60
	4.2.2 Effect of Additional Feed Stream	
	Composition on the Catalytic Activity	63
	4.2.3 Effect of Temperature for CO Oxidation Reaction	68
	4.2.4 Effect of Temperature for Water-Gas Shift Reaction	71
	4.2.4 Deactivation Test	73
\mathbf{V}	CONCLUSIONS AND RECOMMENDATIONS	75
	5.1 Conclusions	75
	5.2 Recommendations	76
	REFERENCES	77
	APPENDIX	87
4	CURRICULUM VITAE	89

CHAPTER

-

viii

PAGE

.

LIST OF TABLES

.

,	TABLE		PAGE
	2.1	Major types of fuel cells currently under development	5
	2.2	PEMFCs technologies	7
	2.3	Comparison of technologies for H ₂ production from natural gas	11
	2.4	Fuel types and their maximum possible reforming efficiencies	12
	2.5	Physical properties of gold	19
	2.6	Recent literature review at a glance on PROX of CO	
		in H ₂ rich gases for gold based catalysts	27
	4.1	Chemical-physical properties of the Au/CeO ₂ -ZrO ₂ catalysts	44
	4.2	Summary of UV-vis diffuse reflectance charge transfer band	
		for CeO ₂ –ZrO ₂	46
	4.3	CeO_2 and Au crystallite sizes of the 1 wt% Au catalysts over	
		different supports	52
	4.4	Summary of frequency and assignment of carbonate, formate,	
		and intermediate bands of fresh and spent 1 wt% $Au/Ce_{0.75}Zr_{0.25}O_2$	59

-

ix

LIST OF FIGURES

FIGUE	₹E	PAGE
2.1	Fuel cell operation diagram.	4
2.2	Fuel cell's diagram.	6
2.3	Some feedstock and process alternatives.	8
2.4	Steam reforming process.	9
2.5	Partial oxidation process.	10
2.6	Anode poisoning by CO in reformate.	15
2.7	Flow diagram of hydrogen purification by CO-PROX.	17
2.8	Simplified concept schematic of membrane separation.	18
2.9	Schematic drawing of an active site for CO oxidation.	21
2.10	Proposed mechanism of CO oxidation on supported Au catalyst.	22
2.11	Possible mechanism involved in the oxidation	
	of CO in the presence of H_2 , including	
	(a) adsorption of CO and H_2 and dissociation of H_2 on a gold particle	e,
	(b) reaction of gas phase O_2 with adsorbed H atom, and	
	(c) reaction of the resulting oxidizing species	
	with adsorbed CO to give CO ₂ .	23
2.12	Effect of support type on CO conversion over	
	Au supported catalysts. Reaction mixture:	
	$70\% H_2 + 1\% CO + 1\% O_2$, He as balance.	25
2.13	CO conversion during the PROX reaction over -	
2	the studied gold catalysts.	26
3.1	Schematic flow of PROX process.	32
4.1	Diffuse reflectance UV-vis spectra of catalysts with	
	various support compositions.	48
4.2	TPR profiles of catalysts with various support compositions.	50
4.3	XRD patterns of supported Au catalysts.	52
4.4	XRD patterns of fresh and spent of 1 wt% Au/CeO ₂ .	53

.

-

х

4.5	Raman spectra of 1%wtAu/CeO2ZrO2 catalysts for	
	(a) 1 wt% Au/CeO ₂ -fresh,	
	(b) 1 wt% Au/Ce _{0.75} Zr _{0.25} O ₂ -fresh,	
	\cdot (c) 1 wt% Au/CeO ₂ -spent, and	
	(d) 1 wt% Au/ $Ce_{0.75}Zr_{0.25}O_2$ -spent.	56
4.6	FTIR patterns of 1 wt% Au/Ce _{0.75} Zr _{0.25} O ₂ catalysts for	
	(a) fresh catalyst, (b) spent catalyst at 50 °C,	
	and (c) spent catalyst at 110 °C	
	with gas composition of 40% H_2 , 1% O_2 , 1% CO ,	
	~10% CO ₂ , and 10% H ₂ O in He.	58
4.7	FTIR spectra of spent catalysts in WGS reaction;	
	(a) 1 wt% Au/CeO ₂ , (b) 1 wt% Au/Ce _{0.75} $Zr_{0.25}O_2$.	59
4.8	CO conversion and selectivity to CO_2 as a function	
	of reaction temperature for PROX reaction	
	over 1 wt% Au/CeO ₂ -ZrO ₂ catalysts with	
	various atomic ratios of Ce/Zr.	63
4.9	Effect of temperature in the presence of 10% CO ₂ and	
	10% H ₂ O on the catalytic activities of 1 wt% Au/Ce _{0.75} Zr _{0.25} O ₂ .	
	The reaction was tested at constant temperature of 50 $^{\circ}$ C and	
	110 °C and monitored with time-on-stream.	66
4.10	The effect of CO_2 and H_2O on the catalytic activities of	
	1 wt% Au/CeO ₂ and 1 wt% Au/Ce _{0.75} Zr _{0.25} O ₂	
	The reaction was tested at constant temperature of	
	110 °C and monitored with time-on-stream.	69
4.11	CO conversion as a function of reaction temperature	
	for CO oxidation reaction over 1 wt% Au/CeO ₂ and	
	1 wt% Au/Ce _{0.75} Zr _{0.25} O ₂ catalysts with the reaction	
	mixture of 1% CO, 1% O ₂ , and He balanced.	71

PAGE

FIGURE

-

4.12	CO conversion as a function of reaction temperature	
	for CO oxidation reaction over 1 wt% Au/CeO ₂ and	
	1 wt% Au/Ce _{0.75} Zr _{0.25} O ₂ catalysts with the reaction	
	mixture of 4% CO, 1% O ₂ , and He balanced.	72
4.13	CO conversion as a function of reaction temperature	
	for WGS reaction over 1 wt% Au/CeO ₂ and	
	1 wt% Au/Ce _{0.75} Zr _{0.25} O ₂ catalysts. Reaction mixture:	
	4% CO, 10% H ₂ O, and He balanced.	74
4.12-	Deactivation test of 1 wt% Au/CeO ₂ and	
	1 wt% Au/Ce _{0.75} Zr _{0.25} O ₂ catalysts.	
	Reaction composition: 1% CO, 1% O ₂ , 40% H ₂ and	
	He balanced for dry condition and 1% CO, 1% O ₂ ,	
	40% H ₂ , 10% H ₂ O,10% CO ₂ and He balanced for	
	wet condition.	75

÷

-

2

1.5

-

PAGE