REFERENCES

- Ahmad, M.I., Zaidi, S.M.J., and Rahman, S.U. (2006) Proton conductivity and characterization of novel composite membranes for medium-temperature fuel cells. <u>Desalination</u>, 193, 387–397.
- Carey, F.A. (2000). Reactions of aenes. Electrophilic aromatic substitution. <u>Organic</u> <u>Chemistry</u>. Massachusetts, United State of America, McGraw-Hill: 443-486.
- Chen, D., Hickner, M.A., Wang, S., Pan, J., Xiao, M., and Meng, Y. (2012) Directly fluorinated polyaromatic composite membranes for vanadium redox flow batteries. Journal of Membrane Science, 415-16(0), 139-144.
- Chen, D., Kim, S., Sprenkle, V., and Hickner, M.A. (2013) Composite blend polymer membranes with increased proton selectivity and lifetime for vanadium redox flow batteries. Journal of Power Sources, 231(0), 301-306.
- Chen, D., Wang, S., Xiao, M., Han, D., and Meng, Y. (2010) Sulfonated poly (fluorenyl ether ketone) membrane with embedded silica rich layer and enhanced proton selectivity for vanadium redox flow battery. <u>Journal of</u> <u>Power Sources</u>, 195, 7701-7708.
- Chen, D., Wang, S., Xiao, M., Han, D., and Meng, Y. (2011) Synthesis of sulfonated poly(fluorenyl ether thioether ketone)s with bulky-block structure and its application in vanadium redox flow battery. <u>Polymer</u>, 52(23), 5312-5319.
- Chen, D., Wang, S., Xiao, M., and Meng, Y. (2010) Preparation and properties of sulfonated poly(fluorenyl ether ketone) membrane for vanadium redox flow battery application. Journal of Power Sources, 195(7), 2089-2095.
- Chen, D., Wang, S., Xiao, M., and Meng, Y. (2010) Synthesis and characterization of novel sulfonated poly(arylene thioether) ionomers for vanadium redox flow battery applications. <u>Energy & Environmental Science</u>, 3(5), 622-628.
- Chieng, S.C., Kazacos, M., and Skyllas-Kazacos, M. (1992) Preparation and evaluation of composite membrane for vanadium redox battery applications. <u>Journal of Power Sources</u>, 39(1), 11-19.

-

Dupuis, A.C. (2011) Proton exchange membranes for fuel cells operated at medium temperatures: Materials and experimental techniques. <u>Progress in Materials</u> <u>Science</u>, 56(3), 289-327.

Dupont. "Dupont Nation PFSA Membranes." 2009. 26 March 2014.

- Fujimoto, C., Kim, S., Stains, R., Wei, X.L., Li, L.Y., and Yang, Z.G. (2012) Vanadium redox flow battery efficiency and durability studies of sulfonated Diels Alder poly(phenylene)s. <u>Electrochemistry Communications</u>, 20, 48-51.
- Fujimoto, C.H., Hickner, M.A., Cornelius, C.J., and Loy, D.A. (2005) Ionomeric Poly(phenylene) Prepared by Diels-Alder Polymerization: Synthesis and physical properties of a novel polyelectrolyte. <u>Macromolecules</u>, 38(12), 5010-5016.
- Grot, W. (2011) Fuel cells and batteries. Fluorinated Ionomers. (pp. 157-182) Elsevier.
- Jia, C., Liu, J., and Yan, C. (2010) A significantly improved membrane for vanadium redox flow battery. Journal of Power Sources, 195(13), 4380-4383.
- Jin, X., Bishop, M.T., Ellis, T.S., and Karasz, F.E. (1985) A Sulphonated Poly(aryl Ether Ketone). British Polymer Journal, 17(1), 4-10.
- Kim, S., Yan, J.L., Schwenzer, B., Zhang, J.L., Li, L.Y., Liu, J., Yang, Z.G., and Hickner, M.A. (2010) Cycling performance and efficiency of sulfonated poly(sulfone) membranes in vanadium redox flow batteries. <u>Electrochemistry Communications</u>, 12(11), 1650-1653.
- Laxmeshwar, S.S., Viveka, S., Kumar, D.J.M., Dinesha, Bhajanthri, R.F., and Nagaraja, G.K. (2012) Preparation and characterization of modified cellulose fiber-reinforced polyvinyl alcohol/polypyrrolidone hybrid film composites. Journal of Macromolecular Science Part a-Pure and Applied <u>Chemistry</u>, 49(8), 639-647.
- Li, Z., Xi, J., Zhou, H., Liu, L., Wu, Z., Qiu, X., and Chen, L. (2013) Preparation and characterization of sulfonated poly(ether ether ketone)/poly(vinylidene fluoride) blend membrane for vanadium redox flow battery application. Journal of Power Sources, 237, 132-140.

- Luo, Q.T., Zhang, H.M., Chen, J., Qian, P., and Zhai, Y.F. (2008) Modification of Nafion membrane using interfacial polymerization for vanadium redox flow battery applications. Journal of Membrane Science, 311(1-2), 98-103.
- Macksasitorn, S., Changkhamchom, S., Sirivat, A., and Siemanond, K. (2012) Sulfonated poly(ether ether ketone) and sulfonated poly(1.4-phenylene ether ether sulfone) membranes for vanadium redox flow batteries. <u>High</u> <u>Performance Polymers</u>, 24(7), 603-608.
- Mai, Z., Zhang, H., Li, X., Bi, C., and Dai, H. (2011) Sulfonated poly(tetramethydiphenyl ether ether ketone) membranes for vanadium redox flow battery application. Journal of Power Sources, 196(1), 482-487.
- Mai, Z., Zhang, H., Li, X., Xiao, S., and Zhang, H. (2011) Nafion/polyvinylidene fluoride blend membranes with improved ion selectivity for vanadium redox flow battery application. Journal of Power Sources, 196(13), 5737-5741.
- Mai, Z., Zhang, H., Zhang, H., Xu, W., Wei, W., Na, H., and Li, X. (2013) Anionconductive membranes with ultralow vanadium permeability and excellent performance in vanadium flow batteries. <u>ChemSusChem</u>, 6, 328 – 335.
- Mohammadi, T. and Skyllas-Kazacos, M. (1995) Preparation of sulfonated composite membrane for vanadium redox flow battery applications. <u>Journal of</u> <u>Membrane Science</u>, 107(1-2), 35-45.
- Parasuraman, A., Lim, T.M., Menictas, C., and Skyllas-Kazacos, M. (2013) Review of material research and development for vanadium redox flow battery applications. <u>Electrochimica Acta</u>, 101, 27-40.
- Park, C.H., Lee, C.H., Guiver, M.D., and Lee. Y.M. (2011) Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs). <u>Progress in Polymer Science</u>. 36(11), 1443-1498.
- Pauling, L. (1960) The sizes of ions and the structure of the ionic crystals. <u>The Nature</u> of the Chemical Bond. (pp. 505-562) Ithaca: Cornell University Press.
- Rahman, F. and Skyllas-Kazacos, M. (2009) Vanadium redox battery: Positive halfcell electrolyte studies. <u>Journal of Power Sources</u>, 189(2), 1212-1219.

- Rikukawa, M. and Sanui, K. (2000) Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. <u>Progress in Polymer Science</u>, 25(10), 1463-1502.
- Sancho, T., Soler, J., and Pina, M.P. (2007) Conductivity in zeolite-polymer composite membranes for PEMFCs. <u>Journal of Power Sources</u>, 169(1), 92-97.
- Sang, S., Wu, Q., and Huang, K. (2007) Preparation of zirconium phosphate (ZrP)/Nafion1135 composite membrane and H+/VO2+ transfer property investigation. Journal of Membrane Science, 305(1-2), 118-124.
- Smitha, B., Sridhar, S., and Khan, A.A. (2003) Synthesis and characterization of proton conducting polymer membranes for fuel cells. <u>Journal of Membrane</u> <u>Science</u>, 225(1-2), 63-76.
- Sukkar, T. and Skyllas-Kazacos, M. (2003) Modification of membranes using polyelectrolytes to improve water transfer properties in the vanadium redox battery. Journal of Membrane Science, 222(1-2), 249-264.
- Sukkar, T. and Skyllas-Kazacos, M. (2003) Water transfer behaviour across cation exchange membranes in the vanadium redox battery. <u>Journal of Membrane</u> <u>Science</u>, 222(1-2), 235-247.
- Sukkar, T. and Skyllas-Kazacos, M. (2004) Membrane stability studies for vanadium redox cell applications. Journal of Applied Electrochemistry, 34(2), 137-145.
- Teng, X., Zhao, Y., Xi, J., Wu, Z., Qiu, X., and Chen, L. (2009) Nafion/organically modified silicate hybrids membrane for vanadium redox flow battery. Journal of Power Sources, 189(2), 1240-1246.
- Teng, X.G., Zhao, Y.T., Xi, J.Y., Wu, Z.H., Qiu, X.P., and Chen, L.Q. (2009) Nafion/organic silica modified TiO2 composite membrane for vanadium redox flow battery via in situ sol-gel reactions. <u>Journal of Membrane</u> <u>Science</u>, 341(1-2), 149-154.

.

- Unveren, E.E., Erdogan, T., Çelebi, S.S., and Inan, T.Y. (2010) Role of postsulfonation of poly(ether ether sulfone) in proton conductivity and chemical stability of its proton exchange membranes for fuel cell. <u>International</u> <u>Journal of Hydrogen Energy</u>, 35(8), 3736-3744.
- Vynnycky, M. (2011) Analysis of a model for the operation of a vanadium redox battery. <u>Energy</u>, 36(4), 2242-2256.
- Wang, Z., Li, X., Zhao, C., Ni, H., and Na, H. (2007) Sulfonated poly(ether ether sulfone) copolymers for proton exchange membrane fuel cells. <u>Journal of</u> <u>Applied Polymer Science</u>, 104(3), 1443-1450.
- Weber, A., Mench, M., Meyers, J., Ross, P., Gostick, J., and Liu, Q. (2011) Redox flow batteries: a review. Journal of Applied Electrochemistry, 41(10), 1137-1164.
- Whitehead, A.H. and Harrer, M. (2013) Investigation of a method to hinder charge imbalance in the vanadium redox flow battery. <u>Journal of Power Sources</u>, 230, 271-276.
- Whittingham, M.S. (2008) Materials challenges facing electrical energy storage. <u>MRS Bulletin</u>, 33(04), 411-419.
- Xi, J., Wu, Z., Qiu, X., and Chen, L. (2007) Nafion/SiO2 hybrid membrane for vanadium redox flow battery. Journal of Power Sources. 166(2), 531-536.
- Xing, P., Robertson, G.P., Guiver, M.D., Mikhailenko, S.D., Wang, K., and Kaliaguine, S. (2004) Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes. <u>Journal of</u> <u>Membrane Science</u>, 229(1–2), 95-106.
- Yan, J.L., Huang, X.M., Moore, H.D., Wang, C.Y., and Hickner, M.A. (2012) Transport properties and fuel cell performance of sulfonated poly(imide) proton exchange membranes. <u>International Journal of Hydrogen Energy</u>, 37(7), 6153-6160.
- Yee, R., Zhang, K., and Ladewig, B. (2013) The effects of sulfonated poly(ether ether ketone) ion exchange preparation conditions on membrane properties. <u>Membranes</u>, 3(3), 182-195.

- Yuan, X.-Z., Song, C., Wang, H., and Zhang, J. (2010) EIS diagnosis for PEM fuel cell performance. <u>Electrochemical Impedance Spectroscopy in PEM Fuel</u> <u>Cells</u>. (pp. 193-262) London: Springer.
- Zaidi, J. (2003) Polymer sulfonation A versatile route to prepare proton-conducting membrane material for advanced technologies. <u>The Arabian Journal for</u> <u>Science and Engineering</u>, 28.
- Zhai, F., Guo, X., Fang, J., and Xu, H. (2007) Synthesis and properties of novel sulfonated polyimide membranes for direct methanol fuel cell application. <u>Journal of Membrane Science</u>, 296(1-2), 102-109.
- Zhang, Z., Desilets, F., Felice, V., Mecheri, B., Licoccia, S., and Tavares, A.C. (2011) On the proton conductivity of Nafion/Faujasite composite membranes for low temperature direct methanol fuel cells. <u>Journal of Power Sources</u>, 196(22), 9176-9187.

APPENDICES

Appendix A Fourier Transform Infrared Spectroscopy

The FT-IR spectra of pristine polymer as PEEK and PPEES and sulfonated polymer as S-PEEK and S-PPEES were obtained employing a spectrometer (Thermo Nicolet, Nexus 670) to examine the presence of sulfonic acid group (-SO₃H) in polymer samples. The spectrometer was operated in the absorption mode with a resolution of 4 cm⁻¹ and wave numbers range of 4000-400 cm⁻¹. KBr was employed as the background material for thesample of sulfonated polymer , respectively

Figure A1 FTIR spectrum of sulfonated poly(ether ether ketone).

-

Figure A2 FTIR spectrum of sulfonated poly(phenylene ether ether ketone).

|--|

Wavenumbers (cm ⁻¹)	Assignments	References
709	Symmetric S-O stretching	(<u>Zaidi. 2003</u>)
1020	Symmetric S=O stretching	(<u>Zaidi. 2003</u>)
-1360	Asymmetric S=O stretching	(<u>Smitha et al., 2003</u>)
1080	Symmetric O=S=O stretching	(<u>Xing et al., 2004</u>)
1255	Asymmetric O=S=O stretching	(<u>Zaidi. 2003</u>)
1222	С-О-С	(Macksasitorn et al., 2012)
1489	C-C Aromatic	(<u>Xing et al., 2004</u>)
1650	C=O stretching	(Macksasitorn et al., 2012)
3460	O-H stretching	(Xing et al., 2004)

Appendix B Thermogravimetric Analysis

Thermogravimetric analysis (TGA) of pristine polymer and sulfonated polymer were conducted using a Thermo-Gravimetric/Differential Thermal Analyzer (TG/DTA). The measurements were carried out under nitrogen flow with a temperature range of 50-900 °C at a heating rate of 10 °C/min.

Figure B1 Thermogravimetric analysis and thermograms of PEEK and S-PEEK.

B2 Poly(phenylene ether ethersulfone)

Figure B2 Thermogravimetric analysis and thermograms PPEES and S-PPEES.

Appendix C Sulfonation and Film Casting

C1 Sulfonation process

.

1.1 Excess molar ratio

Excess molar ratio is the simple ratio as between mole of sulfuric acid and mole of repeating unit of polymer.

	1.1.1 Poly(ether ether keton	e)	
	Molar mass of repeating unit (M _R)	=	288 g/mol
	Mass of weighed polymer	=	M _s g
	Mole of weighed polymer	=	M _s /288 mole
	Concentration of sulfuric acid	=	$18 \text{ M} = 0.018 \text{ mole/cm}^3$
	Volume of sulfuric acid	=	V cm ³
	Mole of sulfuric acid	-	0.018V mole
So that	, Excess molar ratio (R _{molar})	=	$\frac{0.018V}{MS/288} = \frac{5.184V}{Ms}$
	1.1.2 Poly(phenylene ether	ether su	llfone)
	Molar mass of repeating unit (M_R)	-	324 g/mol
	Mass of weighed polymer	- 31	M _S g
	Mole of weighed polymer	=	M _s /324 mole
	Concentration of sulfuric acid	=	$18 \text{ M} = 0.018 \text{ mole/cm}^3$
	Volume of sulfuric acid	=	V cm ³
	Mole of sulfuric acid	=	0.018V mole
So that	, Excess molar ratio (R _{molar})	0	$\frac{0.018V}{MS/324} = \frac{5.832V}{Ms}$
	1.2 Volume fraction		

Volume fraction refers the composition of sulfuric acid volume to whole solution under sulfonation reaction.

.

Mas	ss of weighed polymer	=	M _s g
Vol	ume of weighed polymer	=	$M_S / \rho = V_P \ cm^3$
Vol	ume of sulfuric acid	=	V cm ³
So that,	Volume fraction	=	$\left(\frac{V}{V+V_P}\right) \times 100 \%$

70

.

	Polymer	Commony	V	Sa	S _b	Density	Deviation
		Company	(g)	(g)	(g)	(g/cm^3)	(%)
	PEEK power	Victrex	2.8100	0.5614	0.5613	1.1512	1.89
	PPEES pellet	Aldrich	2.8099	1.4928	1.4925	1.3166	0.52

Table C1 Polymer density from gas pycnometer

1.2.1 Poly(ether ether ketone)

•

	For excess molar ratio = 200, N	$1_{\rm S} = 2.5$	592 g,	and $V = 100 \text{ cm}^3$
	Volume of weighed polymer		-	$\frac{2.592 \text{ g}}{1.1512 \text{ g/}cm^3} = 2.2516 \text{ cm}^3$
	Volume of sulfuric acid			100 cm^3
So the	at, Volume fraction	-		$\left(\frac{100}{100+2.2516}\right) \times 100 = 97.80\%$
	1.2.2 Poly(phenylene et	her eth	er sul	fone)
	For excess molar ratio = 100, M	$f_{\rm S} = 2.9$	916 g,	and V = 50 cm^3
Volume of weighed polymer			=	$\frac{2.916 \text{ g}}{1.3166 \text{ g/cm}^3} = 2.2148 \text{ cm}^3$
	Volume of sulfuric acid	=	=	50 cm^3
So tha	at, Volume fraction =	($\frac{50}{50+2}$	$\left(\frac{10}{2148}\right) \times 100 = 95.76 \%$

 Table C2
 Relation between excess molar ratio and volume fraction for poly(ether

 ether ketone) sulfonation
 Image: Comparison

Excess molar ratio	Polymer (g)	Sulfuric acid (cm ³)	Volume fraction (%)
50	10.368	100	91.74
100	5.184	100	95.69
150	3.456	100	97.09
200	2.592	100	97.80
300	1.728	100	98.52
400	1.296	100	98.89

-

Excess	Polymer	Sulfuric acid	Volume fraction
 molar ratio	(g)	(cm ³)	(%)
50	11.664	100	91.86
100	5.832	100	95.76
150	3.888	100	97.13
200	2.916	100	97.83
300	1.944	100	98.54
 400	1.458	100	98.91

Table C3 Relation between excess molar ratio and volume fraction forpoly(phenylene ether ether sulfone) sulfonation

+

- L

-

+

1

•

.

1.3 Sulfonation conditions

.

Table C4 Percent	oly(ether	ether k	etone)	sulfonat	ion	conditions
--------------------	-----------	---------	--------	----------	-----	------------

.

Temperatur e (°C)	PEEK (g)	H ₂ SO ₄ (ml)	H_2SO_4 (mol ratio)	Volume fraction (%)	Time (h)	Sulfonated products (g)	Sulfonated products	Dried products	Membranes
80	2.602	100	200	97.80	1	1.460	Swelling rubber	Clear sheet	Water soluble
80	2.614	100	200	97.80	3	2.788	Swelling rubber	Clear sheet	Water soluble
.80	2.611	100	200	97.80	5	2.106	Swelling rubber	Clear sheet	Water soluble
50	2.616	25	50	91.74	3	6.962	White rubber	White rubber	Homogeneous
50	2.611	50	100	95.69	3	2.801	White rubber	White rubber	Homogeneou
50	2.604	75	150	97.09	3	1.425	White rubber	White rubber	Homogeneou
50	2.606	100	•200	97.80	3	2.512	White rubber	White rubber	Homogeneou
50	2.593	100	200	97.80	1	1.322	White rubber	White rubber	Homogeneou
50	2.593	100	200 '	97.80	5	2.608	White rubber	White rubber	Homogeneou
50	2.604	100	200	97.80	12	0.991	Swelling rubber	White rubber	Homogeneor

.

73

÷

Temperature (°C)	PPEES (g)	H ₂ SO ₄ (ml)	H ₂ SO ₄ (mol ratio)	Volume fraction (%)	Time (h)	Sulfonated products (g)	Sulfonated products	Dried products	Membranes
80	2.932	50	100	95.76	1	1.324	Swelling rubber	Clear sheet	Water soluble
80	2.934	50	100	95.76	3	2.427	Swelling rubber	Clear sheet	Water soluble
80	2.918	50	100	95.76	5	2.614	Swelling rubber	Clear sheet	Water soluble
50	2.937	50	100	95.76	1	1.104	Swelling rubber	Clear sheet	Homogeneous
50	2.924	50	100	95.76	3	1.181	Swelling rubber	Clear sheet	Homogeneous
50	2.942	50	100	95.76	5	2.543	Swelling rubber	Clear sheet	Homogeneous
25	2.919	25	50	91.86	24	3.127	White rubber	Clear sheet	Homogeneous
25	1.463	25	100	95.76	3	-	Cannot be	dissolved in su	Ifuric acid
25	1.461	25	100	95.76	6	1.324	White rubber	Clear sheet	Homogeneous
25	1.460	25	100	95.76	9	1.347	White rubber	Clear sheet	Homogeneous
25	1.465	25	100	95.76	12	1.437	White rubber	Clear sheet	Homogeneous
25	1.452	25	100	95.76	24	1.588	White rubber	Clear sheet	Homogeneous
25	1.951	50	150	97.13	24	1.711	White rubber	Clear sheet	Homogeneous
25	0.724	25	200	97.83	24	0.095	Swelling rubber	Black solid	Homogeneous
25	0.973	50	300	98.54	24	0.353	Swelling rubber	Black solid	Homogeneous
25	0.726	50	400	98.91	24	0.575	Swelling rubber	Black solid	Homogeneous

т - с

 Table C5
 Poly(phenylene ether ether sulfone) sulfonation conditions

1

÷.

1 .

Figure C1 PEEK sulfonation at 80 °C at different sulfonation times of: 1 h (left); 3 h (middle); and 5 h (right).

Figure C2 PEEK sulfonation at 50 °C at different sulfonation times of: 1 h (left); 3 h (middle); and 5 h (right).

Figures C1 and C2 show that the S-PEEK membranes swell easily with increasing sulfonation time. The water uptake increases with increasing degree of sulfonation because of a greater hydrophilicity. From Figure C1, the S-PEEK membranes were fully dissolved in water, S-PEEK membrane at sulfonation temperature of 80 °C is not suitable for VRFB application which has water containing vanadium electrolyte.

Figure C3 PPEES sulfonation at 80 °C at different sulfonation times of: 1 h (left); 3 h (middle); and 5 h (right).

Figure C4 PPEES sulfonation at 50 °C at different sulfonation times of: 1 h (left); 3 h (middle); and 5 h (right).

Higher sulfonation time and temperature induce shape transformation as shown in Figures C3 and C4. In the worst case, the prepared membrane was fully dissolved in water, both sulfonation temperatures of 50 and 80 °C are not suitable for VRFB application which has water containing vanadium electrolyte.

C2 Degree of sulfonation

The polymer membranes were washed with deionization water and dried at 100 °C for 24 h. The degree of sulfonation of solution was determined by the titration with 0.01 M sodium hydroxide until pH neutral using phenolphthalein as an indicator. The degree of sulfonation (DS) is defined as the number of sulfonic acid groups divided by the number of repeating units in a polymer chain that was calculated by the following relation.

DS (%) =
$$\frac{(V_{NaOH} \times C_{NaOH})/1000}{\text{Mole of polymer membrane}} \times 100$$
 (C1)

Figure C5 Effect of sulfonation time on the degree of sulfonation of PEEK at sulfonation temperature of 50 °C and acid/polymer mol ratio of 200.

Figure C6 Effect of acid/polymer mol ratio on the degree of sulfonation of S-PEEK at sulfonation temperature of 50 °C and sulfonation time of 3 h.

Table C6	Degree of	of sulfonation	of S-PEEK	at sulfonation	temperature	of 50 °	°C
----------	-----------	----------------	-----------	----------------	-------------	---------	----

H ₂ SO ₄ (mol ratio)	Time (h)	Degree of sulfonation (%)					
-	-	DS1	DS2	DS3	Average		
- 100 -	3	38.38	36.07	42.62	39.02 ± 3.33		
150	3	47.08	43.85	41.48	44.14 ± 2.81		
200	1	49.97	45.21	48.98	48.05 ± 2.51		
200	2	49.01	54.043	54.69	52.58 ± 3.11		
200	3	61.20	58.14	59.47	59.60 ± 1.53		
200	4	71.86	70.38	72.89	71.71 ± 1.26		
200	5	71.66	73.41	74.88	73.32 ± 1.62		
200	7	72.68	77.34	82.28	77.43 ± 4.80		
200	9	90.51	93.68	82.95	89.04 ± 5.51		

Figure C7 Effect of sulfonation time on the degree of sulfonation of S-PPEES at sulfonation temperature of 25 °C acid/polymer mol ratio of 100.

H_2SO_4	Time	Degree of sulfonation (%)						
(mor rano)	(11)	DS1	DS2	DS3	Average			
100	9	-	-	-	A*			
100	12	52.39	52.09	53.96	52.81 ± 1.00			
100	18	58.86	62.99	65.73	62.53 ± 3.46			
100	24	71.04	65.12	70.03	68.73 ± 3.17			
100	30	68.47	70.29	76.31	71.69 ± 4.11			
100	36	75.50	79.06	79.09	77.88 ± 2.07			
100	48	88.77	79.85	83.40	83.99 ± 4.47			
200	24	-	-	-	B*			
300	24	-	-	-	B*			
400	24	-	-	-	B*			

Table C7 Degree of sulfonation of S-PPEES at controlled temperature of 25 $^{\circ}\mathrm{C}$

Remarks

.

•

-

A*: The PPEES could not be dissolve in sulfuric acid with sulfonation time that was less than 9 h.

B*: The swelling sulfonated products contained contaminated acid and they could not be washed out easily.

-

Appendix D Proton Conductivity under Dry State

Proton conductivity of the membrane was determined by a Hewlett Packard 4194A impedance gain/phase analyzer under dry state at 25 °C. The 5 cm × 5 cm film was measured at 1 V potential using the alternating current in the frequency range of 100 Hz – 2 MHz. The graphs show the relationship between the real impedance (Zcos θ) and the imaginary impedance (-Zsin θ). The proton-conductivity (σ) was calculated using Eq. D1:

$$\sigma = \frac{d}{R \times A} (S/cm)$$
(D1)

where σ is the proton conductivity (S/cm). *d* is the thickness of the membrane (cm), *A* is the surface area of membrane in contact with the electrodes (cm²), and *R* refers to the measured resistance of the membrane (Ω) which was derived from the Re (*Z*) axis intersect of the high frequency on a complex impedance plane.

D1 Proton conductivity under dry state compared in present work

Figure D1 Effect of degree of sulfonation on the proton conductivity under dry state of S-PEEK, S-PPEES, and Nafion117.

D2 Proton conductivity under dry state of Nafion117

Table D1 Proton conductivity of Nafion117 under dry state at 25 °C

Sample	DS	Thickness	Area	Resistance	Water	Proton
	(%)	(cm)	(cm ²)	(Ω)	uptake (%)	conductivity (S.cm ⁻¹)
Nafion117	-	0.0180	11.3411	5.00	6.70	3.174×10^{-4}

D3 Proton conductivity under dry state of sulfonated poly(ether ether ketone)

Figure D2 Effect of degree of sulfonation on the proton conductivity under dry state of S-PEEK.

 Table D2 Proton conductivity of sulfonated poly(ether ether ketone) under dry state

 at 25 °C

Sample	DS (%)	Thickness (cm)	Area (cm ²)	Resistance (Ω)	Water uptake (%)	Proton conductivity (S.cm ⁻¹)
50_100_3	39.02	0.0154	11.3411	20.00	2.27	6.789×10^{-5}
50_150_3	44.14	0.0173	11.3411	19.32	9.69	7.896×10^{-5}
50_200_3	59.60	0.0131	11.3411	0.95	10.46	1.216×10^{-4}
50_200_5	73.32	0.0174	11.3411	2.05	10.85	7.484×10^{-4}
50_200_7	77.43	0.0181	11.3411	1.56	11.04	1.023×10^{-3}

D4 Proton conductivity under dry state of sulfonated poly(phenylene ether ether sulfone)

Figure D3 Proton conductivity under dry state of sulfonated poly(phenylene ether ether sulfone) under dry state at 25 °C.

Table D3Proton conductivity of sulfonated poly(phenylene ether sulfone)under dry state at 25 °C

						-
Sample	DS (%)	Thickness (cm)	Area (cm ²)	Resistance (Ω)	Water uptake (%)	Proton conductivity (S.cm ⁻¹)
25_100_12	52.81	0.0132	11.3411	1.70	6.63	6.847×10^{-4}
25_100_18	62.53	0.0223	11.3411	2.75	7.54	7.150×10^{-4}
25_100_24	68.73	0.0192	11.3411	1.62	8.30	1.045×10^{-3}
25_100_30	71.69	0.0151	11.3411	1.10	9.64	1.210×10^{-3}
25_100_36	77.88	0.0194	11.3411	1.21	9.71	1.414×10^{-3}
25_100_48	83.99	0.0192	11.3411	0.89	9.99	1.902×10^{-3}

D5 Complex impedance plane of sulfonated poly(ether ether ketone)

Figure D4 Proton conductivity of S-PEEK (DS=39.02%).

Figure D5 X-intercept at the high frequency of S-PEEK (DS=39.02%).

Figure D6 Proton conductivity of S-PEEK (DS=44.14%).

Figure D7 X-intercept at the high frequency of S-PEEK (DS=44.14%).

Figure D8 Proton conductivity of S-PEEK (DS=59.60%).

Figure D9 X-intercept at the high frequency of S-PEEK (DS=59.60%).

Figure D10 Proton conductivity of S-PEEK (DS=73.32%).

Figure D11 X-intercept at the high frequency of S-PEEK (DS=73.32%).

Figure D12 Proton conductivity of S-PEEK (DS=77.43%).

Figure D13 X-intercept at the high frequency of S-PEEK (DS=77.43%).

÷

D6 Complex impedance plane of sulfonated poly(phenylene ether sulfone)

Figure D14 Nyquist plot of S-PPEES (DS=52.81%).

Figure D15 X-intercept at the high frequency of S-PPEES (DS=52.81%).

Figure D16 Proton conductivity of S-PPEES (DS=62.53%).

Figure D17 X-intercept at the high frequency of S-PPEES (DS=62.53%).

Figure D18 Nyquist plot of S-PPEES (DS=68.73%).

Figure D19 X-intercept at the high frequency of S-PPEES (DS=68.73%).

Figure D20 Nyquist plot of S-PPEES (DS=71.69%).

Figure D21 X-intercept at the high frequency of S-PPEES (DS=71.69%).

Figure D22 Nyquist plot of S-PPEES (DS=77.88%).

Figure D23 X-intercept at the high frequency of S-PPEES (DS=77.88%).

Figure D24 Nyquist plot of S-PPEES (DS=83.99%).

Figure D25 X-intercept at the high frequency of S-PPEES (DS=83.99%).

Figure D26 Proton conductivity of Nafion117.

Figure D27 X-intercept at the high frequency of Nafion117.

Appendix E Proton Conductivity under Wet State

Proton conductivity of the membrane was determined by an impedance phase analyser HP 4194 under wet state at 25 °C. The 5 cm × 5 cm film after immersed in deionized water at room temperature for 24 h was measured at 1 V potential using the alternating current in the frequency range of 100 Hz – 2 MHz. The graphs show the relationship between the real impedance (Zcos θ) and the imaginary impedance (-Zsin θ). The proton conductivity (σ) was calculated using Eq. (E1):

$$\sigma = \frac{d}{R \times A} (S/cm)$$
(E1)

where σ is the proton conductivity (S/cm), *d* is the thickness of the membrane (cm), *A* is the surface area of membrane in contact with the electrodes (cm²), and *R* refers to the measured resistance of the membrane (Ω) which was derived from the Re (*Z*) axis intersect of the high frequency on a complex impedance plane.

E1 Proton conductivity under wet state compared with previous work

[1] Macksasitorn (2012) sulfonated PEEK and PPEES at 25 °C

Polymer	Degree of sulfonation (%)	Proton conductivity (S.cm ⁻¹)	water uptake (%)	Reference
		2		
S-PEEK	46.21	2.72×10^{-2}	15.54	[1]
S-PEEK	57.99	5.17×10^{-2}	30.57	- [1]
S-PEEK	69.07	6.31×10^{-2}	27.16	[1]
S-PEEK	76.49	7.47×10^{-2}	67.65	[1]
S-PEEK	86.49	1.51×10^{-1}	83.02	[1]
S-PEEK	39.02	7.1452×10^{-4}	30.38	
S-PEEK	44.14	1.2857×10^{-3}	31.16	
S-PEEK	59.60	1.8300×10^{-3}	39.24	
S-PEEK	73.32	3.7179×10^{-3}	48.97	
S-PEEK	77.43	4.8971×10^{-3}	53.61	
S-PPEES	83.57	1.24×10^{-1}	121.93	[1]
S-PPEES	52.81	3.556×10^{-3}	73.02	
S-PPEES	62.53	8.277×10^{-3}	79.72	
S-PPEES	68.73	1.026×10^{-2}	87.24	
S-PPEES	71.69	2.176×10^{-2}	92.04	
S-PPEES	77.88	2.229×10^{-2}	98.40	
S-PPEES	83.99	2.547×10^{-2}	107.89	

 Table E1
 Comparison of proton conductivity

-

[1] Macksasitorn (2012) sulfonated PEEK and PPEES at 25 $^{\circ}\mathrm{C}$

-

.

.

E2 Proton conductivity under wet state compared in present work

Figure E2 Effect of degree of sulfonation on the proton conductivity under wet state of S-PEEK, S-PPEES, and Nafion117.

Table E2 Proton conductivity of Nafion117 under wet state at 25 °C

Sample	DS	Thickness	Area	Resistance	Water uptake	Proton
	(%)	(cm)	(cm ²)	(Ω)	(%)	conductivity (S.cm ⁻¹)
Nafion117	_	0.0193	11.3411	0.59	16.30	2.8942×10^{-3}

E3 Proton conductivity of sulfonated poly(ether ether ketone) under wet state

Figure E3 Effect of degree of sulfonation on the proton conductivity under wet state of S-PEEK.

Table E3Proton conductivity of sulfonated poly(ether ether ketone) under wet state at 25 $^{\circ}\mathrm{C}$

Sample	DS	Thickness	Area	Resistance	Water uptake	Proton
	(%)	(cm)	(cm^2)	(Ω)	(%)	conductivity
						(S/cm)
50_100_3	39.02	0.0191	11.3411	2.357	30.38	7.1452×10^{-4}
50_150_3	44.14	0.0183	11.3411	1.255	31.16	1.2857×10^{-3}
50_200_3	59.60	0.0253	11.3411	1.219	39.24	1.8300×10^{-3}
50_200_5	73.32	0.0246	11.3411	0.585	48.97	3.7179×10^{-3}
50_200_7	77.43	0.0266	11.3411	0.480	53.61	4.8971×10^{-3}

Figure E4 Effect of degree of sulfonation on the proton conductivity under wet state of S-PPEES.

Table E4Proton conductivity of sulfonated poly(phenylene ether sulfone)under wet state at 25 °C

Sample	DS	Thickness	Area	Resistance	Water	Proton
	(%)	(cm)	(cm^2)	(Ω)	uptake (%)	conductivity
						$(S.cm^{-1})$
25_100_12	52.81	0.0213	11.3411	5.28	73.02	3.556×10^{-3}
25_100_18	62.53	0.0268	11.3411	2.86	79.72	8.277×10^{-3}
25_100_24	68.73	0.0235	11.3411	2.02	87.24	1.026×10^{-2}
25_100_30	71.69	0.0227	11.3411	0.92	92.04	2.176×10^{-2}
25_100_36	77.88	0.0154	11.3411	0.61	98.40	2.229×10^{-2}
25_100_48	83.99	0.0255	11.3411	0.89	107.89	2.547×10^{-2}

E5 Complex impedance plane of sulfonated poly(ether ether ketone)

Figure E5 Nyquist plot of S-PEEK (DS=39.02%).

Figure E6 Nyquist plot of S-PEEK (DS=39.02%).

Figure E7 Nyquist plot of S-PEEK (DS=44.14%).

Figure E8 Nyquist plot of S-PEEK (DS=44.14%).

-

Figure E9 Nyquist plot of S-PEEK (DS=59.60%).

Figure E10 Nyquist plot of S-PEEK (DS=59.60%).

Figure E11 Nyquist plot of S-PEEK (DS=73.32%).

Figure E12 Nyquist plot of S-PEEK (DS=73.32%).

Figure E13 Nyquist plot of S-PEEK (DS=77.43%).

Figure E14 Nyquist plot of S-PEEK (DS=77.43%).

Figure E15 Nyquist plot of S-PPEES (DS=52.81%).

Figure E16 Nyquist plot of S-PPEES (DS=52.81%).

Figure E17 Nyquist plot of S-PPEES (DS=62.53%).

Figure E18 Nyquist plot of S-PPEES (DS=62.53%).

Figure E19 Nyquist plot of S-PPEES (DS=68.73%).

Figure E20 Nyquist plot of S-PPEES (DS=68.73%).

Figure E21 Nyquist plot of S-PPEES (DS=71.69%).

Figure E22 Nyquist plot of S-PPEES (DS=71.69%).

Figure E23 Nyquist plot of S-PPEES (DS=77.88%).

Figure E24 Nyquist plot of S-PPEES (DS=77.88%).

Figure E25 Nyquist plot of S-PPEES (DS=83.99%).

Zcosθ (Ohm)

Figure E26 Nyquist plot of S-PPEES (DS=83.99%).

E6 Complex impedance plane of Nafion 117

Figure E27 Nyquist plot of Nafion117.

Figure E29 Comparison of proton conductivity between dry and wet state.

Figure F1 Comparison of vanadium permeability at 25 °C with previous work.

Remark:

[1] Macksasitorn (2012) sulfonated PEEK and PPEES at 25 °C.

[2] Watpathomsub (2014) sulfonated PEEK at 50 °C and PPEES at 25 °C.

Polymer	Polymer Degree of sulfonation (%) Vanadium permeability (cm ² /min)			Reference
S-PEEK	46.21	0	8	[1]
-S-PEEK	57.99	2.42×10^{-8}	-	
S-PEEK	69.07	1.26×10^{-6}		[1]
S-PEEK	76.49	1.41×10^{-6}		
S-PEEK	86.49	2.28×10^{-6}		[1]
S-PEEK	39.02	9.391×10^{-6}		[2]
S-PEEK	44.14	1.009×10^{-5}		[2]
S-PEEK	59.60	1.730×10^{-5}		[2]
S-PEEK	73.32	2.779×10^{-5}		[2]
S-PEEK	77.43	5.767×10^{-5}		[2]
S-PPEES	83.57	2.50×10^{-6}		[1]
S-PPEES	52.81	3.160×10^{-6}		[2]
S-PPEES	62.53	3.393×10^{-6}		[2]
S-PPEES	- 68.73	4.485×10^{-6}		[2]
S-PPEES	71.69	4.471×10^{-6}		[2]
S-PPEES	77.88	4.797×10^{-6}		[2]
S-PPEES	83.99	6.739×10^{-6}		[2]
Nafion117	-	3.08×10^{-6}		[1]
Nafion117	-	6.76 × 10 ⁻⁶		[2]
Nation117	-	3.69×10^{-6}		[3]
Nafion117		2.94×10^{-6}		[4]

Table F1 Comparison of vanadium permeability at 25 °C

Remark:

[1] Macksasitorn et al. (2012) sulfonated PEEK and PPEES at 25 °C.

[2] Watpathomsub *et al.* (2014) sulfonated PEEK at 50 $^{\circ}$ C and PPEES at 25 $^{\circ}$ C.

[3] Teng et al. (2009) investigated Nafion composite membrane for VRFB.

[4] Chen et al. (2010) investigated SPFEK composite membrane for VRFB.

F1 Calibration Curve

Figure F2 Wavelength profile of 0.1 M VO_2SO_4 in 0.2 M H_2SO_4 .

.

	Table F2	Absorbances	at 760) nm at	different	vanadium	concentrations
--	----------	-------------	--------	---------	-----------	----------	----------------

-						
VO ²⁺ conce (mol/I	ntration	0.01	0.05	0.10	0.20	0.30
	1	0.2518	1.1355	1.8962	3.0344	3.7563
	2	0.2376	1.0525	1.7078	2.9400	3.6825
	3	0.2368	1.0031	1.6926	2.9737	3.8063
ce	4	0.2594	1.1657	1.9374	3.0522	3.8291
ban	5	0.2521	1.1350	1.8355	2.8494	3.8233
SOF	6	0.2520	1.0529	1.9041	2.7044	3.6345
Ab	7	0.2520	1.0040	1.9373	2.8820	3.6993
	8	0.2376	1.1335	1.8392	2.7007	3.8330
	9	0.2370	1.0528	1.9054	.2.7248	3.8225
	10	0.2525	1.0048	1.8990	3.0698	3.9268

.

The vanadium permeability was measured by the method according to the literature (Macksasitorn *et al.*, 2012). The left reservoir was filled with 50 mL of 1M VOSO₄ in 2M H₂SO₄ solution, while the right reservoir was filled with 50 mL of 1M MgSO₄ in 2M H₂SO₄ solution. MgSO₄ was used to equalize the osmotic pressure. The two reservoirs were separated by the membrane which its area equal 5 cm².

Figure F3 Calibration curve.

Both solutions were continuously magnetic stirred at room temperature. The 0.4 mL of solution from the right reservoir was taken at a regular time interval and 1M MgSO₄ in 2M H_2SO_4 was added in right reservoir to hold constant volume. Then, vanadium concentrations were analyzed by a UV-VIS spectrometer (Nanoquant, Infinite M200).

The vanadium permeability was calculated with the following Eq. F1:

$$V_R \frac{d C_R(t)}{dt} = A \frac{P}{L} (C_L - C_R(t))$$
(F1)

where V_R is the volume of the right-hand reservoir (cm³), C_L is the vanadium ion concentration in the left-hand reservoir (M), $C_R(t)$ is the vanadium ion concentration in the right-hand reservoir as a function of time (M), P is the permeability of vanadium ions (cm²/min), A is the area of the membrane (cm²). L-is the membrane thickness (cm).

Figure F4 Vanadium permeability of S-PEEK, S-PPEES and Nafion117 at 25 °C.

Figure F5 Vanadium permeability of S-PEEK at 25 °C.

Sample	Degree of sulfonation (%)	Thickness (cm)	Slope (mol/L.min)	Vanadium permeability (cm ² /min)
50_100_3	39.02	0.0161	9.391×10^{-6}	1.512×10^{-6}
50_150_3	44.14	0.0189	1.009×10^{-5}	1.908×10^{-6}
50_200_3	59.60	0.0185	1.730×10^{-5}	3.199×10^{-6}
50_200_5	73.32	0.0219	2.779×10^{-5}	6.088×10^{-6}
50_200_7	77.43	0.0180	5.767×10^{-5}	1.038×10^{-5}

Table F3 Vanadium permeability of S-PEEK at 25 °C

-

Figure F6 Vanadium permeability of S-PPEES at 25 °C.

Sample	Degree of sulfonation (%)	Thickness (cm)	Slope (mol/L.min)	Vanadium permeability (cm ² /min)
25_100_12	52.81	0.0181	3.160×10^{-5}	5.720×10^{-6}
25_100_18	62.53	0.0194	3.393×10^{-5}	6.582×10^{-6}
25_100_24	68.73	0.0171	4.485×10^{-5}	7.670×10^{-6}
25_100_30	71.69	0.0191	4.471×10^{-5}	8.361×10^{-6}
25_100_36	77.88	0.0186	4.797×10^{-5}	8.922×10^{-6}
25_100_48	83.99	0.0190	6.739×10^{-5}	1.280×10^{-5}

Table F4 Vanadium permeability of S-PPEES at 25 °C

 Table F5
 Vanadium permeability of Nation at 25 °C

Sample	Thickness (cm)	Slope (mol/L.min)	Vanadium permeability (cm ² /min)
Nation	0.0180	3.412×10^{-5}	6.757×10^{-6}

F2 Vanadium permeability raw data of S-PEEK

Figure F7 Vanadium (IV) concentration in right reservoir with various time of S-PEEK (DS=39.02%).

Table F6 Vanadi	m permeability dat	ta of S-PEEK (DS=39.02%)
-----------------	--------------------	--------------------------

Permea	tion time	· · · · · ·	Absorbance	2	С	oncentratio	on
h	min	Aı	A_2	A ₃	C_1	C_2	C3 -
3	180	0.0573	0.0570	0.0572	0.0042	0.0042	0.0042
6	360	0.0729	0.0732	0.0731	0.0053	0.0053	0.0053
9	540	0.0878	0.0881	0.0878	0.0064	0.0064	0.0064
12	720	0.1951	0.1952	0.1954	0.0142	0.0142	0.0143
18	1080	0.1403	0.1405	0.1407	0.0102	0.0102	0.0103
24	1440	0.1616	0.1619	0.1619	0.0118	0.0118	0.0118
30	1800	0.2227	0.2230	0.2228	0.0162	0.0163	0.0163
39	2340	0.5640	0.5636	0.5630	0.0411	0.0411	0.0411
48	2880	0.3786	0.3786	0.3787	0.0276	0.0276	0.0276

Figure F8 Vanadium (IV) concentration in right reservoir with various time of S-PEEK (DS=44.14%).

 Table F7
 Vanadium permeability data of S-PEEK (DS=44.14%)

Permeation time		Absorbance			Concentration		
h	min	A ₁	A ₂	A ₃	C_1	C ₂	C ₃
3	180	0.1016	0.1011	0.1008	0.0074	0.0074	0.0074
9	540	0.1148	0.1144	0.1136	0.0084	0.0083	0.0083
12.5	750	0.1320	0.1312	0.1304	0.0096	0.0096	0.0095
15	900	0.1470	0.1456	0.1451	0.0107	0.0106	0.0106
25	1500	0.2052	0.2044	0.2032	0.0150	0.0149	0.0148
48	2880	0.3861	0.3777	0.3731	0.0282	0.0276	0.0272

Figure F9 Vanadium (IV) concentration in right reservoir with various time of S-PEEK (DS=59.60%).

 Table F8
 Vanadium permeability data of S-PEEK (DS=59.60%)

Permea	tion time		Absorbance			Concentration		
h	min	A1	A ₂	A ₃	C_1	C ₂	C ₃	
3	180	0.1109	0.1110	0.1110	0.0081	0.0081	0.0081	
6	360	0.1220	0.1224	0.1223	0.0089	0.0089	0.0089	
9	540	0.1318	0.1324	0.1325	0.0096	0.0097	0.0097	
12	720	0.1109	0.1112	0.1115	0.0081	0.0081	0.0081	
18	1080	0.3123	0.3125	0.3124	0.0228	0.0228	0.0228	
24	1440	0.3677	0.3678	0.3677	0.0268	0.0268	0.0268	
30	1800	0.4547	0.4546	0.4545	0.0332	0.0332	0.0332	
39	2340	0.3451	0.3455	0.3456	0.0252	0.0252	0.0252	
48	2880	0.6364	0.6365	0.6363	0.0464	0.0464	0.0464	

Figure F10 Vanadium (IV) concentration in right reservoir with various time of S-PEEK (DS=73.32%).

 Table F9
 Vanadium permeability data of S-PEEK (DS=73.32%)

Permea	Permeation time		Absorbance			- Concentration			
h	min	A ₁	A ₂	A ₃	C_1	C ₂	C ₃		
3	180	0.0847	0.0850	0.0850	0.0062	0.0062	0.0062		
13	780	0.2929	0.2925	0.2935	0.0214	0.0213	0.0214		
18	1080	0.3430	0.3435	0.3439	0.0250	0.0251	0.0251		
24	1440	0.6714	0.6712	0.6710	0.0490	0.0490	0.0489		
30	1800	0.7082	0.7073	0.7078	0.0517	0.0516	0.0516		
39	2340	0.8832	0.8833	0.8834	0.0644	0.0644	0.0644		
49	2940	1.0787	1.0785	1.0787	0.0787	0.0787	0.0787		

Figure F11 Vanadium (IV) concentration in right reservoir with various time of S-PEEK (DS=77.43%).

 Table F10
 Vanadium permeability data of S-PEEK (DS=77.43%)

Permeation time			Absorbance	2	Concentration			
h		min	A ₁	A_2	A ₃	C_1	C_2	C3
3		180	0.1492	0.1464	0.1466	0.0109	0.0107	0.0107
- 6	-	360	0.3955	0.4015	0.4023	0.0289	0.0293	0.0293
9		540	0.4657	0.4657	0.4659	0.0340	0.0340	0.0340
12		720	0.6521	0.6521	0.6517	0.0476	0.0476	0.0475
18		1080	0.9126	0.9113	0.9117	0.0666	0.0665	0.0665
24		1440	1.0103	1.0090	1.0087	0.0737	0.0736	0.0736

Figure F12 Vanadium (IV) concentration in right reservoir with various time of S-PPEES (DS=52.81%).

Permea	Permeation time		Absorbance			Concentration				
h	min	A ₁	A ₂	A ₃	C_1	C ₂	C ₃			
3	180	0.1207	0.1209	0.1208	0.0088	0.0088	0.0088			
6	360	0.2337	0.2339	0.2340	0.0170	0.0171	0.0171			
12	720	0.3659	0.3667	0.3669	0.0267	0.0268	0.0268			
18	1080	0.5816	0.5814	0.5818	0.0424	0.0424	0.0424			
30	1800	0.8354	0.8353	0.8361	0.0609	0.0609	0.0610			
36	2160	1.0073	1.0082	1.0082	0.0735	0.0735	0.0735			
48	2880	1.0899	1.0903	1.0900	0.0795	0.0795	0.0795			

 Table F11
 Vanadium permeability data of S-PPEES (DS=52.81%)

Figure F13 Vanadium (IV) concentration in right reservoir with various time of S-PPEES (DS=62.53%).

 Table F12
 Vanadium permeability data of S-PPEES (DS=62.53%)

Permeat	Permeation time		Absorbance			Concentration		
h	min	A ₁	A ₂	A ₃	C_1	C ₂	C ₃	
3	180	0.1151	0.1163	0.1159	0.0084	0.0085	0.0085	
6	360	0.2463	0.2468	0.2468	0.0180	- 0.0180	0.0180	
12	720	0.3978	0.3980	0.3981	0.0290	0.0290	0.0290	
18	1080	0.5752	0.5756	0.5755	0.0420	0.0420	0.0420	
30	1800	0.8889	0.8893	0.8890	0.0648	0.0649	0.0649	
36	2160	1.0342	1.0345	1.0343	0.0754	0.0755	0.0755	
48	2880	1.2293	1.2301	1.2291	0.0897	0.0897	0.0897	

Figure F14 Vanadium (IV) concentration in right reservoir with various time of S-PPEES (DS=68.73%).

 Table F13
 Vanadium permeability data of S-PPEES (DS=68.73%)

Permeation time		Absorbance			Concentration			
h	min	A ₁	A2	A ₃	C1	C ₂	C ₃	
3	180	0.1514	0.1514	0.1513	0.0110	0.0110	0.0110	
6	360	0.2549	0.2551	0.2547	0.0186	0.0186	0.0186	
18	1080	0.6472	0.6470	0.6465	0.0472	0.0472	0.0472	
24	1440	0.9780	0.9772	0.9766	0.0713	0.0713	0.0712	
36	2160	1.3701	1.3685	1.3669	0.0999	0.0998	0.0997	
50	3000	1.7706	1.7717	1.7703	0.1292	0.1292	0.1291	

Figure F15 Vanadium (IV) concentration in right reservoir with various time of S-PPEES (DS=71.69%).

 Table F14
 Vanadium permeability data of S-PPEES
 (DS=71.69%)

Permeation time		Absorbance			Concentration		
h	min	A ₁	A ₂	A3	C_1	C ₂	C3
3	180	0.1409	0.1410	0.1409	0.0103	0.0103	0.0103
9	540	0.3969	0.3978	0.3979	0.0290	0.0290	0.0290
12	720	0.5232	0.5241	0.5243	0.0382	0.0382	0.0382
18	1080	0.7368	0.7364	0.7349	0.0538	0.0537	0.0536
27	1620	1.0348	1.0368	1.0364	0.0755	0.0756	0.0756
36	2160	1.2674	1.2672	1.2675	0.0925	0.0924	0.0925
48	2880	1.7193	1.7195	1.7224	0.1254	0.1254	0.1257

÷

Figure F16 Vanadium (IV) concentration in right reservoir with various time of S-PPEES (DS=77.88%).

 Table F15
 Vanadium permeability data of S-PPEES
 (DS=77.88%)

Permea	tion time		Absorbance	;	(Concentratio	on
h	min	A ₁	A ₂	A ₃	C_1	C ₂	C ₃
3	180	0.1387	0.1390	0.1393	0.0101	0.0101	0.0102
6	360	0.3096	0.3096	0.3100	0.0226	0.0226	0.0226
9	540	0.4082	0.4079	0.4078	0.0298	0.0298	0.0297
12	720	0.5669	0.5670	0.5669	0.0414	0.0414	0.0414
18	1080	0.7617	0.7616	0.7617	0.0556	0.0556	0.0556
24	1440	0.9312	0.9306	0.9303	0.0679	0.0679	0.0679
30	1800	1.1233	1.1230	1.1233	0.0819	0.0819	0.0819
36	2160	1.3966	1.3975	1.3984	0.1019	0.1019	0.1020

Figure F17 Vanadium (IV) concentration in right reservoir with various time of S-PPEES (DS=83.99%).

Table F16 Vanadium permeability data of S-PPEES (DS=83.99%)

Permea	tion time		Absorbance	e	C	oncentratio	on -
h	min	Aı	A ₂	A ₃	C_1	C_2	C_3
3	180	0.1316	0.1313	0.1320	0.0096	0.0096	0.0096
-9 -	540	0.7891	0.7892	0.7895	0.0576	0.0576	0.0576
12	720	0.9623	0.9616	0.9606	0.0702	0.0701	0.0701
18	1080	1.1947	1.1938	1.1896	0.0872	0.0871	0.0868
27	1620	1.5921	1.5918	1.5902	0.1161	0.1161	0.1160
36	2160	2.0213	2.0162	2.0149	0.1475	0.1471	0.1470
48	2880	2.3937	2.3920	2.3885	0.1746	0.1745	0.1742

F4 Vanadium permeability of Nafion117

Figure F18 Vanadium (IV) concentration in right reservoir with various time of Nafion117.

Table F17	Vanadium	permeability	/ data /	of Nafion	117

Permeat	tion time	4	Absorbance	rbance C			oncentration	
h	min	A_1	A_2	A ₃	C_1	C ₂	C3	
3	180	0.1349	0.1350	0.1351	0.0098	0.0098	0.0099	
12	720	0.4342	0.4324 -	0.4327	0.0317	0.0315	0.0316	
15	900	0.5370	0.5370	0.5369	0.0392	0.0392	0.0392	
18	1080	0.6327	0.6318	0.6319	0.0462	0.0461	0.0461	
24	1440	0.7403	0.7401	0.7404	0.0540	0.0540	0.0540	
39	2340	1.0380	1.0380	1.0381	0.0757	0.0757	0.0757	
48	2880	1.2485	1.2478	1.2487	0.0911	0.0910	0.0911	

Appendix G Ion Exchange Capacity

The IEC is defined as mmol of sulfonic acid groups for 1 g of dry polymer determined through the acid-base titration. The sulfonic acid groups were titrated with NaOH solution. The membranes was dried at 100 °C for 24 h, weighed and then immersed overnight in a known volume 0.1 M NaCl solution to exchange the H⁺ to Na⁺ ions. The H⁺ containing solution was determined by back titration with a 0.01 M NaOH solution until pH was neutral with phenolphthalein as an indicator. IEC was calculated according to the following Eq. G1:

$$\text{IEC (mmol} \cdot g^{-1}) = \frac{V_{eq} \cdot C_{NaOH}}{W_d}$$
(G1)

where V_{eq} is the equivalent volume of NaOH solution and W_d refers to the weight of the dry membrane.sds

Figure G1 Ion exchange capacity versus degree of sulfonation of S-PEEK, S-PPEES, and Nafion117.

Figure G2 Ion exchange capacity versus degree of sulfonation of S-PEEK.

C	DS DS		Ion Exchange Capacity (mmol/g)				
Sample	(%)	IEC ₁	IEC ₂	IEC ₃	Average		
50_100_3	39.02	1.094	1.004	1.030	1.043 ± 0.046		
50_150_3	44.14	1.162	1.144	1.162	1.156 ± 0.010		
50_200_3	59.60	1.586	1.652	1.652	1.630 ± 0.038		
50_200_5	73.32	2.193	2.243	2.243	2.226 ± 0.029		
50_200_7	77.43	2.313	2.441	2.475	2.410 ± 0.085		

Table G1 Ion exchange capacity versus sulfonation time of S-PEEK

Figure G3 Ion exchange capacity versus degree of sulfonation of S-PPEES.

Samula	DS	Io	Ion Exchange Capacity (mmol/g)					
Sample	(%) IEC ₁		IEC ₂	IEC ₃	Average			
25_100_12	52.81	0.690	0.561	0.647	0.633 ± 0.066			
25_100_18	62.53	0.804	0.870	0.886	0.853 ± 0.043			
25_100_24	68.73	1.177	1.087	1.177	1.147 ± 0.052			
25_100_30	71.69	1.573	1.458	1.497	1.509 ± 0.058			
25_100_36	77.88	1.699	1.786	1.901	1.795 ± 0.101			
25_100_48	83.99	2.133	2.053	1.972	2.053 ± 0.081			

Table G2 Ion exchange capacity versus degree of sulfonation of S-PPEES

Somulo		Ion Exchange Ca	apacity (mmol/g	<u>y</u>)
Sample _	IEC1	IEC ₂	IEC3	Average
Nafion 117	0.724	0.749	0.790	0.754 ± 0.033

 Table G3
 Ion exchange capacity versus degree of sulfonation of Nation117

÷

-

-

Appendix H Water Uptake

The 0.180 cm thick membrane was cut to 1.5×1.5 cm² dimension. Then, the membrane was dried at 100 °C for 24 h, weighed, and soaked in deionized water at room temperature for 24 h. After that, the membrane was taken out and the water adhering to the surface was quickly wiped off using absorbent paper. The membrane was weighed again. Then, the water uptake was calculated as following Eq. H1:

water uptake
$$(\tilde{\%}) = \left(\frac{W_w - W_d}{W_d}\right) \times 100$$
 (H1)

where W_w and W_d refer to the weight of the wet and dry samples, respectively.

Figure H1 Water uptake of S-PEEK, S-PPEES and Nafion117.

Figure H2 Water uptake of sulfonated poly (ether ether ketone) at different degree of sulfonation.

Table H1	Water uptake of	sulfonated	poly(ether	ether ketone)
----------	-----------------	------------	------------	---------------

	Degree of		Water U	Jptake (%)	
Sample	sulfonation (%)	1	2	3	Average
50_100_3	39.02	30.64	30.30	30.20	30.38 ± 0.23
50_150_3	44.14	32.64	29.38	31.44	31.16 ± 1.65
50_200_3	59.60	39.34	39.06	39.34	39.24 ± 0.16
50_200_5	73.32	50.50	46.73	49.67	48.97 ± 1.98
50_200_7	77.43	54.45	52.30	54.09	53.61 ± 1.15

	V	Vet weight (g)	Ι	Dry weight (g)
Sample	W _{w1}	W _{w2}	W _{w3}	W_{d1}	W_{d2}	W _{d3}
50_100_3	0.0388	0.0387	0.0388	0.0297	0.0297	0.0298
50_150_3	0.0256	0.0251	0.0255	0.0193	0.0194	0.0194
50_200_3	0.0503	0.0502	0.0503	0.0361	0.0361	0.0361
50_200_5	0.0456	0.0449	0.0455	0.0303	0.0306	0.0304
50_200_7	0.0434	0.0431	0.0433	0.0281	0.0283	0.0281

 Table H2
 Water uptake data of sulfonated poly (ether ether ketone)

H2 Sulfonated poly(phenylene ether ether sulfone)

Figure H3 Water uptake of sulfonated poly(phenylene ether sulfone) at different degree of sulfonation.

	Degree of	Water Uptake (%)					
Sample	sulfonation (%)	1	2	3	Average		
25_100_12	52.81	72.58	73.20	73.29	73.02 ± 0.39		
25_100_18	62.53	80.27	79.80	79.08	79.72 ± 0.60		
25_100_24	68.73	89.61	86.96	85.16	87.24 ± 2.24		
25_100_30	71.69 -	94.99	91.57	89.57	92.04 ± 2.74		
25_100_36	77.88	95.17	97.46	102.56	98.40 ± 3.78		
25_100_48	83.99	106.76	107.32	109.58	107.89 ± 1.49		

 Table H3
 Water uptake of sulfonated poly(phenylene ether sulfone)

 Table H4
 Water uptake data of sulfonated poly (ether ether ketone)

Sample –	W	/et weight (g)	[Dry weight (g)		
Sample	W_{w1}	W_{w2}	W_{w3}	W_{d1}	W_{d2}	W_{d3}	
25_100_12	0.0535	0.0530	0.0532	0.0310	0.0306	0.0307	
25_100_18	0.1444	0.1442	0.1438	0.0801	0.0802	0.0803	
25_100_24	0.0821	0.0817	0.0811	0.0433	0.0437	0.0438	
25_100_30	0.0661	0.0659	0.0654	0.0339	0.0344	0.0345	
25_100_36	0.8490	0.8550	0.8710	0.4350	0.4330	0.4300	
25_100_48	0.8560	0.8500	0.8530	0.4140	0.4100	0.4070	

H3 Nafion117

 Table H5
 Water uptake of Nafion117

Camala		Water Uptake (%)				
Sample –	1 2 3			Average		
Nation117	15.66	17.20	16.04	16.30 ± 0.80		

Table H6 Water uptake data of Nation117

	Wet weight (g)		Dry weight (g))
W _{w1}	W_{w2}	W _{w3}	W_{d1}	W_{d2}	W _{d3}
0.096	0.0981	0.0767	0.083	0.0837	0.0661

Appendix I Mechanical Properties

The tensile properties of thin film were investigated on a universal testing machine (Lloyd, SMT2-500N) under ASTM D882 with 500 N capacity at 23 ± 2 °C and 50 RH. The initial gauge separation and cross speed was set to 50 mm with 25 mm/min, respectively. A specimen with a guage length of 30 mm, a width of 10 mm and, nominal thickness was not greater than 0.250 mm. The parameters consist of the Young's modulus, tensile strength, and elongation at break were measured and reported. All these tests were conducted_at ambient temperature and an average value of five repeated tests was taken for each material.

- I1 Mechanical properties of S-PEEK, S-PPEES, and Nafion117

Figure I1 Young's modulus of S-PEEK, S-PPEES, and Nafion117.

143

Figure I2 Stress at yield of S-PEEK, S-PPEES, and Nafion117.

Figure I3 Percentage strain at yield of S-PEEK, S-PPEES, and Nafion117.

-

	Degree of	Young's	Stress at	Percentage
Sample	sulfonation	Modulus	Yield	Strain at Yield
	(%)	(MPa)	(MPa)	(%)
50_100_3	39.02	720.3 ± 78.3	19.40 ± 2.21	4.317 ± 0.632
50_150_3	44.14	742.6 ± 36.1	27.46 ± 1.50	5.916 ± 0.298
50_200_3	59.60	850.3 ± 29.7	36.33 ± 1.79	7.229 ± 0.174
50_200_5	73.32	642.9 ± 26.2	21.29 ± 1.42	5.925 ± 0.373
50_200_7	77.43	530.6 ± 24.9	16.52 ± 2.53	5.341 ± 0.188

.

 Table 11 Mechanical properties of sulfonated poly(ether ether ketone)

 Table I2
 Mechanical properties of sulfonated poly(phenylene ether sulfone)

Sample	Degree of	Young's	Stress	Percentage
	sulfonation	Modulus	at Yield	Strain at Yield
	(%)	(MPa)	(MPa)	(%)
25_100_12	52.81	437.1 ± 29.6	13.56 ± 2.16	6.115 ± 0.722
25_100_18	62.53	446.0 ± 37.7	16.94 ± 0.91	6.525 ± 0.827
25_100_24	68.73	519.2 ± 61.2	17.83 ± 2.00	7.014 ± 0.895
25_100_30	71.69	609.8 ± 125.8	23.06 ± 1.36	7.398 ± 2.477
25_100_36	77.88	669.9 ± 75.5	24.78 ± 0.59	8.589 ± 1.668
25_100_48	83.99	504.7 ± 90.4	15.32 ± 2.50	5.475 ± 0.274

Table 13	Mechanical	properties	of Nafion	117
	1.10011001110001	properties		

-

Sample	Young's Modulus	Stress at Yield	Percentage
	(MPa)	(MPa)	Strain at Yield
			(%)
Nafion 117	185.0 ± 10.2	10.99 ± 0.41	24.12 ± 1.91

I2 Mechanical properties raw data of S-PEEK

Sample	Break position	Young's Modulus (MPa)	Stress at Yield (MPa)	Percentage Strain at Yield (%)
Sample 1	Grip	607.3	17.14	4.278
Sample 2	Grip	727.6	18.75	3.549
Sample 3	Grip	771.9	19.29	4.347 -
Sample 4	Grip	774.2	22.41	5.095

Table I4 Mechanical properties of S-PEEK (DS=39.02%)

Table I5 Mechanical properties of S-PEEK (DS=44.14%)

Sample	Break position	Young's Modulus (MPa)	Stress at Yield (MPa)	Percentage Strain at Yield (%)
Sample 1	Grip	773.1	28.40	6.086
Sample 2	Grip	751.9	28.25	6.090
Sample 3	Grip	702.8	25.73	5.571

Table I6 Mechanical properties of S-PEEK (DS=59.60%)

.

.

Sample	Break position	Young's Modulus (MPa)	Stress at Yield (MPa)	Percentage Strain at Yield (%)
Sample 1	Guage length	806.1	34.59	7.288
Sample 2	Grip	867.9	38.83	7.001
Sample 3	Guage length	860.0	35.92	7.417
Sample 4	Guage length	867.2	35.96	7.208

	Sample	Break	Young's Modulus	Stress at Yield	Percentage Strain at Yield
			(MPa)	(MPa)	(%)
	Sample 1	Guage length	680.8	23.32	6.271
	Sample 2	*Grip	515.7	21.35	6.307
	Sample 3	Grip	607.2	19.92	5.400
-	Sample 4	Guage length	645.4	20.99	5.831
	Sample 5	Grip	643.0	20.11	6.302
	Sample 6	*Grip	417.8	14.15	5.006
	Sample 7	Grip	637.9	22.09	5.822

Table 17Mechanical properties of S-PEEK (DS=73.32%)

Table I8Mechanical properties of S-PEEK (DS=77.43%)

.

.

Sample	Break position	Young's Modulus (MPa)	Stress at Yield (MPa)	Percentage Strain at Yield (%)
Sample 1	Grip	516.1	19.43	5.130
Sample 2	Guage length	559.4	14.83	5.401
Sample 3	Grip	516.4	15.31	5.491
Sample 4	*Grip	953.6	19.99	3.760
Sample 5	*Grip	507.4	19.64	6.429
Sample 6	*Grip	432.8	10.98	4.016

1

I3 Mechanical properties raw data of S-PPEES

Sample	Break position	Young's • Modulus (MPa)	Stress at Yield (MPa)	Percentage Strain at Yield (%)
Sample 1	Grip -	406.2	11.46	5.944
Sample 2	Guage length	465.2	13.44	6.907
Sample 3 -	Grip	439.9	15.78	5.494

 Table I9
 Mechanical properties of S-PPEES (DS=52.81%)

 Table I10
 Mechanical properties of S-PPEES (DS=62.53%)

Sample	Break position	Young's Modulus (MPa)	Stress at Yield (MPa)	Percentage Strain at Yield (%)
Sample 1	Grip	437.4	15.74	6.620
Sample 2	*Grip	987.9	14.79	5.177
Sample 3	Grip	468.0	17.47	6.049
Sample 4	Grip	396.8 -	17.79	7.373
Sample 5	Guage length	481.7	16.76	6.059

 Table I11 Mechanical properties of S-PPEES (DS=68.73%)

÷

Sample	Break position	Young's Modulus (MPa)	Stress at Yield (MPa)	Percentage Strain at Yield (%)
Sample 1	Grip	467.2	17.32	7.557
Sample 2	Grip	491.7	18.00	7.954
Sample 3	Guage length	510.8	15.59	6.523
Sample 4	Guage length	606.9	20.41	6.022

÷

Sample	Break position	Young's Modulus (MPa)	Stress at Yield (MPa)	Percentage Strain at Yield (%)
Sample 1	Grip	496.4	22.86	8.523
Sample 2	Grip	459.9	22.92	11.04
Sample 3	Grip	689.5	21.59 _	5.15
Sample 4	Grip	750.2	22.65	5.192
Sample 5	Grip	653.1 -	25.29	7.086

Table I12Mechanical properties of S-PPEES DS=71.69%

 Table I13 Mechanical properties of S-PPEES (DS=77.88%)

Sample	Break position	Young's Modulus (MPa)	Stress at Yield (MPa)	Percentage Strain at Yield (%)
Sample 1	Guage length	588.2	25.25	8.859
Sample 2	Guage length	684.3	24.12	10.105
Sample 3	Guage length	737.2	24.96	6.802

Table I14Mechanical properties of S-PPEES (DS=83.99%)

	Break	Young's	Stress at	Percentage
Sample	Dieak	Modulus	Yield	Strain at Yield
	position	(MPa)	(MPa)	(%)
Sample 1	Grip	601.3	18.02	5.531
Sample 2	*Grip	8939.9	29.53	14.78
Sample 3	*Grip	1069.8	32.86	8.809
Sample 4	Grip	490.5	14.88	5.178
Sample 5	Grip	422.2	13.07	5.717

1.4

I4 Mechanical properties raw data of Nafion117

1.5

	Break	Young's	Stress at	Percentage
Sample	Dieak	Modulus	Yield	Strain at Yield
	position	(MPa)	(MPa)	(%)
Sample 1	-	181.7	11.04	25.06
Sample 2	-	176.8	10.55	21.92
Sample 3	- *Grip	216.0	11.88	78.40
Sample 4	Grip	196.4	11.37	25.37
Sample 5	*Slip	198.9	20.28	_ 154.7
Sample 6	*Slip	143.8	14.23	70.08
Sample 7	*Guage length	-53.10	26.55	218.7
Sample 8	*Grip	150.5	9.485	9.666
D 1 0	1		1	

-

.

Table I15 Mechanical properties of Nafion117

1.1

-

.

Remark: Some conditions (*) were not calculated for average evaluation.

Appendix J Selectivity

-

The selectivity of S-PEEK, S-PPEES, and Nafion 117 is defined the ratio of proton conductivity to vanadium permeability.

-				
	Degree of	 Proton	Vanadium	
Sample	sulfonation	conductivity	permeability	Selectivity
	(%)	(S/cm)	(cm ² /min)	$(S min/cm^2)$
50_100_3	39.02	 6.789×10 ⁻⁵	1.512×10 ⁻⁶	44.89
50_150_3	44.14	7.896×10 ⁻⁵	1.908×10 ⁻⁶	-41.38
50_200_3	59.60	1.216×10^{-4}	3.199×10 ⁻⁶	38.01
50_200_5	73.32	7.484×10 ⁻⁴	6.088×10^{-6}	122.93
50_200_7	77.43	1.023×10 ⁻⁴	1.038×10 ⁻⁵	98.55

 Table J1
 Selectivity of sulfonated poly(ether ether ketone)

Table J2	Selectivity	of sulfonated	poly(pheny	lene ether	ether sulfone)
----------	-------------	---------------	------------	------------	----------------

Sample	Degree of sulfonation (%)		Proton conductivity (S/cm)	Vanadium permeability (cm ² /min)	Selectivity (S min/cm ³)
25_100_12	52.81	4	6.847×10 ⁻⁴	5.720×10 ⁻⁶	119.70
25_100_18	62.53	_	7.150×10 ⁻⁴	6.582×10 ⁻⁶	108.63
25_100_24	68.73		1.045×10 ⁻³	7.670×10 ⁻⁶	136.25
25_100_30	71.69		1.210×10 ⁻³	8.361×10 ⁻⁶	144.72
25_100_36	77.88		1.414×10^{-3}	8.922×10 ⁻⁶	158.48
25_100_48	83.99		1.902×10^{-3}	1.280×10 ⁻⁵	148.59

-

Sample	Proton conductivity	Vanadium	Selectivity
	(S/cm)	permeability	$(S min/cm^3)$
		(cm ² /min)	
Nation117	3.17×10 ⁻⁴	6.760×10 ⁻⁶	46.95

Table J3Selectivity of of Nation117

2

.....

.

-

2.11

.

-

.

Appendix K X-ray Diffraction

The crystalline structure of polymer and sulfonated polymer was examined by a wide angle X-ray diffraction (Bruker AXS, D8 Advance). The CuK-alpha radiation source was operated at 40 kv/30 mA. The interference peak was eliminated by a K-beta filter. Divergence silt and scattering silt of 0.5° together with 0.3 mm of receiving silt were used. The samples were mounted on a sample holder and a measurement was continuously run. The experiment was recorded by monitoring the diffraction pattern appearing in the 20 range from 5 to 50, with a scan speed of $1^{\circ}/min$, and a scan step of 0.02°.

K1 Sulfonated poly(ether ether ketone)

Figure K1 XRD pattern of poly(ether ether ketone) and sulfonated poly(ether ether ketone) at various degrees of sulfonation.

K2 Sulfonated poly(phenylene ether sulfone)

Figures K1 and K2 show a broad amorphous scattering of XRD pattern for both of polymers after sulfonation. Both of PEEK and PPEES exhibit a more amorphous structure with increasing DS. The increasing DS induces more SO₃H groups on the polymer backbone with resulting in changing the chain conformation and the decreasing the chain free volume, and thus facilitates orientation of the amorphous structure [Reyna-Valencia et al., 2005; Zaidi, 2003].

K3 Comparison between S-PEEK and S-PPEES

Figure K3 XRD pattern of sulfonated poly(ether ether ketone) and sulfonated poly(phenylene ether sulfone).

Figure K3 shows broad amorphous scattering of XRD patterns of S-PEEK and S-PPEES. However, the XRD pattern of S-PPEES is broader than S-PEEK which indicates that the S-PPEES is a more amorphous structure than S-PEEK due to steric hindrance. The chain packing of S-PPEES is lower than S-PEEK because S-PPEES is composed of the sulfone group (O=S=O) which provides more steric hindrance than the ketone group (C=O) of S-PEEK, resulting in a more amorphous structure [Baschek et al., 1999].

Appendix L Nuclear Magnetic Resonance (NMR)

The structures of sulfonated PEEK and PPEES were determined by a NMR spectrometer (Bruker Biospin Avance 500 MHz NMR spectrometer) using deuterated dimethyl sulfoxide (DMSO- d_6) as the solvent. For each analysis, 3 wt% polymer solution was prepared in DMSO and the experiment was conducted at room temperature.

L1 Sulfonated poly(ether ether ketone)

Figure L1 NMR spectrum of poly sulfonated poly(ether ether ketone).

L2 Sulfonated poly(phenylene ether sulfone)

Figure L2 NMR spectrum of sulfonated poly(phenylene ether sulfone).

Sulfonation of PEEK and PPEES are an electrophilic substitution reaction, in which the SO₃H groups are introduced into the hydroquinone segment of the polymer chains by the ether linkage and the sulfone linkage of PEEK and PPEES, respectively. The presence of the SO₃H group on S-PEEK and S-PPEES causes a down-field shift of the hydrogen (H_E) to 7.55 ppm and 7.45 ppm for S-PEEK and S-PPEES, respectively. The doublets at 7.15 and 7.25 can be assigned to the hydrogen (H_C and H_D) on hydroquinone ring (Yee *et al.*, 2013; Unveren *et al.*, 2010).

CURRICULUM VITAE

Name: Mr. Somchai Watpathomsub

Date of Birth: July 11, 1989

Nationality: Thai

University Education:

2008–2011 Bachelor Degree of Petrochemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhonpathom, Thailand

Publications:

 Buasri, A.; Chaiyut, N.; Loryuenyong, V.; Phakdeepataraphan, E.; Watpathomsub, S.; and Kunakemakorn, V. (2013). Utilization of Biodiesel Wastes as a Bioresource for the Preparation of Activated Carbon, <u>International</u> <u>Journal of Applied Physics and Mathematics</u>, 3(3), 173-177.

Proceedings:

 Watpathomsub, S.; Sirivat, A.; and Jitkarnka, S. (2014, April 22) Modified Poly(ether ether ketone) and Poly(phenylene ether ether sulfone) as Proton Exchange Membrane for Vanadium Redox Flow Battery. <u>Proceedings of the The 5th Research Symposium on Petrochemical and Materials Technology and the 20th PPC Symposium on Petroleum. Petrochemicals. and Polymers, Bangkok, Thailand.
</u>

Presentations:

1. Watpathomsub, S.; Sirivat, A.; and Jitkarnka, S. (2014, April 22) Modified Poly(ether ether ketone) and Poly(phenylene ether ether sulfone) as Proton Exchange Membrane for Vanadium Redox Flow Battery. <u>Proceedings of the The 5th Research</u> <u>Symposium on Petrochemical and Materials Technology and the 20th PPC</u> <u>Symposium on Petrochemicals, and Polymers, Bangkok, Thailand.</u>