AUTOTHERMAL STEAM REFORMING OF ACETIC ACID: CATALYTIC ACTIVITY AND STABILITY OF Ni/Ce_{0.75}Zr_{0.25}O₂ CATALYST

Atsadang Traitangwong

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University, and Institut Français du Pétrole

2014

I28370697

Thesis Title:	Autothermal Steam Reforming of Acetic acid:	
	Catalytic Activity and Stability of Ni/Ce0.75Zr0.25O2 catalyst	
By:	Atsadang Traitangwong	÷
Program:	Petroleum Technology	
Thesis Advisors:	Assoc.Prof. Thirasak Rirksomboon	
	Assoc.Prof. Vissanu Meeyoo	

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

Hanne

(Assoc.Prof. Thirasak Rirksomboon)

f10

(Assoc.Prof. Vissanu Meeyoo)

mach

(Assoc.Prof. Pramoch Rangsunvigit)

S. Perypanch

(Asst.Prof. Sitthiphong Pengpanich)

ABSTRACT

5573002063: Petroleum Technology Mr. Atsadang Traitangwong: Autothermal Steam Reforming of Acetic acid: Catalytic Activity and Stability of Ni/Ce_{0.75}Zr_{0.25}O₂ Catalyst. Thesis Advisors: Assoc. Prof. Thirasak Rirksomboon and Assoc. Prof. Vissanu Meeyoo 57 pp.
Keywords: Acetic acid/ Autothermal steam reforming/ Ni/ Ce_{0.75}Zr_{0.25}O₂/ Ceria/ Zirconia

Autothermal steam reforming of acetic acid was investigated over Ni/Ce_{0.75}Zr_{0.25}O₂ catalyst at atmospheric pressure with a gas hourly space velocity (GHSV) of 65,000 h⁻¹, using a continuous flow fixed-bed reactor by varying the oxygen-to-acetic acid ratio (0-0.4), oxygen-to-steam ratio (0.017-0.055), and temperature (550-700°C). Ce_{0.75}Zr_{0.25}O₂ support was prepared via urea-hydrolysis (sol-gel technique) followed by Ni (15wt %) impregnation. The catalysts were characterized by BET, XRD, H₂-TPR, XRF, TEM, SEM and TPO techniques. The results showed that hydrogen yield decreased with increasing oxygen-to-acetic acid molar ratio due to the oxidation reaction but oxygen helped reduce some carbon formation. The hydrogen yield was increased with decreasing oxygen-to-steam molar ratio; which resulted from the water gas shift reaction. It was also found that the - highest hydrogen yield and lowest C-C breakage conversion were attained at 650 °C. On stability testing found that autothermal steam reforming and steam reforming reaction exhibited similar deactivation trends but carbon deposition on the steam reforming reaction was found to be slightly greater than autothermal reforming

บทคัดย่อ

อัษฎางค์ ไตรตั้งวงศ์ : การรีฟอร์มมิ่งด้วยไอน้ำแบบอาศัยสมคุลความร้อนของกรดอะซิ ติก:การศึกษาความว่องไวในการเร่งปฏิกริยาและความเสถียรของตัวเร่งปฏิกริยานิกเกิลบนตัว รองรับซีเรียเซอร์โคเนีย (Autothermal Steam Reforming of Acetic acid: Catalytic Activity and Stability- of Ni/Ce_{0.75}Zr_{0.25}O₂ Catalyst.) อ. ที่ปรึกษา : รศ.คร. ธีรศักดิ์ ฤกษ์สมบูรณ์ และ รศ.คร. วิษณุ มีอยู่ 57 หน้า

การรีฟอร์มมิ่งด้วยไอน้ำแบบอาสัยสมดุลดวามร้อนของกรดอะซิดิกได้ทำบนด้วเร่ง Ni/Ce₀₇₅Zt₀₂₅O₂ที่ความดันบรรยากาศโดยมีเวลาในการทำปฏิกิริยา(GHSV)ที่ 65,000h ่โดยใช้ถัง ปฏิกรณ์แบบคงที่ ทำการปรับอุณหภูมิในช่วง 550 – 700 องศาเซลเซียส อัตราส่วนระหว่างไอน้ำ ต่อออกซิเจนในช่วง 0.017-0.055 และอัตราส่วนระหว่างออกซิเจนต่อกรดอะซิดิกในช่วง 0-0.4 ด้ว รองรับของตัวเร่งปฏิกริยาเดรียมโดยวิธีการโซลเจลโดยอาศัยปฏิกิริยาสลายตัวของยูเรีย การเดิม นิกเกิลลงบนด้วรองรับทำโดยวิธีการทำให้รุ่มโดยปริมาณโลหะนิเกิลคงที่ร้อยละ 15 ของน้ำหนัก ด้วเร่งปฏิกิริยา จากนั้นได้ศึกษาคุณลักษณะสมบัติของตัวเร่งปฏิกิริยาที่เตรียมได้โดยวิธี BET, H₁-TPR, SEM, XRD, XRF, และTPO ผลการศึกษาพบว่า ปริมาณไฮโดรเจนที่ได้ลดลงเมื่อทำการเพิ่ม อัดราส่วนระหว่างไอน้ำต่อออกซิเจนเนื่องจากเกิดปฏิกริยาออกซิเดชันแต่ออกซิเจนสามารถช่วย ลดปริมาณของคาร์บอนได้ ไฮโดรเจนที่ได้เพิ่มเมื่อลดอัตราส่วนระหว่างไอน้ำต่อออกซิเจน เนื่องจากเกิดปฏิกริยาปฏิกิริยาวอเตอร์ก๊าซซิป นอกจากนี้ยังให้ผลผลิตไฮโดรเจนมากที่สุดที่ อุณหภูมิ 650 องศาเซลเซียส ในการศึกษาความเสลียรของปฏิกริยาการรีฟอร์มมิ่งด้วยไอน้ำแบบ อาศัยสมดุลกวามร้อนและปฏิกริยาการรีฟอร์มมิ่งด้วยไอน้ำแบบอาศัยสมดุลความร้อนมี ปริมาณกล์ดภัณฑ์เท่าๆกันแต่ในปฏิกริยาการรีฟอร์มมิ่งด้วยไอน้ำแบบอาศัยสมดุลความร้อนมี

ACKNOWLEDGEMENTS

First of all, I would like to thank my advisors Assoc. Prof. Thirasak Rirksomboon and Assoc. Prof. Vissanu Meeyoo for encouragement, useful recommendations and kindly support.

My sincere thanks go to Asst. Prof. Pramoch Rangsunvigit and Asst. Prof. Sitthipong Pengpanich for giving me their valuable suggestion and being my thesis committee.

I would like to give my appreciation to colleagues and staff members at PPC and MUT for their support and assistance and to my friends at PPC for encouragement and cheerfulness.

I would like to express my sincere thanks to my family and my friends for their love, hearten, and understanding.

Finally, this thesis could have not been done without the financial supports and work places from the Petroleum and Petrochemical College; the Center of Excellence on Petrochemical, and Materials Technology, Thailand and Centre for Advanced Materials and Environmental Research, Mahanakorn University of Technology, Thailand.

TABLE OF CONTENTS

		PAGE
Title	e Page	i
Abs	tract (in English)	iii
Abs	tract (in Thai)	iv
Ack	nowledgements	- v
Tab	le of Contents	vi
List	of Tables	viii
List	of Figures	ix
СНАРТ	ER	
Ι	INTRODUCTION	1
ΙΙ	THEORETICAL BACKGROUND	
	AND LITERATURE REVIEW	3
III	EXPERIMENTAL	21
	3.1 Materials and Equipment	21
	3.1.1 Materials	21
	3.1.1.1 Gases	21
	3.1.1.2 Chemicals	21
	3.1.2 Equipment	21
	3.2 Experimental Procedures	22
	3.2.1 Catalyst Preparation	22
	3.2.2 Catalytic Characterization	22
	3.2.3 Experimental Setup	24
	3.2.4 Catalyst Testing	25
	3.2.5 Catalytic Activity Testing	25
	3.2.6 Steam Reforming Activity Measurement	26
	3.2.7 Coke Formation Studies	27

CHAPTER

IV	RESULTS AND DISCUSSION	28
	4.1 Catalyst Characterization	28
	4.1.1 Elemental Analyses by XRF	28
	4.1.2 Textural Properties of the catalysts	28
	4.1.3 Temperature-programmed Reduction by Hydrogen	30
	4.1.4 X-ray Diffraction (XRD)	31
-	4.1.5 Scanning Electron Microscopy (SEM)	32
	4.2 Catalyst Activity Testing	33
	4.2.1 Effects of Temperature	33
	4.2.2 Effects of Oxygen	35
	4.2.3 Effects of Steam	36
	4.3 Catalyst Stability Testing	38
- v	CONCLUSIONS AND RECCOMENDATIONS	41
	5.1 Conclusions	41
	5.2 Recommendations	41
	REFERENCES	43
	APPENDICES	46
	Appendix A Experimental data of gas calibration for GC-14B	46
	Appendix B Calibration curve of Brooks 5850E mass flow	
	controllers	52
	Appendix C Calibration curve of Eldex ReciPro Liquid Metering	
	Pump	52
	Appendix D Experimental data of catalytic activity tests	55

CURRICULUM VITAE

.

57

-

÷

LIST OF TABLES

TABLE		PAGE
2.1	Composition of bio oil aqueous phase	5
4.1	Elemental analysis results for the catalysts synthesized	28
4.2	Textural properties	_ 28
D1	Catalytic activity test of blank test on autothermal steam	
	reforming at $T = 650$ °C, S/C ratio = 6, ATR condition and	
	$GHSV = 65,000 h^{-1}$	55
D2	Catalytic activity test of autothermal steam reforming at	4
	different temperature, S/C ratio = 6, ATR conditions and	
	$GHSV = 65,000 \text{ h}^{-1}$	55
D3	Catalytic activity test at different oxygen-to-acetic acid	
	molar ratio, S/C ratio = 6, ATR conditions and $GHSV =$	
	65,000 h ⁻¹	56
D4	Catalytic activity test of autothermal steam reforming at	
	different steam-to -carbon ratio at 650 °C, ATR conditions	
	and $GHSV = 65,000 \text{ h}^{-1}$	56

-

viii

-

.

•

LIST OF FIGURES

. .

FIGURE PA		PAGE
3.1	Schematic of the experimental setup for steam reforming of	
	acetic acid	25
4.1	Pore size distribution of $Ce_{0.75}Zr_{0.25}O_2$	29
4.2	Pore size distribution of 15wt% Ni/Ce _{0.75} Zr _{0.25} O ₂	29
4.3	H_2 -TPR profiles for the catalysts with a heating rate of 10	-
	•C/min, a reducing gas containing 5% H ₂ in Ar with a flow	
	rate of 50 ml/min patterns of (a) $Ce_{0.75}Zr_{0.25}O_2$ support and	
	(b) 15wt% Ni/Ce _{0.75} Zr _{0.25} O ₂ catalyst	30
4.4	XRD patterns of (a) $Ce_{0.75}Zr_{0.25}O_2$ support and (b) 15wt% Ni/	
-	Ce _{0.75} Zr _{0.25} O ₂ catalyst	31
4.5	SEM images of support and Ni-doped catalyst with the reflux time	
	= 120 h, and calcined at 500°C: (a) $Ce_{0.75}Zr_{0.25}O_2$ and (b) 15wt%	
	$Ni/Ce_{0.75}Zr_{0.25}O_2$	32
4.6	C-C breakage conversion and products distribution over	
	15wt%Ni/Ce _{0.75} Zr _{0.25} O ₂ catalyst in relation to temperature,	
	$S/C = 6$, ATR condition and $GHSV = 65,000 h^{-1}$.	33
4.7	C-C breakage conversion and products distribution over	1
-	15wt%Ni/Ce _{0.75} Zr _{0.25} O ₂ catalyst in relation to oxygen-to-	
-	acetic acid S/C=6, molar ratio, ATR conditions and GHSV =	
	65,000 h ⁻¹	35
4.8	Total amount of carbon deposited on	
	15wt%Ni/Ce _{0.75} Zr _{0.25} O ₂ catalysts in relation to oxygen-to-	
	acetic acid molar ratio, TOS = 3h, ATR conditions and GHSV	
	$= 65,000 \text{ h}^{-1}$	35
4.9	C-C breakage conversion and products distribution over	
	15wt%Ni/Ce _{0.75} Zr _{0.25} O ₂ catalysts in relation to oxygen-to-	
	steam molar ratio, ATR condition and $GHSV = 65,000 \text{ h}^{-1}$	36

-

FIGURE

-

PAGE

14.1

4.10	Total amount of carbon deposited on 15wt%Ni/Ce _{0.75} Zr _{0.25} O ₂	
	catalyst in relation to oxygen-to-steam molar ratio, TOS = 3h,	
	ATR conditions and GHSV = $65,000 \text{ h}^{-1}$	37
4.11	Product distribution from autothermal steam reforming stability	
-	test for 150 h, S/C=6, ATR conditions and GHSV = $65,000 \text{ h}^{-1}$	38
4.12	Product distribution from steam reforming stability test for 150 h,	
	S/C=6, ATR conditions and GHSV = $65,000 \text{ h}^{-1}$	38
4.13	Total amount of carbon deposited on catalysts via stability	
	testing on steam reforming and autothermal steam reforming	
	at 150 h, S/C=6, ATR conditions and GHSV = $65,000 \text{ h}^{-1}$	- 39
5.1	Catalyst after activity testing	42
Al	Relationship between area and concentration of nitrogen	46
A2	Relationship between area and concentration of nitrogen	47
A3	Relationship between area and concentration of hydrogen	47
A4	Relationship between area and concentration of hydrogen	48
A5	Relationship between area and concentration of carbon	
	dioxide	48
A6	Relationship between area and concentration of carbon	
	monoxide	49
A7	Relationship between area and concentration of carbon	
	monoxide	49
A8	Relationship between area and concentration of methane	50
A9	Relationship between area and concentration of methane	50
A10	Relationship between area and concentration of oxygen	51
A11	Relationship between area and concentration of oxygen	51
Bl	Relationship between set point and volumetric flow rate of	
	nitrogen	52
B2	Relationship between set point and volumetric flow rate of	
÷	oxygen	52

B3	Relationship between set point and volumetric flow rate of	
	hydrogen	53
C1	Relationship between volume set point and volumetric flow	
	rate of liquid pumps	54

-

-

÷

-