REFERENCES

- Basagiannis, A.C., and Verykios, X.E. (2006) Reforming reactions of acetic acid on nickel catalysts over a wide temperature range <u>Applied Catalysis A:</u> <u>General.</u> 308, 182-193.
- Basagiannis, A.C., and Verykios, X.E. (2007) Catalytic steam reforming of acetic acid for hydrogen production. <u>International Journal of Hydrogen⁻Energy</u>, 32, 3343-3355.
- Dantas, S.C., Escritori, J.C., Soares, R.R. and Hori, C.E. (2007) Ni/CeZrO₂-based catalysts for H₂ production. <u>Studies in Surface Science and Catalysis</u> 167, 487-492.
- Dantas, S.C., Escritori, J.C., Soares, R.R. and Hori, C.E. (2010) Effect of different promoters on Ni/CeZrO2 catalyst for autothermal reforming and partial oxidation of methane. <u>Chemical Engineering Journal</u> 156(2), 380-387.
- Dantas, S.C., Resende, K.A., Rossi, R.L., Assis, A.J. and Hori, C.E. (2012) Hydrogen production from oxidative reforming of methane on supported nickel catalysts: An experimental and modeling study. <u>Chemical</u> <u>Engineering Journal</u> 197(0), 407-413.
- De Lima, S.M., Da Cruz, I.O., Jacobs, G., Davis, B.H., Mattos, L.V. and Noronha, F.B. (2008) Steam reforming, partial oxidation, and oxidative steam reforming of ethanol over Pt/CeZrO2 catalyst. <u>Journal of Catalysis</u> 257(2), 356-368.
- Enger, B.C., Lødeng, R., and Holmen, A. (2008) A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts. <u>Applied Catalysis A: General</u>, 346, 1-27.
- Evans, R.J, and Milne, T.A. (1987) Molecular characterization of the pyrolysis of biomass. Fundamental Energy Fuel 1(2), 123
- Krumpelt, M., Krause, T.R., Carter, J.D., Kopasz, J.P. and Ahmed, S. (2002) Fuel processing for fuel cell systems in transportation and portable power applications. <u>Catalysis Today</u> 77(1–2), 3-16.

- Lisboa, J.S., Terra, L.E., Silva, P.R.J., Saitovitch, H. and Passos, F.B. (2011) Investigation of Ni/Ce–ZrO2 catalysts in the autothermal reforming of methane. Fuel Processing Technology 92(10), 2075-2082.
- Medrano, J.A., Oliva, M., Ruiz, J., Garcia, L. and Arauzo, J. (2008) Catalytic steam reforming of acetic acid in a fluidized bed reactor with oxygen addition. <u>International Journal of Hydrogen Energy</u> 33(16), 4387-4396.
- Otsuka, K., Wang, Y., Nakamura, M. (1999) Direct conversion of methane to synthesis gas through gas-solid reaction using CeO₂-ZrO₂ solid solution at moderate temperature. <u>Applied Catalysis A:General</u>, 183, 317-324.
- Qi, A., Wang, S., Fu, G., Ni, C. and Wu, D. (2005) La-Ce-Ni-O monolithic perovskite catalysts potential for gasoline autothermal reforming system. <u>Applied Catalysis A: General</u> 281(1-2), 233-246.
- Ruiz, J.A.C., Passos, F.B., Bueno, J.M.C., Souza-Aguiar, E.F., Mattos, L.V. and Noronha, F.B. (2008) Syngas production by autothermal reforming of methane on supported platinum catalysts. <u>Applied Catalysis A: General</u> 334(1-2), 259-267.
- Ruiz, J.A.C., Passos, F.B., Bueno, J.M.C., Souza-Aguiar, E.F., Mattos, L.V. and Noronha, F.B. (2008) Syngas production by autothermal reforming of methane on supported platinum catalysts. <u>Applied Catalysis A: General</u> 334(1-2), 259-267.
- Sato, K., Nagaoka, K., Nishiguchi, H. and Takita, Y. (2009) n-C4H10 autothermal reforming over MgO-supported base metal catalysts. <u>International Journal</u> <u>of Hydrogen Energy</u> 34(1), 333-342.
- Srisiriwat, N., Therdthianwong, S. and Therdthianwong, A. (2009) Oxidative steam reforming of ethanol over Ni/Al2O3 catalysts promoted by CeO2, ZrO2 and CeO2–ZrO2. <u>International Journal of Hydrogen Energy</u> 34(5), 2224-2234.
- Takeguchi, T., Furukawa, S., Inoue, M. (2001). Hydrogen Spillover from NiO to the Large Surface Area CeO₂-ZrO₂ Solid Solutions and Activity of the NiO/CeO₂-ZrO₂ Catalysts for Partial Oxidation of Methane. Journal of <u>Catalysis</u>, 201, 14-24.
- Thaicharoensutcharittham, S., Meeyoo, V., Kitiyanana, B., Rangsunvigita, P., and Rirksomboon, T. (2011) Reforming reactions of acetic acid on nickel

13

catalysts over a wide temperature range. <u>Applied Catalysis A: General</u>, 308, 182–193.

- Trane, R., Dahl, S., Skjøth-Rasmussen, M.S., and Jensen, A.D. (2012) Review Catalytic steam reforming of bio-oil. <u>Journal of hydrogen energy</u>, 37, 6447-6472
- Trimm, D.L. (1997) Coke formation and minimisation during steam reforming reactions, <u>Catalysis Today</u>, 37,233-238

-

-

-

APPENDICES

Appendix A Experimental data of gas calibration for GC-14B

Condition: Detector Current 120 mA

Temperature	°C	Column	Model
Column	50	Alltech	CTR I
Injector	120-	Supelco	Carboxen
Detector	120		
TCD-T	120		
Pressure	kPa		-
Carrier Pressure (P)	500		
Carrier Pressure (M)	450	1	
TCD-Ref	120		

1. Nitrogen

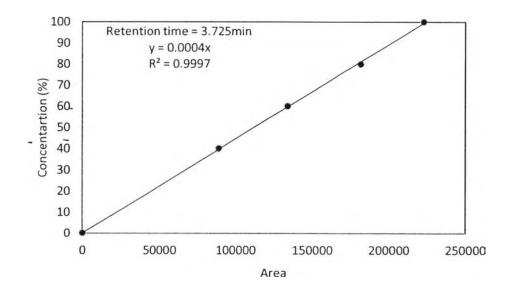


Figure A1 Relationship between area and concentration of nitrogen.

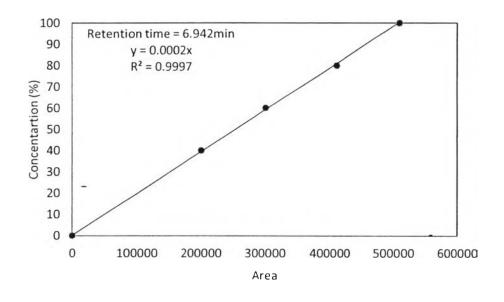


Figure A2 Relationship between area and concentration of nitrogen.

2. Hydrogen

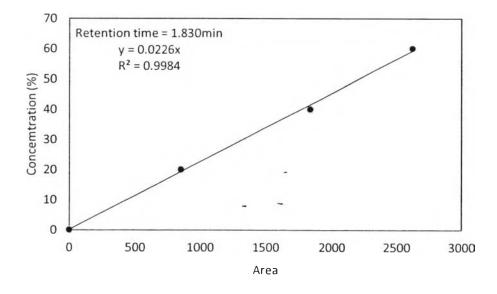


Figure A3 Relationship between area and concentration of hydrogen.

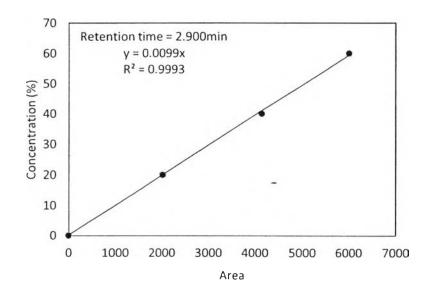


Figure A4 Relationship between area and concentration of hydrogen.

3. Carbon Dioxide

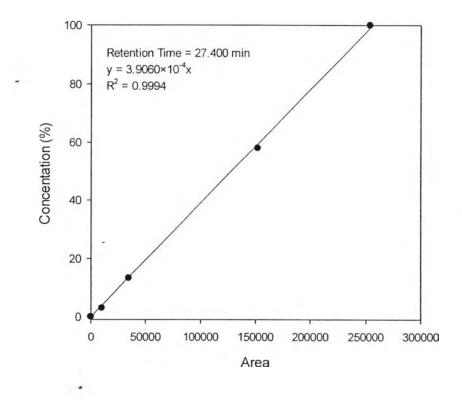


Figure A5 Relationship between area and concentration of carbon dioxide.

4. Carbon monoxide

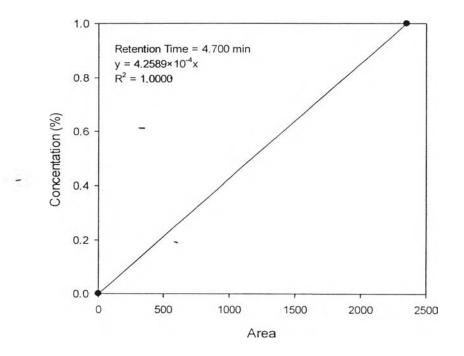


Figure A6 Relationship between area and concentration of carbon monoxide.

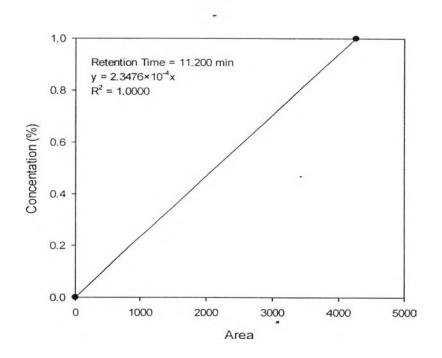


Figure A7 Relationship between area and concentration of carbon monoxide.

5. Methane

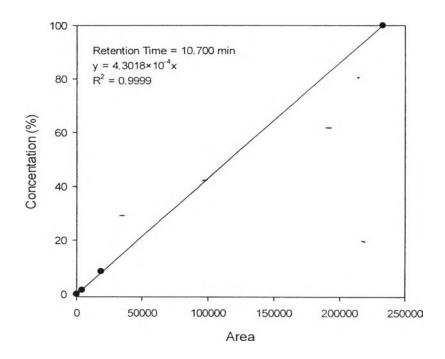


Figure A8 Relationship between area and concentration of methane.

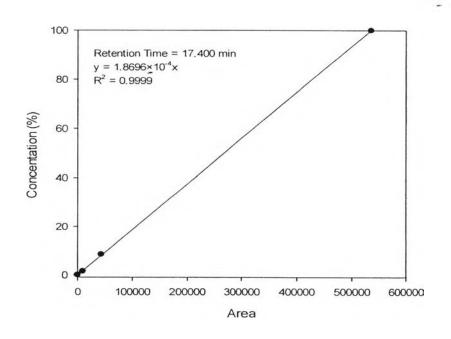


Figure A9 Relationship between area and concentration of methane.

6. Oxygen

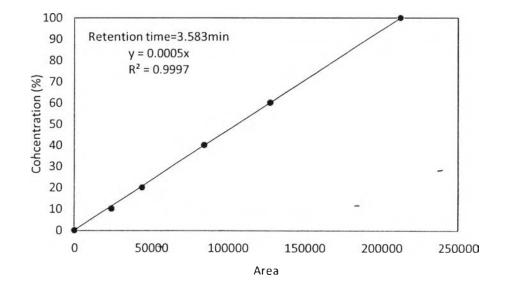


Figure A10 Relationship between area and concentration of oxygen.

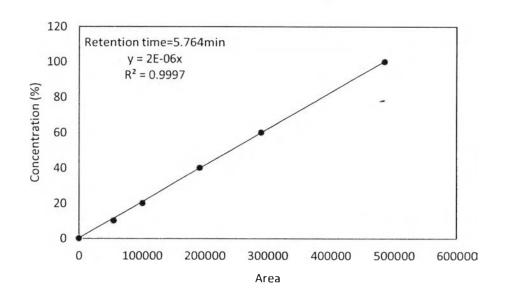


Figure A11 Relationship between area and concentration of oxygen.

51

Appendix B Calibration curve of Brooks 5850E mass flow controllers

1. Nitrogen

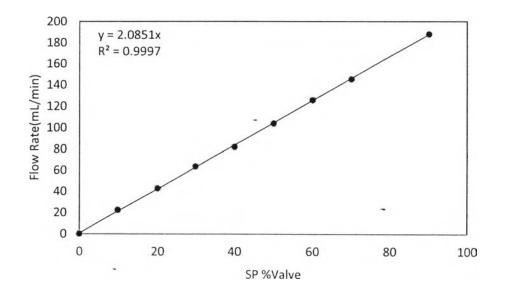
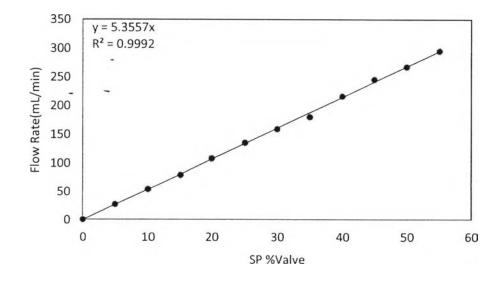
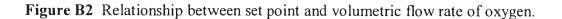




Figure B1 Relationship between set point and volumetric flow rate of nitrogen.

2. Oxygen

3. Hydrogen

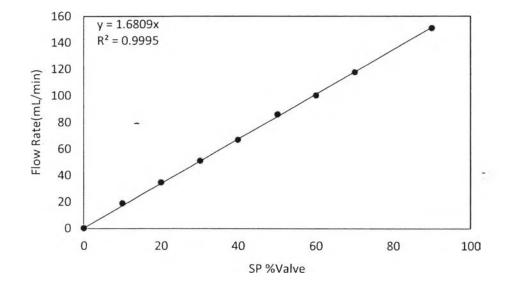
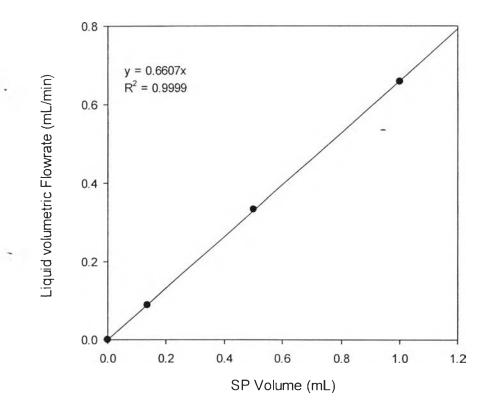



Figure B3 Relationship between set point and volumetric flow rate of hydrogen.

Appendix C Calibration curve of Eldex ReciPro Liquid Metering Pumps

Figure C1 Relationship between volume set point and volumetric flow rate.

Appendix D Experimental data of catalytic activity tests

Table D1 Catalytic activity test of blank test on autothermal steam reforming at $T = 650^{\circ}$ C, S/C ratio = 6, ATR condition and GHSV = 65,000 h⁻¹

Catalyst	Blank
Yield $H_2(\%)$ –	0
Yield CO (%)	0
Yield CO ₂ (%)	0
Yield CH ₄ (%)	0
C-C Breakage Conversion(%)	0

Table D2 Catalytic activity test of autothermal steam reforming at differenttemperature, S/C ratio = 6, ATR condition and GHSV = $65,000 \text{ h}^{-1}$

Temperature (°C)	550	600	650	700
Yield $H_2(\%)$	40.21	47.76	71.16	70.76
Yield CO (%)	6.61	6.9	12.4	15.31
Yield CO ₂ (%)	41.88	43.67	56.03	56.91
Yield CH ₄ (%)	0.46	0.99	1.49	1.85
C-C Breakage Conversion(%)	48.95	51.56	69.92	74.07

Table D3 Catalytic activity test at different oxygen-to-acetic acid molar ratio, S/Cratio = 6, T = 650°C, ATR condition and GHSV = 65,000 h^{-1}

.

Oxygen/Acetic acid Molar ratio	0	0.2	0.3	0.4
Yield H2 (%)	77.81	75.54	72.6	60.07
Yield CO (%)	11.58	12.36	11.96	9.02
Yield CO2 (%)	50.3	52.6	- 54.03	58.19
Yield CH4 (%)	1.81	1.29	1.33	1.36
C-C Breakage Conversion(%)	-63.69	66.25	67.32	68.57
Amount of carbon deposit (%wt)	18.08	16.85	14.98	12.82

Table D4 Catalytic activity test of autothermal steam reforming at different oxygen-to - steam ratio at 650 °C, ATR condition and GHSV = 65,000 h^{-1}

Oxygen/Steam Molar ratio	0.017	0.027	0.055
Yield $H_2(\%)$	72.68	71.16	68.33
Yield CO (%)	10.43	12.4	14.02
Yield CO ₂ (%)	64.68	56.03	48.33
Yield CH ₄ (%)	1.86	1.49	1.98
C-C Breakage Conversion(%)	76.97	69.92	64.33
Amount of carbon deposit (%wt)	8.01	14.79	18.11

-

-

CURRICULUM VITAE

Name:	Mr. Atsadang Traitangwong
Date of Birth:	June 7, 1990
Nationality:	Thai

University Education:

2008-2012 Bachelor Degree of Chemical Engineering, King Mongkut's Institute of Technology Ladkrabang, Thailand

2012-2014 Master of Science in Petroleum Technology, the Petroleum and Petrochemical College, Chulalongkorn University, Thailand

Working Experience:

March-May 2011

Position: Company name:

Trainee (2 months) Chevron Thailand Exploration and Production Ltd, Bangkok, Thailand

Proceedings:

Traitangwong, A., Rirksomboon, T., and Meeyoo, V. (2014, April 22) Autothermal Reforming of Oxygenated Hydrocarbon Mixture: Catalytic Activity and Stability. <u>Proceedings of 5th Research Symposium on Petrochemical and Materials Technology</u> <u>and 20th PPC Symposium on Petroleum. Petrochemicals and Polymers.</u> Bangkok, Thailand.