REFERENCES

- Akhtar, M.N., Al-Yassir, N., Al-Khattaf, S., and Cejka, J. (2012) Aromatization of alkanes over Pt promoted conventional and mesoporous gallosilicates of MEL zeolite. <u>Catalysis Today</u>, 179(1), 61-72.Ali, S.A., Ogunronbi, K.E. and
- Al-Khattaf, S.S. (2013) Kinetics of dealkylation-transalkylation of C9 alkylaromatics over zeolites of different structures. <u>Chemical Engineering</u> Research and Design, 91(12), 2601-2616.
- Allen, L.C. (1989) Electronegativity is the average one-electron energy of the valence-shell electrons in ground-state free atoms. <u>Journal of the American</u> <u>Chemical Society</u>, 111(25), 9003-9014.
- Anunziata, O.A., Eimer, G.A., and Pierella, L.B. (1999) Ethane conversion into aromatic hydrocarbons over molybdenum-containing MEL zeolites. <u>Applied</u> <u>Catalysis A: General</u>, 182(2), 267-274.
- Barthos, R., Bansagi, T., Suli Zakar, T., and Solymosi, F. (2007) Aromatization of methanol and methylation of benzene over Mo2C/ZSM-5 catalysts. <u>Journal</u> <u>of Catalysis</u>, 247(2), 368-378.
- Beck, J.S. and Schlenker, J.D. (1993) U.S. Patent 5 213 786.
- Bi, J., Guo, X., Liu, M., and Wang, X. (2010) High effective dehydration of bioethanol into ethylene over nanoscale HZSM-5 zeolite catalysts. <u>Catalysis</u> <u>Today</u>, 149(1-2), 143-147.
- Carpenter, J.R., Yeh. S., Zones, S.I., and Davis, M.E. (2010) Further investigations on Constraint Index testing of zeolites that contain cages. <u>Journal of</u> <u>Catalysis</u>, 269(1), 64-70.
- Chen, C.Y., Liang, A.J.B., Miller, S.J., and Ziemer, J.N. (2013) U.S. Patent 8 471 083.
- Chu, P., Woodbury and N.J (1973) U.S. Patent 3 709 979.
- Clark, J. "THE MANUFACTURE OF ETHANOL." Chemguide. 2002. 10 August 2013 < http://www.chemguide.co.uk/mechanisms/elim/dhethanol.html>
- Cole, J.A., Bittner, J.D., Longwell, J.P., and Howard, J.B. (1984) Formation mechanisms of aromatic compounds in aliphatic flames. <u>Combustion and Flame</u>, 56(1), 51-70.

- Costa, E., Uguina, A., Aguado, J., and Hernandez, P.J. (1985) Ethanol to gasoline process: effect of variables, mechanism, and kinetics. <u>Industrial & Engineering Chemistry Process Design and Development</u>, 24(2), 239-244.
- Craciun, I., Reyniers, M.-F., and Marin, G.B. (2007) Effects of acid properties of Y zeolites on the liquid-phase alkylation of benzene with 1-octene: A reaction path analysis. Journal of Molecular Catalysis A: Chemical, 277(1-2), 1-14.
- Da, Z., Han, Z., Magnoux, P., and Guisnet, M. (2001) Liquid-phase alkylation of toluene with long-chain alkenes over HFAU and HBEA zeolites. <u>Applied</u> <u>Catalvsis A: General</u>,219(1-2), 45-52.
- de Klerk, A. (2008) Hydroprocessing peculiarities of Fischer-Tropsch syncrude. <u>Catalysis Today</u>, 130(2-4), 439-445.
- Ding, X., Geng, S., Li, C., Yang, C., and Wang, G. (2009) Effect of acid density of HZSM-5 on the oligomerization of ethylene in FCC dry gas. <u>Journal of</u> <u>Natural Gas Chemistry</u>, 18(2), 156-160.
- Dumitriu, D., Bârjega, R., L. Frunza, D. Macovei, T. Hu, Y. Xie, V.I. Pârvulescu, and Kaliaguine, S. (2003) BiOx clusters occluded in a ZSM-5 matrix: preparation, characterization, and catalytic behavior in liquid-phase oxidation of hydrocarbons. Journal of Catalysis, 219, 337-351.
- Furumoto, Y., Harada, Y., Tsunoji, N., Takahashi, A., Fujitani, T., Ide, Y., Sadakane, M., and Sano, T. (2011) Effect of acidity of ZSM-5 zeolite on conversion of ethanol to propylene. <u>Applied Catalysis A: General</u>, 399(1-2), 262-267.
- Goto, D., Harada, Y., Furumoto, Y., Takahashi, A., Fujitani, T., Oumi, Y., Sadakane,
 M., and Sano, T. (2010) Conversion of ethanol to propylene over HZSM-5
 type zeolites containing alkaline earth metals. <u>Applied Catalysis A: General</u>, 383(1-2), 89-95.
- Green Plains Renewable Energy, I. (2007) ANNUAL REPORT PURSUANT TO SECTION 13 OR 15(D) OF THE SECURITIES EXCHANGE ACT OF 1934.
- Gu, Y., Cui, N., Yu, Q., Li, C., and Cui, Q. (2012) Study on the influence of channel structure properties in the dehydration of glycerol to acrolein over Hzeolite catalysts. <u>Applied Catalysis A: General</u>, 429-430(0), 9-16.

- Güell, B.M., Bugge, M., Kempegowda, R.S., George, A., and Paap, S.M. (2012) Benchmark of conversion and production technologies for synthetic biofuels for aviation, SINTEF Energy Research: 93.
- Heinichen, H.K., and Holderich, W.F. (1999) Acylation of 2-Methoxynaphthalene in the Presence of Modified Zeolite HBEA. <u>Journal of Catalysis</u>,185(2), 408-414.
- Ian Hunt. "Diels-Alder Reaction." Conjugation in Alkadienes and Allylic Systems. 2006. 17 August 2013 http://www.chem.ucalgary.ca/courses/351/Carey5th/Ch10/ch10-5.html.
- Inaba, M., Murata, K., Saito, M., and Takahara, I. (2006) Ethanol conversion to aromatic hydrocarbons over several zeolite catalysts <u>Reaction Kinetics and</u> <u>Catalysis Letters</u>, 88(1), 135-141.
- Johansson, R., Hruby, S., Rass-Hansen, J., and Christensen, C. (2009) The Hydrocarbon Pool in Ethanol-to-Gasoline over HZSM-5 Catalysts. <u>Catalysis</u> Letters, 127(1-2), 1-6.
- Jones, H.E., Stahly, E.E., and Corson, B.B. (1949) Butadiene from Ethanol. Reaction Mechanism. Journal of the American Chemical Society, 71(5), 1822-1828.
- Lallemand, M., Finiels, A., Fajula, F., and Hulea, V. (2006) Catalytic oligomerization of ethylene over Ni-containing dealuminated Y zeolites. Applied Catalysis A: General, 301(2), 196-201.
- Li, B., Li, S., Wang, Y., Li, N., Liu, X., and Lin, B. (2005) Study on antimony oxide self-assembled inside HZSM-5. Journal of Solid State Chemistry, 178(4), 1030-1037.
- Li, Y., Cheng, J., Song, J., Alonso, J.A., Fernández-Díaz, M.T., and Goodenough,
 J.B. (2012) Characterization of the Double Perovskite Ba2BixSc0.2Co1.8xO6-δ (x = 0.1, 0.2). Chemistry of Materials. 24(21), 4114-4122.
- Lu, J. and Liu, Y. (2011) Effects of P content in a P/HZSM-5 catalyst on the conversion of ethanol to hydrocarbons. <u>Journal of Natural Gas Chemistry</u>, 20(2), 162-166.

- Madeira, F.F., Gnep, N.S., Magnoux, P., Maury, S., and Cadran, N. (2009) Ethanol transformation over HFAU, HBEA and HMFI zeolites presenting similar Brønsted acidity. <u>Applied Catalysis A: General</u>, 367(1–2), 39-46.
- Marques, J.P., Gener, I., Lopes, J.M., Ramôa Ribeiro, F., and Guisnet, M. (2005) n-Heptane cracking on dealuminated HBEA zeolites. <u>Catalysis Today</u>,107-108(0), 726-733.
- Meier, W.M., Olson, D.H., and Baerlocher, C. (2001) the Atlas of Zeolite Structure Types.
- Meng, T., Mao, D., Guo, Q., and Lu, G. (2012) The effect of crystal sizes of HZSM-5 zeolites in ethanol conversion to propylene. <u>Catalysis</u> <u>Communications</u>, 21(0), 52-57.
- Moulder, J.F., Stickle; W.F., Sobol, P.E., and Bomben, k.B. (1992) <u>Handbook of X-</u> ray photoelectron spectroscopy: Perkin-Elmer corporation.
- Nowakowski, D.J., Woodbridge, C.R., and Jones, J.M. (2008) Phosphorus catalysis in the pyrolysis behaviour of biomass. <u>Journal of Analytical and Applied</u> <u>Pyrolysis</u>, 83(2), 197-204.
- Park, J.W. and Seo, G. (2009) IR study on methanol-to-olefin reaction over zeolites with different pore structures and acidities. <u>Applied Catalysis A: General</u>, 356(2), 180-188.
- Pasomsub, S. (2013) Bio-ethanol dehydration to liquid hydrocarbons. M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand.
- Ramesh, K., Hui, L.M., Han, Y.-F. and Borgna, A. (2009) Structure and reactivity of phosphorous modified H-ZSM-5 catalysts for ethanol dehydration. <u>Catalysis Communications</u>, 10(5), 567-571.
- Ratananukul, P. and Tuntulani, T. (2006) <u>Chemistry 2 (group S representative</u> <u>element, group P representative element. Lantanide and actinide transition</u> <u>and solids</u>).
- Reddy, J.K., Motokura, K., Koyama, T.-r., Miyaji, A., and Baba, T. (2012) Effect of morphology and particle size of ZSM-5 on catalytic performance for ethylene conversion and heptane cracking. <u>Journal of Catalysis</u>, 289(0), 53-61.

- Resasco, D.E. (2000) <u>Dehydrogenation by Heterogeneous Catalysts</u>. School of Chemical Engineering and Materials Science, University of Oklahoma.
- Ribeiro, F.R., Alvarez, F., Henriques, C., Lemos, F., Lopes, J.M., and Ribeiro, M.F.
 (1995) Structure-activity relationship in zeolites. <u>Journal of Molecular</u> <u>Catalysis A: Chemical</u>, 96(3), 245-270.
- Richard, M.G. "First Cellulosic Ethanol Biorefinery in the U.S. Opens." Treehuger. 2008. 17 August 2013 http://www.treehugger.com/clean-technology/first-cellulosic-ethanol-biorefinery-in-the-us-opens.html.
- Sad, M.E., Padro, C.L., and Apesteguia, C.R. (2010) Study of the phenol methylation mechanism on zeolites HBEA, HZSM5 and HMCM22. Journal of Molecular Catalysis A: Chemical, 327(1-2), 63-72.
- Satake, M. and Iqbal, S.A. (1995) Chemistry of p-block elements, Discovery publishing house.
- Sheng, Q., Ling, K., Li, Z., and Zhao, L. (2013) Effect of steam treatment on catalytic performance of HZSM-5 catalyst for ethanol dehydration to ethylene. <u>Fuel Processing Technology</u>, 110(0), 73-78.
- Takahashi, A., Xia, W., Nakamura, I., Shimada, H., and Fujitani, T. (2012) Effects of added phosphorus on conversion of ethanol to propylene over ZSM-5 catalysts. Applied Catalysis A: General, 423-424(0), 162-167.
- Talukdar, A.K., Bhattacharyya, K.G., and Sivasanker, S. (1997) HZSM-5 catalysed conversion of aqueous ethanol to hydrocarbons. <u>Applied Catalysis A:</u>
 <u>General</u>, 148(2), 357-371.
- Van Vu, D., Miyamoto, M., Nishiyama, N., Egashira, Y., and Ueyama, K. (2006)
 Selective formation of para-xylene over H-ZSM-5 coated with polycrystalline silicalite crystals. Journal of Catalysis, 243(2), 389-394.
 - Vanoye, L., Favre-Réguillon, A., Munno, P., Rodríguez, J.F., Dupuy, S., Pallier, S.,
 Pitault, I., and De Bellefon, C. (2013) Methanol dehydration over commercially available zeolites: Effect of hydrophobicity. <u>Catalysis Today</u>, (0).
 - Varvarin, A.M., Khomenko, K.M., and Brei, V.V. (2013) Conversion of n-butanoto hydrocarbons over H-ZSM-5, H-ZSM-11, H-L and H-Y zeolites. <u>Fuel</u>, 106(0), 617-620.

- Viswanadham, N., Saxena, S.K., Kumar, J., Sreenivasulu, P., and Nandan, D. (2012) Catalytic performance of nano crystalline H-ZSM-5 in ethanol to gasoline (ETG) reaction. <u>Fuel</u>, 95(0), 298-304.
- Wongwanichsin, P. (2013) Modified SAPO-34 for dehydration of Bio-ethanol toLight Olefins in Comparison with KOH-Treated HZSM-5. M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand.
- Xue, N., Chen, X., Nie, L., Guo, X., Ding, W., Chen, Y., Gu, M., and Xie, Z. (2007)
 Understanding the enhancement of catalytic performance for olefin cracking: Hydrothermally stable acids in P/HZSM-5. Journal of Catalysis, 248(1), 20-28.
- Yuan, J.-J. and Gevert, B.S. (2004) Alkylation of benzene with ethanol over ZSM-5 catalyst with different SiO₂ /Al₂O₃ ratios. <u>Indian Journal of Chemical</u>
 <u>Technology</u>, 11, 337-345.
- Zaitseva, G. and Gushikem, Y. (2002) Antimony (V) Oxide Adsorbed on a Silica-Zirconia Mixed Oxide Obtained by the Sol-Gel Processing Method: Preparation and Acid Properties. <u>Journal of the Brazilian Chemical</u> <u>Society</u>,13, 611-617.
- Zăvoianu, R., Urdă, A., Bârjega, R., and Angelescu, E. (2003) Comparison
 Between the Aromatisation of C4 Hydrocarbons on Ga- and Sb-Modified
 ZSM-5 Zeolites Prepared by Different Techniques. <u>Prog. cat.</u>, 12(0), 69.82.
- Zhang, L., Liu, H., Li, X., Xie, S., Wang, Y., Xin, W., Liu, S., and Xu, L. (2010)
 Differences between ZSM-5 and ZSM-11 zeolite catalysts in 1-hexene aromatization and isomerization. Fuel Processing Technology, 91(5), 44
- Zhang, L., Wu, J., Chen, F., Li, X., Schoenung, J.M., and Shen, Q. (2013) Spark plasma sintering of antimony-doped tin oxide (ATO) nanoceramics with high density and enhanced electrical conductivity. <u>Journal of Asian Ceramic Societies</u>, 1(1), 114-119.

APPENDICES

Appendix A Scanning Electron Microscopy Micrographs

TM3000_0116

NL D5.0 x15k 5.0 um

Figure A1 SEM image of HZ11(75) (15.0 kV×10.0k).

Figure A2 SEM image of P/HZ11(75) (15.0 kV×10.0k).

Figure A3 SEM image of Sb/HZ11(75) (15.0 kV×10.0k).

TM3000_0123

NL D5.3 x9.0k 10 um

Figure A4 SEM image of Bi/HZ11(75) (15.0 kV×10.0k).

Figure A5 SEM image of HZ5(30) (15.0 kV×10.0k).

Figure A6 SEM image of HZ5(80) (15.0 kV×10.0k).

. . .

Figure A7 SEM image of HBeta(27) (15.0 kV×10.0k).

Figure A8 SEM image of HY(30) (15.0 kV×10.0k).

Appendix B Product Distribution and Product Yield Calculations

$$Yield (wt \%) = \frac{Total weight of any products}{Total weight of converted bioethanol} \times 100$$

 Table B1
 Product distribution and product yields from HZ5(30), P/HZ5(30),

 Sb/HZ5(30), and Bi/HZ5(30) catalysts

Catalyst	HZ5(30)	P/HZ5(30)	Sb/HZ5(30)	Bi/HZ5(30)
Ethanol conversion (wt %)	99.5	99.0	99.3	97.8
Feed ethanol (ml/h)	2.00	2.00	2.00	2.00
Feed ethanol (ml)	16.6	17.5	17.5	17.7
Feed ethanol (g)*	13.1	13.8	13.8	14.0
Converted ethanol (g)	13.1	13.7	13.7	13.7
Product distribution (g)				
Oil	0.92	0.48	1.55	2.56
Gas	9.64	9.60	10.3	8.0
Water	2.49	3.63	1.85	3.09
Other**	0.06	0.13	0.10	_ 0.31
Product yield (wt %)				
Oil -	7.07	3.52	11.3	18.7
Gas	73.9	70.0	75.2	58.6
Water	19.1	26.4	13.5	22.6

*Ethanol concentration is 99.5 v/v %

**Unconverted bio-ethanol

-

.

Catalyst	HBeta(27)	P/HBeta(27)	Sb/HBeta(27)	Bi/ HBeta(27)	
Ethanol conversion (wt %)	96.7	99.1	98.5	99.7	
Feed ethanol (ml/h)	2.00	2.00	2.00	2.00	
Feed ethanol (ml)	16.9	16.0	17.3	16.6	
Feed ethanol (g)*	13.3	12.6	13.7	13.1	-
 Converted ethanol (g)	12.9	12.5	13.5	13.1	
			-		
Product distribution (g)					
Oil	0.21	0.55	0.68	0.62	
Gas -	10.5	9.71	9.52	9.30	
Water	2.13	2.23	3.27	3.14	
Other**	0.44	0.12	0.20	0.04	
Product yield (wt %)					
Oil	1.60	4.43	5.06	4.74	
Gas	80.7	70.9	69.4	68.0	
Water	16.3	16.3	23.9	23.0	

Table B2	Product	distribution and	l product yields f	rom HB	eta(27),	P/HBeta(2	!7),
Sb/HBeta(27), and	Bi/HBeta(27) c	atalysts				

*Ethanol concentration is 99.5 v/v %

**Unconverted bio-ethanol

.

-

.

-

Catalyst	HY(30)	P/HY(30)	Sb/HY(30)	Bi/HY(30)
Ethanol conversion (wt %)	99.5	99.0	99.3	97.8
Feed ethanol (ml/h)	2.00	2.00	2.00	2.00
Feed ethanol (ml)	17.0	17.2	17.2	15.6
Feed ethanol (g)*	13.4	13.6	13.6	12.3
Converted ethanol (g)	13.4	13.5	13.5	12.1
Product distribution (g)				
Oil	0.46	0.48	0.62	0.72
Gas	11.1	11.6 -	10.4	8.79
Water	1.79	1.36	2.49	2.56
Other**	0.07	0.13	0.10	0.28
Product yield (wt %)				
Oil	3.47	3.55	4.62	6.00
Gas	85.0	84.9	75.7	64.3
Water	13.7	9.9	18.2	18.7

Table B3 Product distribution and product yields from HY(30), P/HY(30),Sb/HY(30), and Bi/HY(30) catalysts

.

*Ethanol concentration is 99.5 v/v %

**Unconverted bio-ethanol

÷

- -

Catalyst	HZ5(80)	P/HZ5(80)	Sb/HZ5(80)	Bi/HZ5(80)
Ethanol conversion (wt %)	97.7	99.1	98.1	99.0
Feed ethanol (ml/h)	2.00	2.00	2.00	2.00
Feed ethanol (ml)	15.9	15.5	15.8	16.0
Feed ethanol (g)*	12.6	12.3	12.5	12.6
Converted ethanol (g)	12.3	12.2	12.2	_12.5
Product distribution (g)				
Oil	1.50	0.54	1.71	2.31
Gas	7.97	9.31	8.55	8.34
Water	2.82	2.31	1.96	1.86
Other**	0.29	0.11	0.23	0.13
Product yield (wt %)				
Oil	12.17	4.45	14.01	18.50
Gas	61.1	67.9	62.3	61.0
Water	21.6	16.8	14.3	13.6

Table B4 Product distribution and product yields from HZ5(80), P/HZ5(80),Sb/HZ5(80), and Bi/HZ5(80) catalysts

*Ethanol concentration is 99.5 v/v %

**Unconverted bio-ethanol

-

Catalyst	HZ11(75)	P/ HZ11(75)	Sb/ HZ11(75)	Bi/ HZ11(75)	
Ethanol conversion (wt %)	95.5	98.0	95.6	96.8	
Feed ethanol (ml/h)	2.00	2.00	2.00	2.00	
Feed ethanol (ml)	15.6	_17.9	15.6	15.9	
Feed ethanol (g)*	12.3	14.2	12.3	12.5	
Converted ethanol (g)	11.8	13.9	11.7	12.1	
Product distribution (g)					
Oil	0.52	0.61	0.46	0.55	
Gas	7.93	10.8	8.86	9.72	
Water	3.30	2.52	2.43	1.85	
Other**	0.55	0.28	0.54	0.41	
				•	
Product yield (wt %)					
Oil	4.41	4.38	3.92	4.53	
Gas	60.8	78.4	64.5	71.1	
Water	25.3	18.4	17.7	13.5	

Table B5 Product distribution and product yields from HZ11(75), P/HZ11(75),Sb/HZ11(75), and Bi/HZ11(75) catalysts

*Ethanol concentration is 99.5 v/v %

**Unconverted bio-ethanol

.

-

.

-

-

	Composition (mol %)								
Component	@60 min	@120 min	@180 min	@240 min	@300 min	@360 min	@420 - min	@480 min	
CH4	0.00	12.0	19.9	17.8	17.6	15.4	12.4	11.8	
CO2	0.00	12.1	8.35	8.11	9.42	7.83	7.01	6.76	
Ethylene	100	12.1	11.8	12.9	15.6	15.5	16.0	17.1	
Ethane	0.00	21.1	13.8	13.3	12.6	12.8	11.8	11.8	
Propylene	0.00	3.25	2.39	2.71	6.51	4.17	3.81	4.09	
Propane	0.00	38.8	41.1	41.6	33.4	39.8	41.6	41.1	
Butylene	0.00	0.76	1.59	2.11	2.71	2.85	3.68	3.90	
Butane	0.00	0.00	1.14	1.45	2.11	1.63	3.60	3.58	
Σ	100	100	100	100	100	100	100	100	

Appendix C Compositions in Gas Products

 Table C1
 Gas composition as a function of time on stream for HZ5(30) catalyst

 Table C2
 Gas composition as a function of time on stream for P/HZ5(30) catalyst

	-									
		Composition (mol %)								
Component	@60 min	@120 min	@180 min	@240 	@300 min	@360 min	@420 	@480 min		
CH4	0.00	2.98	0.00	0.00	0.00	0.00	0.00	0.00		
CO2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Ethylene	94.8	92.7	96.5	96.8	97.2	97.2	97.4	97.4		
Ethane	0.00	0.78	0.70	0.67	0.65	0.65	0.64	0.65		
Propylene	5.15	2.70	2.07	1.79	1.49	1.45	1.34	1.25		
Propane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Butylene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Butane	0.00	0.80	0.73	0.72	0.65	0.67	0.65	0.66		
Σ	100	100	100	100	100	100	100	100		

-

1

1

		Composition (mol %)							
Component	@60 min	@120 min	@180 min	@240 min	@300 min	@360 min	@420 min	@480 min	
CH4	35.6	16.4	18.7	15.5	14.3	13.5	12.5	7.36	
CO2	19.6	14.1	10.6	9.53	9.11	8.81	8.14	4.98	
Ethylene	6.10	10.6 -	11.7	13.7	15.4	15.5	17.2	32.7	
Ethane	27.8	22.0	15.7	14.4	13.9	13.6	13.1	10.1	
Propylene	0.00	2.73	3.14	3.75	4.44	4.63	5.04	10.7	
Propane	10.9	34.2	37.4	39.1	38.3	38.4	38.1	28.3	
Butylene	0.00	0.00	1.48	2.41	2.83	3.29	3.67	3.12	
Butane	0.00	0.00	1.15	1.61	1.79	2.24	2.23	2.69	
Σ	100	100	100	100	100	100	100	100	

 Table C3
 Gas composition as a function of time on stream for Sb/HZ5(30) catalyst

 Table C4
 Gas composition as a function of time on stream for Bi/HZ5(30) catalyst

			(Composit	ion (mol	%)		
Component	@60 min	@120 min	@180 min	@240 min_	@300 min	@360 min	@420 min	@480 min
CH4	21.3	11.5	15.4	13.7	12.8	12.2	11.1	10.4
CO2	49.3	10.2	9.35	8.48	8.04	7.83	7.11	6.60
-Ethylene	15.6	17.9	16.5	17.6	18.7	19.7	20.8	22.0
Ethane	13.8	13.2	12.6	12.4	12.4	12.4	12.3	12.2
Propylene	0.00	4.95	4.96	5.32	5.92	6.85	7.13	7.82
Propane	0.00	37.3	36.0	36.7	35.9	34.2	34.5	33.0
Butylene	0.00	3.04	3.08	3.54	3.84	4.16	4.39	4.54
Butane	0.00	1.92	2.10	2.27	2.40	2.69	2.64	3.36
Σ	100	100	100	100	100	100	100	100

.

•

		Composition (mol %)								
Component	@60 min	@120 min	@180 min	@240 min	@300 min	@360 min	@420 min	@480 min		
CH4	24.5	10.6	6.20	3.71	3.55	2.55	1.88	1.51		
CO2	34.2	2.95	1.67	1.07	0.00	0.00	0.00	0.00		
Ethylene	19.9	30.2	58.1	73.2	79.1	84.2 -	89.1	90.2		
Ethane	10.5	20.8	17.3	11.5	10.0	7.54	5.58	4.33		
Propylene	10.8	2.90	3.85	4.26	4.23	3.91	3.47	2.99		
Propane	0.0	26.5	10.8	3.95	2.48	1.47	0.00	0.54		
Butylene	0.0	2.88	2.05	1.00	0.59	0.35	0.00	0.00		
Butane	0.0	3.12	0.00	1.31	0.00	0.00	0.00	0.47		
Σ	100	100	100	100	100	100	100	100		

 Table C5
 Gas composition as a function of time on stream for HBeta(27) catalyst

 Table C6
 Gas composition as a function of time on stream for P/HBeta(27) catalyst

		- ÷						
			(Composit	ion (mol '	%)		
Component	@60 min	@120 min	@180 min	@240 min	@300 min	@360 min	@420 min	@480 min
CH4	12.9	1.06	0.93	0.76	0.00	0.00	0.00	0.00
CO2	8.25	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ethylene	59.1	88.1	90.9	94.1	95.3	96.1	95.9	96.6
Ethane	7.95	2.84	2.84	2.43	2.23	1.89	1.76	1.71
Propylene	6.36	4.62	3.33	2.72	2.43	2.03	1.86	1.72
Propane	4.52	1.76	0.92	0.00	0.00	0.00	0.00	0.00
Butylene	0.94	0.88	0.48	0.00	0.00	0.00	0.00	0.00
Butane	0.00	0.78	0.58	0.00	0.00	0.00	0.43	0.00
Σ	100	100	100	100	100	100	100	100

.

.

			(Composit	ion (mol '	%)		
Component	@60 min	@120 min	@180 min	@240 min	@300 min	@360 min	@420 min	@480 min
CH4	12.6	9.37	5.35	2.88	2.19	1.82	1.20	1.12
CO2	8.09	3.81	1.94	1.22	1.03	0.91	0.76	0.71
Ethylene	57.9	47.8	66.5	80.2	85.5	88.3	92.3	93.0
Ethane	7.79	20.7	14.76	8.79	6.43	5.09	3.06	2.7 2
Propylene	6.23	2.57	3.48	3.74	3.45	3.13	2.28	2.03
Propane	4.43	12.8	5.91	2.12	1.13	0.73	0.00	0.00
Butylene	0.92	1.62	1.18	0.55	0.30	0.00	0.00	0.00
Butane	1.99	1.38	0.85	0.48	0.00	0.00	0.40	0.40
Σ	100	100	100	100	100	100	100	100

Table C7Gas composition as a function of time on stream for Sb/HBeta(27)catalyst

÷

-

 Table C8
 Gas composition as a function of time on stream for Bi/HBeta(27) catalyst

			(Composit	ion (mol '	%)		
Component	@60 	@120 min	@180 min	@240 min	@300 min	@360 min	@420 min	@480 min
CH4	0	14.0	4.08	2.55	1.90	1.90	1.47	1.36
CO2	0	2.91	0.00	0.00	0.00	0.00	0.00	0.00
Ethylene	100	46.8	77.5	86.5	90.2	91.6	93.5	94.2
Ethane	0	21.5	11.3	6.92	4.98	4.53	3.46	2.95
Propylene	0	1.86	2.74	2.60	2.29	1.93	1.57	1.51
Propane	0	12.4	3.58	1.16	0.60	0.00	0.00	0.00
Butylene	0	0.60	0.78	0.31	0.00	0.00	0.00	0.00
Butane	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Σ	100	100	100	100	100	100	100	100

1

		Composition (mol %)									
Component	@60 min	@120 min	@180 min	@240 min	@300 min	@360 min	@420 min	@480 min			
CH4	25.3	12.9	11.4	7.87	5.99	4.10	2.94	3.42			
CO2	26.0	3.17	3.04	2.58	2.30	2.06	1.85	2.45			
Ethylene	14.5	28.7	36.3	53.2	63.9	74.2	80.8	79.6			
Ethane	26.3	42.7	42.8	31.8	24.0	16.3	11.5	12.2			
Propylene	7.92	1.40	1.26	1.91	2.17	2.46	2.30	2.33			
Propane	0.00	8.74	4.61	2.65	1.62	0.94	0.57	0.00			
Butylene	0.00	1.39	0.61	0.00	0.00	0.00	0.00	0.00			
Butane	0.00	0.98	0.00	0.00	0.00	0.00	0.00	0.00			
Σ	100	100	100	100	100	100	100	100			

 Table C9 Gas composition as a function of time on stream for HY(30) catalyst

.

 Table C10 Gas composition as a function of time on stream for P/HY(30) catalyst

÷

			(Composit	ion (mol	%)		
Component	@60 min	@120 min	@180 min	@240 min	@300 min	@360 min	@420 min	@480 min
CH4	11.4	2.28	0.95	0.88	0.74	0.62	0.66	0.00
CO2	7.26	2.25	1.17	1.15	1.02	0.92	1.00	1.07
Ethylene	69.1	88.6	93.6	94.0	94.8	95.4	95.1	95.6
Ethane	6.66	3.70	2.31	2.23	1.99	1.76	1.85	1.90
Propylene	-5.59 -	2.72	1.60	1.46	1.22	1.12	1.14	1.20
Propane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Butylene	0.00	0.49	0.33	0.30	0.22	0.23	0.22	0.23
Butane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Σ	100	100	100	100	100	100	100	100

			(Composit	ion (mol	%)		
Component	@60 min	@120 min	@180 min	@240 min	@300 min	@360 min	@420 min	@480 min
CH4	3.9	11.3	6.49	3.23	4.31	1.67	0.66	1.37
CO2	1.80	1.91	1.27	0.99	1.59	0.85	1.00	1.06
Ethylene	80.3	39.0	61.6	79.5	78.7	89.2	95.1	91.8
Ethane	9.27	37.6	26.0	13.1	13.1	6.46	1.85	4.52
Propylene	2.94	1.61	2.15	2.30	2.33	1.60	1.14	1.22
Propane	1.17	6.29	2.10	0.65	0.00	0.00	0.00	0.00
Butylene	0.61	1.24	0.38	0.22	0.00	0.26	0.22	0.00
Butane	0.00	1.03	0.00	0.00	0.00	0.00	0.00	0.00
Σ	100	100	100	100	100	100	100	100

 Table C11 Gas composition as a function of time on stream for Sb/HY(30) catalyst

 Table C12
 Gas composition as a function of time on stream for Bi/HY(30) catalyst

4

			C	Composit	ion (mol	%)		
Component	@60 min	@120 min	@180 min	@240 min	@300 min	@360 min	@420 min	@480 min
CH4	0.00	12.0	5.78	3.15	4.26	1.86	1.50	1.31
CO2	0.00	1.93	1.21	0.93	0.00	0.00	0.00	1.01
Ethylene	100	43.4	66.7	80.0	80.8	88.7	91.0	91.2
Ethane	0.00	34.5	21.9	12.2	12.5	7.14	5.49	4.62
Propylene	0.00	1.46	- 2.42-	2.32	2.47	1.68	1.41	1.22
Propane	0.00	5.07	1.73	0.61	0.00	0.00	0.00	0.00
Butylene	0.00	0.76	0.31	0.25	0.00	0.00	0.00	0.00
Butane	0.00	0.99	0.00	0.57	0.00	0.64	0.60	0.66
Σ	100	100	100	100	100	100	100	100

			C	ompositi	on (mol o	%)		
Component	@60 min	@120 min	@180 min	@240 min	@300 min	@360 min	@420 min	@480 min
CH4	0.00	23.4	18.7	17.2	14.7	12.0	10.2	8.99
CO2	0.00	0.00	1.91	2.36	3.20	3.27	3.27	3.18
Ethylene	100	17.4	15.0	15.4	16.9	19.1	21.0	22.7
Ethane	0.00	14.1	12.9	12.8	12.4	11.8	11.4	11.1
Propylene	0.00	4.74	3.57	3.55	4.68	5.34	6.16	7.17
Propane	0.00	39.1	44.9	45.3	44.5	44.1	42.7	40.9
Butylene	0.00	1.27	1.55	1.78	2.50	3.18	3.75	4.14
Butane	0.00	0.00	1.47	1.54	1-11	1.28	1.54	1.81
Σ	100	100	100	100	100	100	100	100

 Table C13
 Gas composition as a function of time on stream for HZ5(80) catalyst

 Table C14 Gas composition as a function of time on stream for P/HZ5(80) catalyst

			С	mpositi	on (mol '	%)		
Component	@60 min	@120 min	@180 min	@240 min	@300 min	@360 min	@420 min	@480 min
CH4	0.00	2.24	0.00	0.00	0.00	0.00	0.00	0.00
CO2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ethylene	100	95.9	98.6	98.6	98.7	98.6	98.6	98.6
Ethane	0.00	0.67	0.52	0.51	0.51	0.54	0.53	0.55
Propylene	0.00	0.88	0.62	0.59	θ.00	. 0.00	0.00	0.00
Propane	0.00	0.00	0.00	0.00	0.54	0.60	0.57	0.56
Butylene	0.00	0.32	0.29	0.28	0.24	0.27	0.28	0.29
Butane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Σ	100	100	100	100	100	100	100	100

1.4.1

.

+

			С	ompositi	on (mol °	%)		
Component	@60 min	@120 min	@180 min	@240 min	@300 min	@360 min	@420 min	@480 min
CH4	0.00	26.4	19.2	18.2	15.5	13.2	12.1	11.1
CO2	0.00	0.00	4.37	5.25	5.44	5.45	5.24	5.17
Ethylene	100	43.4	14.4	16.6	18.2	20.1	21.7	23.7
Ethane	0.00	30.2	13.2	13.0	11.9	11.1	10.5	10.4
Propylene	0.00	0.00	3.64	4.55	5.87	7.02	8.35	9.45
Propane	0.00	0.00	41.1	38.5	38.0	36.9	34.9	34.0
Butylene	0.00	0.00	2.22	2.18	2.98	3.70	4.28	4.60
Butane	0.00	0.00	1.88	1.67	2.18	2.62	2.94	1.63
Σ	100	100	100	100	100	100	100	100

Table C15 Gas composition as a function of time on stream for Sb/HZ5(80) catalyst

Table C16	Gas composition as a	function of time on stream	for Bi/HZ5(80) catalyst
-----------	----------------------	----------------------------	-------------------------

			С	ompositi	on (mol %	/0)	•	
Component	. @60 min	@120 min	@180 min	@240 min	@300 min	@360 min	@420 min	@480 min
CH4	0.00	25.8	22.4	19.2	22.1	18.9	17.0	16.5
CO2	0.00	6.58	0.00	5.38	0.00	4.83	4.54	4.48
Ethylene	100	31.3	38.0	28.3	30.4	24.2	23.1	23.6
Ethane	0.00	20.3	21.3	17.2	17.2	15.9	15.2	15.1
Propylene	0.00	4.75	0.00	5.95	6.08	5.66	6.13	6.27
Propane	0.00	11.2	18.3	24.0	24.3	29.2	32.4	32.4
Butylene	0.00	0.00	0.00	0.00	0.00	1.38	1.69	1.66
Butane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Σ	100	100	100	100	100	100	100	100

-

.

.

		Composition (mol %)									
Component	@60 min	@120 min	@180 min	@240 min	@300 min	@360 min	@420 min	@480 min			
CH4	23.3	7.33	1.92	1.52	1.32	1.19	1.12	1.02			
CO2	0.00	2.09	1.65	1.40	1.25	1.17	1.11	1.03			
Ethylene	50.7	50.2	- 58.9	63.9	68.0	70.6	75.1	75.8			
Ethane	12.7	4.00	3.47	3.14	2.93	2.81	2.76	2.60			
Propylene -	13.2	30.3	28.0	24.7	21.7	19.8	18.4	16.5			
Propane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Butylene	0.00	0.99	0.69	0.48	0.37	0.29	0.00	1.74			
Butane	0.00	5.06	5.39	4.91	4.41	4.14	1.51	1.38			
Σ	100	100	100	100	100	100	100	100			

 Table C17
 Gas composition as a function of time on stream for HZ11(75) catalyst

 Table C18
 Gas composition as a function of time on stream for P/HZ11(75) catalyst

4

		Composition (mol %)							
Component	@60 min	@120 min	@180 min	@240 min	-@300 min	@360 min	@420 min	@480 min	
CH4	6.69	26.2	12.1	10.9	9.55	8.29	7.63	7.69	
.CO2	4.41	4.53	4.68	3.78	3.16	2.52	2.36	2.37	
Ethylene	72.9	57.6	68.5	71.8	73.9	78.2	78.3	75.0	
Ethane	2.90	2.52	2.90	2.81	2.76	2.67	2.71	2.75	
Propylene	7.18	6.71	7.67	6.74	6.12	4.75	4.91	4.76	
Propane	3.40	0.00	0.00	0.00	0.00	0.00	0.00	4.99	
Butylene	1.43	1.46	0.92	1.14	1.60	1.38	1.72	1.29	
Butane	1.05	0.92	3.24	2.83	2.89	2.18	2.36	1.11	
Σ	100	100	100	100	100	100	100	100	

-

.

		Composition (mol %)						
Component	@60 min	@120 min	@180 min	@240 min	@300 min	@360 min	@420 min	@480 min
CH4	0.00	2.25	0.00	0.00	0.00	0.00	0.00	0.00
CO2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ethylene	100	82.0	80.2	80.6	83.4	84.4	84.9	86.2
Ethane	0.00	1.12	1.20	1:15	1.03	1.03	0.96	0.92
Propylene	0.00	12.6	15.9	15.5	14.3	13.4	12.0	11.0
Propane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Butylene	0.00	1.23	1.66	1.65	0.50	0.48	1.28	1.15
Butane	0.00	0.80	1.12	1.10	0.74	0.71	0.86	0.77
Σ	100	100	100	100	100	100	100	100

 Table C19
 Gas composition as a function of time on stream for Sb/HZ11(75)

 catalyst

 Table C20
 Gas composition as a function of time on stream for Bi/HZ11(75)

 catalyst

		Composition (mol %)						
Component	@60 min	@120 min	@180 min	@240 min	@300 min	@360 min	@420 min	@480 min
CH4	0.00	11.8	1:43	1.19	1.09	0.89	0.80	0.00
CO2	0.00	2.48	1.29	1.16	1.07	0.00	0.00	0.00
Ethylene	100	62.9	73.3	75.8	78.4	82.9	84.5	86.3
Ethane	0.00	2.92	2.21	2.07	1.98	1.78	1.72	1.69
Propylene	0.00	15.5	18.8	17.0	15.0	12.5	11.2	10.3
Propane	0.00	2.59	0.00	0.00	0.00	0.00	0.00	0.00
Butylene	0.00	1.80	1.81	1.67	1.50	1.21	1.12	1.04
Butane	0.00	0.00	1.16	1.06	0.92	0.74	0.71	0.66
Σ	100	100	100	100	100	100	100	100

0111125(5	0), 171123(1	55), 56/125(50), and
 1	Compos	sition (wt%)	
HZ5(30)	P/HZ5(30)	Sb/HZ5(30)	Bi/HZ5(30)
0.18	18.60	0.29	1.27
10.45	5.27	2.55	3.71
1.28	7.48	0.56 -	0.25
	1		

1.37

8.58

4.30

3.55

38.78

32.77

0.26

0.168

7.48

7.73

5.04

1.98

28.62

38.61

0.29

0.181

6.10

2.59

2.55

1.29

2.23

48.92

0.33

0.102

Appendix D Compositions in Liquid Products

Component

Oxygenate Non-aromatic Benzene Toluene

o-Xylene

m-Xylene

p-Xylene

Ethylbenzene

С9

C10+

BTEX/total aromatics

p-Xylene/total aromatics

Table D1 Oil compositions from HZ5(30), P/HZ5(30), Sb/HZ5(30), andBi/HZ5(30) catalysts

6.52

9.87

4.66

1.03

26.35

35.96

0.30

Table D2	Oil compositions from	HBeta(27),	P/HBeta(27),	Sb/HBeta(27),	and
Bi/HBeta(2	7) catalysts				

_		Compos	ition (wt %)	
Component	HBeta(27)	P/HBeta(27)	Sb/HBeta(27)	Bi/HBeta(27)
Oxygenate	1.03	3.63	1.02	1.43
Non-aromatic	0.00	0.00	0.44	0.57
Benzene	30.02	29.25	8.95	14.76
Toluene	34.83	27.40	21.66	23.73
o-Xylene	9.26	3.80	11.06	9.32
m-Xylene	10.67	5.56	14.91	11.86
p-Xylene	8.33	4.46	10.90	9.96
Ethylbenzene	1.18	1.41	3.32	3.15
C9	2.70	4.51	16.44	15.29
C10+	1.97	19.97	11.30	9.93
BTEX/total aromatics	0.95	0.75	0.72	0.74
p-Xylene/total aromatics	0.088	0.062	0.154	0.137

Component		Compos	ition (wt %)	
Component	HY(30)	P/HY(30)	Sb/HY(30)	Bi/HY(30)
Oxygenate	0.71	7.31	7.38	13.87
Non-aromatic	3.52	1.87	1.27	1.10
Benzene	44.90	45.62	42.81	32.81
Toluene	31.34	18.00	21.38	19.08
o-Xylene -	4.40	3.88	5.32	6.31
m-Xylene	5.12	4.02	6.19	6.20
p-Xylene	3.85	2.92	4.75	5.16
Ethylbenzene	1.27	1.02	1.38	1.35
С9	0.88	2.66 -	1.86	5.13
C10+	4.00	12.69	7.67	8.98
BTEX/total aromatics	0.95	0.83	0.90	0.83
p-Xylene/total aromatics	0.042	0.039	0.058	0.073

Table D3 Oil compositions from HY(30), P/HY(30), Sb/HY(30), and, Bi/HY(30)catalysts

2.11

 Table D4 Oil composition from HZ5(80), P/HZ5(80), Sb/HZ5(80), and Bi/HZ5(80)

 catalysts

		Composition (wt %)						
Component	HZ5(80)	P/ HZ5(80)	Sb/ HZ5(80)	Bi/ HZ5(80)				
Oxygenate	0.01	25.94	0.00	0.14				
Non-aromatic	9.76	0.00	15.00	22.6				
Benzene	0.24	0.00	3.39	0.00				
Toluene	9.54	1.76	29.47	9.61				
o-Xylene	15.24	7.70	5.04	3.92				
m-Xylene	14.80	2.74	2.54	2.62				
p-Xylene	5.79	6.93	6.43	6.14				
Ethylbenzene	5.08	2.75	16.52	12.8				
С9	25.49	7.75	13.62	15.5				
C10+	14.05	44.43	8.00	26.6				
BTEX/total aromatics	0.56	0.30	0.75	0.53				
p-Xylene/total aromatics	0.114	0.317	0.101	0.175				

114

-

4

Component		Compos	sition (wt %)	
Component	HZ11(75)	P/ HZ11(75)	Sb/ HZ11(75)	Bi/ HZ11(75)
Oxygenate	0.04	7.03	0.03	0.00
Non-aromatic	14.0	12.85	1.77	3.89
Benzene	1.98	3.19	15.03	8.21
Toluene	2.94	0.05	29.40	9.25
o-Xylene	12.83	9.74	10.66 -	21.81
m-Xylene	22.1	13.58	22.04	23.22
p-Xylene	13.2	15.86	9.77	4.78
Ethylbenzene	5.2	11.71	4.94	11.12
С9	22.2	18.50	6.36	17.14
C10+	5.57	7.49	0.00	0.59
BTEX/total aromatics	0.68	0.68	0.94	0.82
p-Xylene/total aromatics	0.226	0.293	0.106	0.061

1 P 1

- -

-

Table	D5	Oil	composition	from	HZ11(75),	P/HZ11(75),	Sb/HZ11(75),	and
Bi/HZ	5(75) c	ataly	sts					

•

Appendix E True Boiling Point Curves

Table E1 True boiling point curves from HZ5(30), P/HZ5(30), Sb/HZ5(30),Bi/HZ5(30)

% OFF	EE Boiling point (°C)							
	HZ5(30)	P/HZ5(30)	Sb/HZ5(30)	Bi/HZ5(30)				
0	67.2	51.8	62.3	59.9				
5	70	53.1	70.9	70.9				
10	72.4	54.1	72.8	73.7				
15	95.8	55.2	80.3	98.8				
20	98.8	56.3	99.4	100.4				
25	99.6	57.4	100.5	101.5				
30	100.3	58.4	101.3	102.4				
35	100.9	59.5	102	103.2				
40	101.4	65.9	102.7	104 .				
45	101.9	99.1	103.3	104.7				
50	102.4	134.9	103.8	105.3				
55	102.8	163.2	104.3	105.9				
60	103.2	176.2	104.9	127.9				
65	.125.4	182.8	125.4	129.2				
70	127	187.6	127.7	130.4				
75	127.9	192.9	128.7	131.4				
80	128.6	203.7	129.6	133.6				
85	130.3	215.2	130.7	151.4				
90	133.2	223.4	132.9	168.7				
95	154.8	267.8	155.3	212.4				
100	278.2	424.9	287.3	303.4				

Figure E1 True boiling point curves from HZ5(30), P/HZ5(30), Sb/HZ5(30), Bi/HZ5(30).

Table E2 Petroleum cuts obtained from the HZ5(30), P/HZ5(30), Sb/HZ5(30),Bi/HZ5(30).

Fraction	Roiling point (%C)	wt %					
Fraction	boning point (C)	HZ5(30)	P/HZ5(30)	Sb/HZ5(30)	Bi/HZ5(30)		
Gasoline	<149	93.66	52.49	93.59	84.33		
Kerosene	149-232	4.47	38.48	4.31	11.75		
Gas oil	232-343	1.87	6.42	2.09	3.92		
LVGO	343-371	0.00	0.89	0.00	0.00		
HVGO	>371	0.00	1.72	0.00	0.00		

% OFF	Boiling point (°C)					
	HBeta(27)	P/HBeta(27)	Sb/HBeta(27)	Bi/HBeta(27)		
0	62.3	53.3	52.6	52.4		
5	63.4	54.3	55.6	54.3		
10	64.4	55.4	93.2	61		
15	65.5	56.5	98.3	90.4		
20	72.2	59.3	101.2	98.4		
25	73.3	75	123.3	101		
30	74.8	98.6	124	123.7		
35	99.2	103.4	125.4	124.8		
40	99.6	127.5	128.3	126.9		
45	101.2	140.9	130.3	129.3		
50	125.1	171.3	146.1	145.6		
55	126.8	184.3	152.6	151.2		
60	129	194.7	156	154.7		
65	133.4	203.3	172.5	166.1		
70	159.2	207.1	190	180.4		
75	186	214.1	196.7	193.8		
80	212.2	228.6	216.8	201.8		
85	230	243	239.5	210.8		
90	254.3	270.9	257.6	230.1		
95	314	349.3	283.5	267.2		
100	524.7	522.1	434.8	498.3		

.

.

-

.

Table E3 True boiling point curves from HBeta(27). P/ HBeta(27), Sb/ HBeta(27),Bi/ HBeta(27)

. .

Figure E2 True boiling point curves from HBeta(27), P/ HBeta(27), Sb/ HBeta(27), Bi/ HBeta(27) catalysts.

Table E4 Petroleum cuts obtained from HBeta(27), P/ HBeta(27), Sb/ HBeta(27),Bi/ HBeta(27) catalysts.

	Boiling point (°C)	wt %				
Fraction		HBeta(27)	P/HBeta(27)	Sb/ HBeta(27)	Bi/ HBeta(27)	
Gasoline	<149	68.02	46.33	52.23	53.04	
Kerosene	149-232	17.39	6.03	31.12	37.22	
Gas oil	232-343	10.28	29.86	13.62	6.38	
LVGO	343-371	0.66	6.98	0.93	0.61	
HVGO	>371	3.65	10.80	2.11	2.75	

0/ OFF	Boiling point (°C)					
	HY(30)	P/ HY(30)	Sb/ HY(30)	Bi/ HY(30)		
0	58.2	56.3	52.8	52.6 ·		
5	59.9	58.6	54.3	55		
10	61	59.9	55.4	56_1		
15	62.1	61	56.5	57.6		
20	63.2	62.1	57.6	58.6		
25	64.2	63.2	58.6	59.7		
30	65.3	_64.2	59.7	60.8		
35	66.4	65.3	60.8	61.9		
40	67.5	66.4	61.9	62.9		
45	68.5	73.9	62.9	64		
50	69.6	174.2	64	65.1		
55	70.7	226.6	65.1	66.2		
60	71.7	352.3	66.2	67.2		
65	72.8	363.8	67.2	68.3		
70	73.9	374.4	68.3	69.4		
75	75	384.6	73.3	72.2		
80	76	392.2	97.1	75.4		
85	91.9	402	177.9	133.1		
90	243.9	414.2	214.3	227.6		
95	518.6	442.4	267	263.4		
100	569.1	564.6	568	570.1		

Table E5 True boiling point curves from HY(30), P/HY(30), Sb/HY(30), andBi/HY(30) catalysts.

.

.

Figure E3 True boiling point curves from HY(30), P/HY(30), Sb/HY(30), and Bi/HY(30) catalysts.

Table E6 Petroleum cuts obtained from HY(30), P/HY(30), Sb/HY(30), andBi/HY(30) catalysts.

	Boiling		wt %				
Fraction	point (°C)	HY(30)	P/HY(30)	Sb/HY(30)	Bi/HY(30)		
Gasoline	<149	86.88	48.74	83.21	85.84		
Kerosene	149-232	2.73	6.77	8.47	4.77		
Gas oil	232-343	2.20	4.11	4.58	5.68		
LVGO	343-371	0.51	8.77	0.47	0.46		
HVGO	>371	7.69	31.60	3.27	3.25		

% OFF	Boiling point (°C)					
% OFF	HZ5(80)	P/HZ5(80)	Sb/HZ5(80)	Bi/HZ5(80)		
0	61.7	55	58.2	68.1		
5	70.5	57.1	70.5	70.9		
10	79.7	61.2	74.8	73		
15	93.7	67	92.4	91.5		
20	96.5	107.7	-95.4	95.6		
25	98.1	143.2	97.5	98.1		
30	98.8	163.3	98.5	98.8		
35	99.4	176.1	99.2	99.5		
40	99.9	180.7	99.7	100.4		
45	100.4	190.5	100.2	100.6		
50	100.9	200	100.7	101.2		
55	118.4	204.6	101.1	101.7		
60	121.9	207.9	119	118.7		
65	124.5	222.2	122.3	122.6		
70	126.3	226.4	124.8	125.5		
75	127	232.4	126.4	126.7		
80	128.6	249.1	127.5	128.6		
85	141.8	268.6	129	149.3		
90	155.2	289.6	148.8	181.7		
95	205.5	317.1	185.7	206.8		
100	295.2	425.6	294.3	245		

<u>4</u>п е

Table E7 True boiling point curves from HZ5(80), P/HZ5(80), and Sb/HZ5(80),Bi/HZ5(80) catalysts

-

-

-

Figure E4 True boiling point curves from HZ5(80), P/HZ5(80), Sb/HZ5(80), and Bi/HZ5(80) catalysts.

Table E8 Petroleum cuts obtained from HZ5, 1BiHZ5, 2BiHZ5, 3BiHZ5, and4BiHZ5 catalysts

Fraction		wt %			
	Bolling point (°C)	HZ5(80)	P/HZ5(80)	Sb/HZ5(80)	Bi/HZ5(80)
Gasoline	<149	84.1	69.0	69.8	69.9
Kerosene	149-232	11.3	23.3	24.5	22.7
Gas oil	232-343	1:73	5.46	3.28	4.87
LVGO	343-371	0.44	0.79	0.68	0.70
HVGO	>371	2.44	1.49	1.68	1.84

9/ OFF	Boiling point (°C)				
	HZ11(75)	P/HZ11(75)	Sb/HZ11(75)	Bi/HZ11(75)	
0	58.2	54.3	56.9	57.4	
5	77.3	60.6	60.8	80.6	
10	92.6	71.7-	63.4	90.4	
15	93.9	88.3	67.5	91.5	
20	96.9	95.2	76	94.5	
25	113.8	112.7	93.9	112.3	
30	116	115.6	96	114.2	
35	116.9	117.3	113.7	115.1	
40	117.6	118.5	115.7	115.7	
45	118	124.1	116.2	116.2	
50	118.6	137.1	116.6	116.6	
55	123.9	139.4	118.6	117	
60	127.1	150.8	123.3	121.7	
65	138.1	160.9	137	122.8	
70	145.9	168.7	137.9	136.6	
75	154.8	178.4	146.1	137.3	
80	176	187.2	170.8	144.6	
85	195.1	198	211.8	159.8	
90	216.3	210.8	233.5	184.8	
95	242.8	249.4	264.4	243.5	
100	331.1	318.5	418.6	329.7	

÷ 1

÷

.

Table E9 True boiling point curves from HZ11(75), P/HZ11(75), and Sb/HZ11(75),Bi/HZ11(75) catalysts

Figure E5 True boiling point curves from HZ11(75), P/HZ11(75), Sb/HZ11(75), and Bi/HZ11(75) catalysts.

Table E10 Petroleum cuts obtained from HZ11(75), P/HZ11(75), Sb/HZ11(75),and Bi/HZ11(75) catalysts

	Boiling point	• wt %				
Fraction	(°Č)	HZ11(75)	P/HZ11(75)	Sb/HZ11(75)	Bi/HZ11(75)	
Gasoline	<149	71.74	59.21	90.03	81.45	
Kerosene	149-232	21.22	33.54	7.10	12.57	
Gas oil	232-343	7.04	7.25	2.87	5.98	
LVGO	343-371	0.00	0.00	0.00	0.00	
HVGO	>371	0.00	0.00	0.00	0.00	

Appendix F Xylene Isomer Spectra From GCxGC-MS/TOF

Deconvoluted peak area = 2,621,351,427 *p*-Xylene peak area = 736,872,132 *m*-Xylene peak area = 1,884,479,295 wt.% of *p*,*m*-Xylene = 20.34 wt.% wt.% of *p*-Xylene = 20.34x (736,872,132/2,621,351,427) = 5.73 wt.% wt.% of *m*-Xylene = 20.34x (1,884,479,295/2,621,351,427) = 14.6 wt.%

CURRICULUM VITAE

Mr. Jaturapat Kittikarnchanaporn

Date of Birth: July 22, 1990

Nationality: Thai

University Education:

Name:

2008-2011 Bachelor Degree of Engineering (Petrochemicals and Polymeric Materials), Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom, Thailand

Work Experience:

Apr-May 2010	Position:	Student Internship
	Company name:	Advance packaging, co., ltd.

Proceedings:

- Kittikarnchanaporn, J., Jitkarnka, S. (2014). Effects of SiO₂/Al₂O₃ Ratio of HZSM-5 with Antimony Oxide Promoter for Dehydration of Bio-ethanol to Hydrocarbons. <u>Proceedings of The 5th Research Symposium on Petrochemical</u> and <u>Materials Technology and The 20th PPC Symposium on Petroleum,</u> <u>Petrochemicals, and Polymers</u>, Bangkok, Thailand.
- Kittikarnchanaporn, J. and Jitkarnka, S. (2014). Distillate Range of Hydrocarbon Production from Bio-ethanol Dehydration Using HY, HBeta. and HZSM-5 as Supports of Phosphorus Oxide. <u>Proceedings of The 17th Conference Process</u> <u>Integration. Modelling and Optimisation for Energy Saving and Pollution</u> <u>Reduction.</u> Prague, Czech Republic.