REFERENCES

- Bartacek, J., Zabranska, J., and Lens, P.N.L. (2007). Developments and constraints in fermentative hydrogen production. <u>Biofuels, Bioproducts and Biorefining</u>, 1, 201-214.
- Bashaar Y. Ammary (2005). Treatment of olive mill wastewater using an anaerobic sequencing batch reactor. <u>Desalination</u>, 177, 157-165.
- Bhaskar, Y.V., Mohan, S.V., and Sarna, P.N. (2008) Effect of substrate loading rate of chemical wastewater on fermentative biohydrogen production in biofilm confuguerd sequencing batch reactor. <u>Bioresource Technology</u>, 99, 6941-6948.
- Chatsiriwatana, S., Sreethawong, T., Rangsunvigit, P., and Chavadej, S. (2010). Hydrogen production from cassava wastewater using an anaerobic sequencing batch reactor: effects of operational parameters, COD:N ratio, and organic acid composition. <u>International Journal of Hydrogen Energy</u>, 35, 4092-4102.
- Chong, M., Sabaratnam, V., Shirai, Y and Hassan, M. (2009). Biohydrogen production from biomass and industrial wastes by dark fermentation. <u>International Journal of Hydrogen Energy</u>, 34, 3277-3287.
- Das, D., and Veziroglu, T.N. (2001). Hydrogen production by biological processes: a survey of literature. <u>International Journal of Hydrogen Energy</u>, 26, 13-28.
- Deutschmann, O., and Schmidt, L. (1998). Two-dimensional modeling of partial oxidation of methane on rhodium in contact time reactor. <u>The Combustion</u> Institute, 2283–2291.
- Fascetti, E., D'Addario, E., Todini, O., and Robertiello, A. (1998). Photosynthetic hydrogen evolution with volatile organic acids from the fermentation of source selected municipal solid wastes. <u>International Journal of Hydrogen Energy</u>, 23(9), 753-760.
- Greenberg, A.E., Clesceri, L.S., and Eaton, A.D. (1992). <u>Standard Methods for the Examination of Water and Wastewater</u>. Washington, D.C.: American Public Health Association.

- Hawkes, F.R., Dinsdale, R., Hawkes, D.L., and Hussy, I., (2002). Sustainable fermentative hydrogen production: challenges for process optimisation. <u>International Journal of Hydrogen Energy</u>, 27(11-12), 1339-1347.
- Kapdan, I.K., and Kargi, F. (2006). Bio-hydrogen production from waste materials. Enzyme and Microbial Technology, 38, 569-582.
- Kothari, R., Buddhi, D., and Sawnnew, R.L. (2004). Sources and technology production: a review. <u>International Journal of Global Energy Issues</u>, 21, 154-178.
- Lee, K.S., Hsu, Y.F., Lo, Y.C., Lin, P.J., Lin, C.Y., and Chang, J.S. (2008). Exploring optimal environmental factors for fermentative hydrogen production from starch using mixed anaerobic microflora. <u>International Journal of Hydrogen Energy</u>, 33, 1565 1572.
- Manish, S., and Banerjee, R. (2007). Comparison of biohydrogen production processes. <u>International Journal of Hydrogen Energy</u>, 33, 279-286.
- Masse, D.I. and Masse, L. (2001). The effect of temperature on slaughterhouse wastewater treatment in anaerobic sequencing batch reactors. <u>Bioresource Technology</u>. 76, 91-98.
- Meyers R. A. Ed. (2001). Solar thermochemical process technology. <u>Encyclopedia</u> of Physical Science & Technology, 15, 237-256.
- Mohan, S.V., Babu, V.L. and Sarma, P.N. (2007). Anaerobic biohydrogen production from dairy wastewater treatment in sequencing batch reactor (AnSBR): Effect of organic loading rate. Enzyme and Microbial Technology, 41, 506-515.
- Ni, M., Leung, D.Y.C., Leung, M.K.H., and Sumathy, K. (2006). An overview of hydrogen production from biomass. <u>Fuel Processing Technology</u>, 87, 461-472.
- Niyamapa, T., Sreethawong, T., Neramitsuk, H., Rungsunvigit, P., Leethochwalit, M. and Chavadej, S. (2010). Hydrogen production from glucose-containing wastewater using an anaerobic sequencing batch reactor: Effect of COD loading rate, nitrogen content. and organic acid composition. Chemical Engineering Journal, 160, 322-332.

- Ueno, Y., Otsuka, S., and Morimoto, M. (1996). Hydrogen production from industrial wastewater by anaerobic microflora in chemostat culture. <u>Journal</u> of Fermentation and Bioengineering, 82(2), 194-197.
- Vijayaraghavan, K. and Soom, M.A.M (2004). Trends in biological hydrogen production a review. <u>International Journal of Hydrogen Energy</u>.
- Yokoi, H., Maki, R., Hirose, J., and Hayashi, S. (2002). Microbial production of hydrogen from starch-manufacturing wastes. <u>Biomass and Bioenergy</u>, 22, 389-395.

APPENDICES

Appendix A Calibration Curves

Table A1 Calibration curve for hydrogen (H₂)

Volume of hydrogen (ml)	Peak area		
0.02	16,313		
0.04	58,770		
0.08	180,674		
0.1	226,743		
0.2	427,198		
0.4	778,509		

Figure A1 The relationship between volume of hydrogen (H_2) and peak area.

Amount of hydrogen =
$$\frac{\text{Peak area} + 377287}{5 \times 10^7}$$

Table A2 Calibration curve for nitrogen

Volume of nitrogen (ml)	Peak area	
0.02	34,210	
0.04	128,767	
0.08	305,287	
0.1	393,916	
0.2	809,433	
0.4	1,602,475	

Figure A2 The relationship between volume of nitrogen (N_2) and peak area.

$$Amount of nitrogen = \frac{Peak area + 29532}{4 \times 10^6}$$

Table A3 Calibration curve for oxygen

Volume of oxygen (ml)	Peak area		
0.02	12,286		
0.04	43,995		
0.08	104,342		
0.1	135,546		
0.2	280,220		
0.4	562,001		

Figure A3 The relationship between volume of oxygen (O_2) and peak area.

$$Amount of oxygen = \frac{Peak area + 12182}{1 \times 10^6}$$

Table A4 Calibration curve for methane (CH₄)

Volume of methane (ml)	Peak area
0.02	92,517
0.04	381,106
0.1	1,293,552
0.2	2,674,654

Figure A4 The relationship between volume of methane (CH₄) and peak area.

Amount of methane =
$$\frac{\text{Peak area} + 182677}{1 \times 10^7}$$

Table A5 Calibration curve for carbon dioxide (CO₂)

Volume of carbon dioxide (ml)	Peak area
0.02	26,118
0.04	97,539
0.08	220,122
0.2	596,414
0.4	1,315,885

Figure A5 The relationship between volume of carbon dioxide (CO_2) and peak area.

Amount of carbon dioxide =
$$\frac{Peak area + 48361}{3 \times 10^6}$$

Table A6 Calibration curve for acetic acid (CH₃COOH)

Volume of hydrogen (ml)	Peak area		
1,000	0.04		
2,000	0.15		
3,000	0.29		
4,000	0.37		
5,000	0.48		

Figure A6 The relationship between concentration of acetic acid (CH₃COOH) and peak area.

Amount of acetic acid =
$$\frac{Peak \ area + 0.066}{0.0001}$$

Table A7 Calibration curve for propionic acid (CH₃CH₂COOH)

Volume of hydrogen (ml)	Peak area		
1,000	0.14		
2,000	0.36		
3,000	0.59		
4,000	0.77		
5,000	0.95		

Figure A7 The relationship between concentration of propionic acid (CH₃CH₂COOH) and peak area.

Amount of propionic acid =
$$\frac{Peak \ area + 0.0495}{0.0002}$$

Table A8 Calibration curve for butyric acid (CH₃(CH₂)₂COOH)

Volume of hydrogen (ml)	Peak area		
1,000	0.23		
2,000	0.48		
3,000	0.83		
4,000	1.11		
5,000	1.31		

Figure A8 The relationship between concentration of butyric acid $(CH_3(CH_2)_2COOH)$ and peak area.

Amount of butyric acid =
$$\frac{Peak \ area \pm 0.0415}{0.0003}$$

Table A9 Calibration curve for valeric acid (CH₃(CH₂)₃COOH)

Volume of hydrogen (ml)	Peak area		
1,000	0.21		
2,000	0.51		
3,000	0.80		
4,000	1.19		
5,000	1.36		

Figure A9 The relationship between concentration of valeric acid (CH₃(CH₂)₃COOH) and peak area.

Amount of valeric acid =
$$\frac{Peak \ area + 0.0785}{0.0003}$$

Table A10 Calibration curve for ethanol (C₂H₅OH)

Volume of hydrogen (ml)	Peak area	
1,000	0.21	
2,000	0.53	
3,000	0.78	
4,000	1.05	
5,000	1.35	

Figure A9 The relationship between concentration of ethanol (C_2H_5OH) and peak area.

$$Amount\ of\ ethanol = \frac{Peak\ area + 0.0617}{0.0003}$$

Appendix B Preparation of 5 wt./vol.% NaOH Solution for pH-controlled System

Preparation of NaOH at concentration of 5 wt./vol.%

$$= \frac{5}{100} \frac{g}{ml} = 50 \frac{g}{l}$$

Appendix C Volatile Fatty Acids (VFA) Quantification by Distillation Method

C 1. Acetic Acids Stock Solution Preparation for Recovery Factor (f) Determination

Concentration of fresh acetic acid (liquid) = 99.7%

Density of acetic acid = 1.07 g/ml

Molecular weight of acetic acid = 60

Determination of fresh acetic acids concentration in term of molar

$$= \frac{0.997 \text{ L of acetic acid}}{\text{L of solution}} \times \frac{1.07 \text{ g of acetic acid}}{\text{mL of acetic acid}} \times \frac{1 \text{ mol of acetic acid}}{60 \text{ g of acetic acid}}$$

= 17.78 M

Preparation of acetic acid at concentration of 2,000 mg/L

=
$$2,000 \frac{\text{mg of acetic acid}}{\text{L of solution}} \times \frac{1 \text{ mole of acetic acid}}{60 \text{ g of acetic acid}}$$

= 0.0333 M

Dilution of acetic acid

$$N_1V_1$$
 = N_2V_2
 V_1 = N_2V_2/N_1
= $(0.0333x1)/17.78$
= $1.873x10^{-3}$ L

C 2. Standard Sodium Hydroxide (0.1 M) Preparation

Concentration of fresh NaOH (solid) = 99%

Molecular weight of acetic acid = 40

Preparation of acetic acid at concentration of 0.1 M

$$= \frac{0.1 \text{ mol}}{1 \text{ L}} \times \frac{40 \text{ g}}{1 \text{ mol}} \times \frac{100}{99}$$
$$= 4.04 \text{ g}$$

C 3. Recovery Factor (f) Determination

Distill 150 ml of 0.0333 M of acetic acid in distillation apparatus Calculate the recovery factor

$$f = \frac{a}{b}$$

where

a = volatile acid concentration recovered in distillate, mg/Lb = volatile acid concentration in standard solution used, mg/L

Find volatile acid concentration recovered in distillate by titration with 0.1 M of NaOH (MW of acetic acid = 60.5)

1)	Distillate	50 ml	NaOH	11.7 ml		
	Used NaOH			=	$11.7 \times 10^{-3} x$	0.1
				=	1.17×10^{-3}	mol
	Acetic acid in	n distillate		=	1.17x10 ⁻³ -	mol
				=	$1.17 \times 10^{-3} \times$	60.5
				=	0.07	g
	Concentration	n of acetic acid i	n distilla	te		
				=	0.07/50	
				=	1.405×10^{-3}	g/ml
				=	1,405	mg/l
2)	Distillate	25 ml	NaOH	5.7 ml		
	Used NaOH			=	$5.7x10^{-3}x0$.1
				=	$5.7 \times 10^{-4} \mathrm{m}$	ol
	Acetic acid in distillate			=	$5.7 \times 10^{-4} \text{ mol}$	
				=	$5.7x10^{-4} x$	60.5
				=	0.034	g
	Concentration	n of acetic acid i	n distilla	te		
				=	0.034/25	
				=	1.368x10 ⁻³	g/ml
				=	1,368	mg/l
	Average			=	1,387	mg/l
	Recovery fac	tor (f)		=	1,387/2,00	0
				=	0.693	

CURRICULUM VITAE

Name:

Ms. Patcharee Intanoo

Date of Birth:

July 6, 1985

Nationality:

Thai

University Education:

2004–2008 Bachelor Degree of Industrial Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand

2008-2010 Master Degree of Polymer Science, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand

Work Experience

March-May 06

Position:

Quality Control

Company name:

Bangkok Polyethylene Co., Ltd.,

Maptaphut Rayong, Thailand

Publication:

- 1. Intanoo, P;. Rangsunvigit, P.; Namprohm, W.; Thamprajamchit, B.; Chavadej, J.; and Chavadej, S. (2012), Hydrogen production from alcohol wastewater by an anaerobic sequencing batch reactor under thermophilic operation: Nitrogen and phosphorous uptakes and transformation, <u>International Journal of Hydrogen Energy</u>, 37, 11104-11112.
- Intanoo, P.; Suttikul, T.; Leethochawalit, M.; Gulari, E.; and Chavadej, S. (2014), Hydrogen Production from Alcohol Wastewater with Added Fermentation Residue by an Anaerobic Sequencing Batch Reactor (ASBR) under Thermophilic Operation, <u>International Journal of Hydrogen Energy</u>, accepted, in press.

Proceeding:

 Intanoo, P.; Chavadej, J.; and Chavadej, S. (2012, April 11-13) Effect of COD Loading Rate on Hydrogen Production from Alcohol Wastewater. Proceeding of the ICCBEE 2012: International Conference on Chemical, Biological and Environmental Engineering, Venice, Italy.

Presentations:

- Intanoo, P.; Chavadej, J.; and Chavadej, S. (2012, April 11-13) Effect of COD
 Loading Rate on Hydrogen Production from Alcohol Wastewater. Paper
 presented at <u>ICCBEE 2012</u>: <u>International Conference on Chemical. Biological
 and Environmental Engineering</u>, Venice, Italy.
- Intanoo, P.; Chavadej, S.; and Rangsunvigit, P. (2012, November 11-13)
 Hydrogen Production from Alcohol Wastewater with Cellulosic Residue by an Anaerobic Sequencing Batch Reactor (ASBR) under Thermophilic Operation.
 Paper presented at <u>The First International Symposium on Advanced Water Science and Technology</u>, Noyori Conference Hall, Nagoya University, Nagoya Japan.