CATALYTIC DEHYDRATION OF BIO-ETHANOL TO HYDROCARBONS OVER SnO_x- AND Sb₂O_x- DOPED ON SAPO-34

Uruya Chinniyomphanich

A Thesis Submitted in Partial Fulfillment if the Requirements For the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University, and Institut Français du Pétrole

2014

Thesis Title:	Catalytic Dehydration of Bio-Ethanol to Hydrocarbons over
	SnO_x - and SbO_x - doped SAPO-34
By:	Uruya Chinniyomphanich
Program:	Petrochemical Technology
Thesis Advisors:	Assoc. Prof. Sirirat Jitkarnka

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

..... College Dean (Asst. Prof. Pomthong Malakul)

(Assi. Piol. Pointhong Malak

Thesis Committee:

.....

(Assoc. Prof. Firirat Jitkarnka)

Dan.

(Assoc. Prof. Apanee Luengnaruemitchai)

Porr 2

(Asst. Prof. Pisanu Toochinda)

ABSTRACT

5571037063: Petrochemical Technology Program
Uruya Chinniyomphanich: Catalytic Dehydration of Bio-Ethanol to
Hydrocarbons over SnO_x- and Sb₂O_x- doped SAPO-34
Thesis Advisors: Assoc. Prof. Sirirat Jitkarnka 105 pp.
Keyword: Dehydration, Bio-ethanol, Tin oxide, Antimony oxide, Oxidation state

Recently, bio-ethanol used as a feedstock for catalytic dehydration to obtain aromatic compounds or light hydrocarbons received much attention. SAPO-34 has been employed as a solid acid catalyst for ethanol conversion to light olefins. The introduction of a metal oxide strongly influences on catalytic behavior. Tin oxide and antimony oxide were found to increase the acid strength of SAPO-34, which also increases with the amount of oxygen substitution on the central atom. The aim of this project was to study the impacts of oxidation state of tin and antimony oxides changed with various loading percentages and calcination temperature on bio-ethanol dehydration product. The sole metal oxides were also tested in order to observe its influence for basis in composition. It was found that Sn and Sb metals have hydrogenation properties, resulting in high selectivity of cooking gas. SnO₂ enhanced oligomerization and aromatization reactions of light olefins to bigger hydrocarbons, whereas SnO promotes oxygenate compounds due to its low acidity. For antimony oxide, the selectivity of propylene, cooking gas and butylenes from using Sb₂O₅ was higher than those from Sb_2O_3 . On SAPO-34, tin oxide (Sn^{+4}) was found to enhance propylene, cooking gas, and oxygenates, whereas tin oxide with oxidation 0 was found to promote aromatization to form benzene and C10+ aromatics. The oxidation state of tin oxide +2 was found to enhance oxygenates due to the basic property. Antimony oxide with oxidation state +5 was found to enhance the selectivity of propylene and cooking gas due strong acid strength. Moreover, the increase of calcination temperature was found to promote the agglomeration of Sb₂O₃. Sb₂O₃ on SAPO-34, therefore, behaves like sole antimony oxide. At calcination temperature 700 C°, Sb₂O₃ (Sb⁺³) was observed to promote oxygenate formation, while Sb₂O₅ (Sb⁺⁵) enhanced the formation of non-aromatics and benzene.

อุรุยา ชินนิยมพาณิชย์ : ปฏิกิริยาคีไฮเครชันของเอทานอลชีวภาพโคยใช้ตัวเร่งปฏิกิริยา ออกไซค์ของทิน หรือ แอนติโมนีบนซาโปสามสิบสี่ (Catalytic Dehydration of Bio-Ethanol to Hydrocarbons over SnO_x and SbO_x doped SAPO-34) อาจารย์ที่ปรึกษา: รศ. คร. ศิริ รัตน์ จิตการค้า 105 หน้า

ในช่วงที่ผ่านมาเอทานอลชีวภาพสำหรับใช้เป็นสารตั้งค้นสำหรับปฏิกิริยาคืไฮเครชัน เพื่อผลิตสารอะโรมาติกส์หรือสารไฮโครการ์บอน เช่น เอทิลีนโพรพิลีนและพาราไซลีนได้รับ ้ความสนใจอย่างแพร่หลาย ซาโปสามสิบสี่เป็นตัวเร่งปฏิกิริยาที่มีความเป็นกรคซึ่งใช้สำหรับการ เปลี่ยนเอทานอลชีวภาพให้เป็นโอเลฟินส์เบา การบรรจุออกไซค์ลงไปบนตัวเร่งปฏิกิริยามีอิทธิพล ต่อพฤติกรรมของตัวเร่งปฏิกิริยาเป็นอย่างยิ่ง การบรรจูเอนติโมนีออกไซค์และทินออกไซค์บนซา-้โปสามสิบสี่มีผลทำให้ตัวเร่งปฏิกิริยามีความแรงของกรดเพิ่มขึ้น และความเป็นกรคนั้นเพิ่มขึ้น ตามจำนวนออกซิเจนที่อยู่คิคกับไอออนของโลหะ เป้าหมายของงานวิจัยนี้มีวัตถุประสงค์เพื่อ ้ศึกษาอิทธิพลของเลขออกซิเคชันของคีบุกและพลวงออกไซค์ที่เปลี่ยนไปตามปริมาณออกไซค์ และอุณหภูมิในการเผาที่มีผลต่อผลิตภัณฑ์ที่ได้จากปฏิกิริยาดีไฮเครชันของเอทานอลชีวภาพ โดย ้ได้มีการศึกษาอิทธิพลของออกไซค์บริสุทธิ์ของธาตุทั้งสองเพื่อใช้เป็นฐานในการเปรียบเทียบกัน ้จากการศึกษาพบว่า ทินและแอนติโมนีมีคุณสมบัติในการไฮโครจิเนชันจึงทำให้ปริมาณก๊าซหุงต้ม ้สูงขึ้น ทินออกไซค์ที่มีเลขออกซิเคชันสี่ส่งเสริมปฏิกิริยาโอลิโกเมอไรเซชันและอะโรมาไทเซชัน ของโอเลฟีน ส่วนทินออกไซค์ที่มีเลขออกซิเคชันสองส่งเสริมการเกิดของสารประกอบออกซิเจน เนื่องจากความเป็นกรคด่ำ ส่วนในกรณีของแอนติโมนีออกไซค์นั้น การเกิดของโพรพิลีน ก๊าซหุง ด้ม และบิวทิลีนจากการใช้แอนติโมนีออกไซค์ที่มีเลขออกซิเคชันห้า สูงกว่าการใช้ตัวที่มีเลข ออกซิเคชันสามเป็นตัวเร่งปฏิกิริยา แต่เมื่อมีการบรรจุลงไปบนโปสามสิบสี่ ทินออกไซค์ที่มีเลข ้ออกซิเคชันสี่ช่วยเพิ่มการเกิดโพรพิถีน ก๊าซหุงต้ม สารประกอบที่มีออกซิเจน คีบูกออกไซด์ที่มี เลขออกซิเคชันสองนั้น พบว่าส่งเสริมการเกิดสารประกอบออกซิเจนเนื่องตัวมันจากความเป็นเบส ้ดีบุกออกใซด์ที่มีเลขออกซิเคชันห้าช่วยในการเกิดโพรพิลีนและก๊าซหุงต้มเนื่องจากมีความ แข็งแรงของความเป็นกรคสูง นอกจากนี้อุณหภูมิในการเผาส่งยังช่วยให้เกิดหลอมรวมของแอนติ-โมนีไตรออกไซค์ ทำให้มันมีพฤติกรรมเหมือนแอนติโมนีไตรออกไซค์บริสุทธ์ อีกทั้งเมื่อเพิ่ม ้อุณหภูมิในการเผา แอนดิโมนีไตรออกไซค์ช่วยเพิ่มการเกิคสารประกอบที่มีออกซิเจน ส่วน แอนติโมนีเพนตะออกไซค์ส่งเสริมในการเกิดอโรมาติกและเบนซีน

ACKNOWLEDGEMENT

This research work has not been possible to complete without the assistance and supports of following people and organizations.

Firstly, I would like to express my gratitude to my advisor, Assoc. Prof. Sirirat Jitkarnka who had always cared and paid attention to my research work since the beginning, giving the valuable_suggestions, attentive encouragement, and beneficial recommendations for my research work.

Secondly, I also would like to thank to the thesis committees, Assoc. Prof. Apanee Luengnaruemitchai and Dr. Pisanu Toochinda for their suggestions and recommendation in my research work.

I would like to express my sincere thanks to The Petroleum and Petrochemical College and The Center of Excellence on Petrochemical and Materials Technology for the scholarship and the financial support of this thesis.

In addition, my appreciation also extends to Sapthip Company Limited for providing bio-ethanol used as the feed in this research work.

My gratitude also extends to the Petroleum and Petrochemical College's staffs, who look after the analytical instruments and gave the good suggestion when I have a problem with the instruments.

I would like to thank all my friends for their support and help. Lastly, I would like to take this opportunity to give appreciation to my family for their invaluable support and encouragement at all time.

TABLE OF CONTENTS

vi

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	- iv
Acknowledgements	v
Table of Contents	vi
List of Tables	viii
List of Figures	xi

CHAPTER

÷.

-

Ι	INTRODUCTION	1
II	BACKGROUND AND LITERATURE REVIEW	3
	2.1 Bio-Ethanol	3
	2.2 Catalytic Dehydration of Bio-Ethanol to Hydrocarbons	3
	2.3 Antimony and Tin	8
III	EXPERIMENTAL	17
	3.1 Equipment	17
	3.2 Materials	17
	3.3 Experimental Procedures	18
	3.3.1 Catalyst Preparation	18
	3.3.2 Catalytic Reaction	19
	3.3.3 Product Analysis	19
	3.3.4 Catalyst Characterization	20
IV	RESULTS AND DISCUSSION	22
	4.1 Tin	22
	4.1.1 Pure Oxidation State of Tin	23

CHAPTER		PAGE	
	4.1.2 Int	reraction between Sn ⁰ and SAPO-34	29
	4.1.3 Sn	O _x /SAPO-34	32
	4.2 Antimon	у	52
	4.2.1 Pu	re Oxidation State of Antimony	52
	4.2.2 Int	eraction between Sb ⁰ and SAPO-34	57
	4.4.3 Sb	₂ O _x /SAPO-34	59
V	CONCLUSI	ONS AND RECOMMENDATIONS	77
-	REFERENC	ES	79
	APPENDIC	ES	86
	Appendix A	Gas and Oil Compositions from Using	
		Pure Metal Oxide	86
	Appendix B	Species and Surface Composition on	
1		Unsupported Catalysts	97
	Appendix C	Species and Surface Composition	
		on Supported Catalysts	98
	Appendix D	XRD Spectra of Supported Catalysts	101
	-		
	CURRICUL	UM VITAE	105

•

-

LIST OF TABLES

.

-

TABI	$-\mathbf{E}$	PAGE
2.1	The number of experiments for the second scope	16
2.2	The number of experiments for the third scope	16
4.1	Catalysts and their nomenclatures	_ 23
4.2	Specific surface area and pore characteristics of tin oxides	
	with different oxidation states	24
4.3	Specific surface areas and pore characteristics of SAPO-34	
	supported catalysts	33
4.4	Specific surface area and pore characteristics of antimony	
	with different oxidation states	52
A1	Gas and Oil Compositions from Using Metallic Tin and Tin	
	Oxides with Different Oxidation States as a Catalyst	86
A2	Gas and Oil Compositions from Using Metallic Antimony	
	and Antimony Oxides with Different Oxidation States as a	
	Catalyst	87
A3	Gas and Oil Compositions from Using SAPO-34 as a	
	Catalyst as a function of time on stream	88
A4	Gas and Oil Compositions from Using 5 wt% tin oxide	
	doped-SAPO-34 calcined at temperature 400 °C as a	
	Catalyst as a function of time on stream	89
A5	Gas and Oil Compositions from Using 7 wt% tin oxide	
	doped-SAPO-34 calcined at temperature 400 °C as a	
	Catalyst as a function of time on stream	90
A6	Gas and Oil Compositions from Using 5 wt% antimony	
	oxide doped-SAPO-34 calcined at temperature 400 °C as a	
	Catalyst as a function of time on stream	91

.

-

~

TABLE

.

.

-

ix

A7	Gas and Oil Compositions from Using 7 wt% antimony	
	oxide doped-SAPO-34 calcined at temperature 400 °C as a	
	Catalyst as a function of time on stream	92
A8	Gas and Oil Compositions from Using 5 wt% tin oxide	
	doped-SAPO-34 calcined at temperature 700 °C as a	
	Catalyst as a function of time on stream	93
A9	Gas and Oil Compositions from Using 7 wt% tin oxide	-
	doped-SAPO-34 calcined at temperature 700 °C as a	
	Catalyst as a function of time on stream	94
A10	Gas and Oil Compositions from Using 5 wt% antimony	
	oxide doped-SAPO-34 calcined at temperature 700 °C as a	
	Catalyst as a function of time on stream	95
A11	Gas and Oil Compositions from Using 7 wt% antimony	
	oxide doped-SAPO-34 calcined at temperature 700 °C as a	
	Catalyst as a function of time on stream	96
B1	Species of Tin on Fresh and Spent Sn^0 , SnO and SnO_2	97
B2	Species of Tin on Fresh and Spent Sb^0 , Sb_2O_3 and Sb_2O_5	97
C1	Species of Tin and Composition on 5 wt% Tin Oxide-Doped	
	SAPO-34 Calcined at temperature 400 °C	98
C2	Species of Tin and Composition on 7 wt% Tin Oxide-Doped	
	SAPO-34 Calcined at temperature 400 °C	98
C3	Species of Antimony and Composition on 5 wt% Antimony	
	Oxide-Doped SAPO-34 Calcined at temperature 400 °C	98
C4	Species of Antimony and Composition on 7 wt% Antimony	
	Oxide-Doped SAPO-34 Calcined at temperature 400 °C	99
C5	Species of Tin and Composition on 5 wt% Tin Oxide-Doped	
	SAPO-34 Calcined at temperature 700 °C	99
C6	Species of Tin and Composition on 7 wt% Tin Oxide-Doped	
	SAPO-34 Calcined at temperature 700 °C	99

.

TABLE

C7	Species of Tin and Composition on 7 wt% Tin Oxide-Doped	
	SAPO-34 Calcined at temperature 700 °C	99
C8	Species of Antimony and Composition on 5 wt% Antimony	
	Oxide-Doped SAPO-34 Calcined at temperature 700 °C	100
C9	Species of Antimony and Composition on 7 wt% Antimony	
	Oxide-Doped SAPO-34 Calcined at temperature 700 °C	100

LIST OF FIGURES

FIGURE

.

-

Reaction pathways to diethyl ether, ethylene and other higher	4
hydrocarbons compounds.	
Structure of HZSM-5 zeolite.	5
Schematic of the Chabazite(CHA) structure.	7
Properties of bulk antimony oxides.	9
Correlation between phase transformation along time-on-stream	10
and formaldehyde yield in the selective oxidation of methane.	
Sn-O phase diagram.	12
Effect of reduction temperature vs. time of reaction.	15
X-ray diffraction patterns of fresh tin oxides with different	
oxidation states.	24
X-ray diffraction patterns of spent tin oxides with different	
oxidation states.	24
Sn $3d_{5/2}$ XPS spectra of (A) fresh and spent metallic tins, and	
(B) SnO and (C) SnO ₂ .	25
Weight percentage of ethylene, propylene, cooking gas and	
butylenes in gas phase from using metallic tin, SnO, and SnO_2 .	27
Composition of oils using metallic tin, SnO, and SnO ₂ ,	
compared to the non-catalytic case.	28
Sn 3d _{5/2} XPS spectra of 5Sn ⁰ /SAPO-34 before and after	
treatment.	29
Tin species of $5Sn^0/SAPO-34$ before and after reaction.	29
Weight percentage of ethylene, propylene, cooking gas and	
butylenes in gas phase using $5 \text{Sn}^0/\text{SAPO-34}$.	30
Composition of oils using 5Sn ⁰ /SAPO-34.	31
Reaction pathway of ethanol to hydrocarbons.	32
	Reaction pathways to diethyl ether, ethylene and other higher hydrocarbons compounds. Structure of HZSM-5 zeolite. Schematic of the Chabazite(CHA) structure. Properties of bulk antimony oxides. Correlation between phase transformation along time-on-stream and formaldehyde yield in the selective oxidation of methane. Sn-O phase diagram. Effect of reduction temperature vs. time of reaction. X-ray diffraction patterns of fresh tin oxides with different oxidation states. X-ray diffraction patterns of spent tin oxides with different oxidation states. Sn 3d _{5/2} XPS spectra of (A) fresh and spent metallic tins, and (B) SnO and (C) SnO ₂ . Weight percentage of ethylene, propylene, cooking gas and butylenes in gas phase from using metallic tin, SnO, and SnO ₂ . Composition of oils using metallic tin, SnO, and SnO ₂ . Sn 3d _{5/2} XPS spectra of 5Sn ⁰ /SAPO-34 before and after treatment. Tin species of 5Sn ⁰ /SAPO-34 before and after reaction. Weight percentage of ethylene, propylene, cooking gas and butylenes in gas phase using 5Sn ⁰ /SAPO-34. Composition of oils using SSn ⁰ /SAPO-34. Reaction pathway of ethanol to hydrocarbons.

•

.....

-

4.11	XPS spectra of 5SnSAPO-34 calcined at 400 °C before and after		
	catalyst performance testing.	34	
4.12	XPS spectra of 7SnSAPO-34 calcined at 400 °C before and after		
	catalyst testing.	35	
4.13	Changes of species and compositions of tin oxides on 5 wt% tin		
	oxide-doped SAPO-34 with time-on-stream.	35	
4.14	Changes of species and compositions of tin oxides on 7 wt% tin		
	oxide-doped SAPO-34 with time-on-stream.	36	
4.15	Weight percentage of ethylene, propylene, cooking gas and		
	butylene in gas phase from using $5wt\%$ (\blacklozenge) and $7wt\%$ (\blacksquare) of tin		
	oxide on SAPO-34.	38	
4.16	Petroleum fractions in oils from 5wt% SnO _x /SAPO34.	39	
4.17	Petroleum fractions in oils from using 7wt% SnO _x /SAPO34.	40	
4.18	Composition of extracted oils from using 5wt. % SnO _x /SAPO-		
	34.	40	
4.19	Composition of extracted oils from 7 wt. % SnO _x /SAPO-34.	41	
4.20	XPS spectra of fresh and spent 5SnSAPO34 calcined at 700 °C.	42	
4.21	Changes of species and compositions of tin oxides on 5 wt.% tin		
	oxide-doped SAPO-34 calcined at 400 °C with time-on-stream.	43	
4.22	Changes of species and compositions of tin oxides on 5 wt.% tin		
	oxide-doped SAPO-34 calcined at 700 °C with time-on-stream.	43	-
4.23	Weight percent of ethylene, propylene, cooking gas and		
	butylenes from using 5 wt. % of tin oxide on SAPO-34 calcined		
	at 400 $C^{\circ}(\blacklozenge)$ and 700 $C^{\circ}(\blacksquare)$, respectively.	44	
4.24	Petroleum fractions in oils from using 5 wt. % of tin oxide		
	doped SAPO-34 catalyst calcined at 400 C° (left) and 700		
	C°(right).	45	
4.25	Composition of extracted oils from 5 wt.% of tin oxide-doped		
	SAPO34 catalyst calcined at 400 °C.	45	

÷

FIGURE

-

-

4.26	Composition of extracted oils from 5 wt.% of tin oxide-doped	
	SAPO34 catalyst calcined at 700 °C.	46
4.27	XPS spectra of fresh and spent 7SnSAPO34 calcined at 700 °C.	47
4.28	Changes of Species and compositions of tin oxides on 7 wt.% tin	
	oxide-doped SAPO-34 calcined at 400 °C.	48
4.29	Changes of Species and compositions of tin oxides on 7 wt.% tin	
	oxide-doped SAPO-34 calcined at 700 °C.	48
4.30	Percent weight of ethylene, propylene, cooking gas and	
	butylenes from using 7 wt. % of tin oxide on SAPO-34 calcined	
	at 400 C°(\blacklozenge) and 700C°(\blacksquare), respectively.	49
4.31	Petroleum fractions in oils from using 7 wt. % tin oxide doped	
	SAPO-34 catalysts calcined at 400 C° (left) and 700 C°(right).	50
4.32	Composition of extracted oils from 7 wt.% tin oxide doped	
	SAPO34 catalyst calcined at 400 °C.	50
4.33	Composition of extracted oils from 7 wt.% tin oxide doped	
	SAPO34 catalyst calcined at 700 °C.	50
4.34	X-ray diffraction patterns of fresh antimony oxide catalysts with	
	different oxidation states.	53
-4.35	X-ray diffraction patterns of spend antimony oxide catalysts	
	with different oxidation states.	53
4.36	Sb $3d_{3/2}$ XPS spectra of (A) fresh and spent unsupported metallic	
	antimony, (B) Sb_2O_3 , and (C) Sb_2O_5 .	54
4.37	Weight percentage of ethylene, propylene, cooking gas and	
	butylenes in the gas products from using metallic antimony,	
	Sb_2O_3 and Sb_2O_5 catalysts.	55
4.38	Composition of oils using metallic antimony, Sb_2O_3 and Sb_2O_5	
	catalysts.	56
4.39	Sb 3d _{3/2} XPS spectra of fresh and spent 5Sb ⁰ /SAPO-34.	57
4.40	Antimony species of 5Sb ⁰ SAPO-34 before and after reaction.	58

.

-

+

4.41	Weight percentage of ethylene, propylene, cooking gas and	
	butylenes in the gas product using 5Sb ⁰ /SAPO-34.	58
4.42	Composition of oils using 5Sb ⁰ /SAPO-34.	58
4.43	XPS spectra of 5wt% of antimony oxide-doped SAPO-34 before	
	and after catalyst performance testing.	61
4.44	XPS spectra of 7 wt% of antimony oxide-dopedSAPO-34 before	
	and after catalyst performance testing.	61
4.45	Changes of Species and compositions of antimony oxides on 5	
	wt.% tin oxide-doped SAPO-34 calcined at 400 °C.	62
4.46	Changes of Species and compositions of antimony oxides on 7	
	wt.% tin oxide-doped SAPO-34 calcined at 400 °C.	62
4.47	Weight percentage of ethylene, propylene, cooking gas and	
	butylenes in gas phase from $5wt\%$ (\blacklozenge) and $7wt\%$ (\blacksquare) of	
	antimony oxide on SAPO-34.	63
4.48	Petroleum fractions in oils from 5wt% antimony oxide SAPO-	
	34.	_ 64
4.49	Petroleum fractions in oils from 7wt% antimony oxide SAPO-	
	34.	65
4.50	Composition of oils from 5 wt.% of antimony oxide SAPO-34.	65
4.51	Composition of oils from 7 wt.% of antimony oxide SAPO-34.	65
4.52	XPS spectra of fresh and spent 5SbSAPO34 calcined at 700 °C.	67
4.53	Changes of Species and composition of antimony oxides on 5	
	wt.% tin oxide-doped SAPO-34 calcined at 400 °C.	67
4.54	Changes of Species and compositions of antimony oxides on 5	
	wt.% tin oxide-doped SAPO-34 calcined at 700 °C.	68
4.55	Weight percentage of ethylene, propylene, cooking gas and	
	butylenes from 5 wt. % antimony oxide on SAPO-34 calcined at	
	400 C°(\blacksquare) and 700C°(\blacklozenge), respectively.	69

xiv

-

-

•

4.56 Petroleum fractions in oils from using 5 wt. % antimony oxidedoped SAPO-34 catalysts calcined at 400 C° (left) and 700 C°(right). 70 4.57 Composition of oils from 5 wt.% of antimony oxide on SAPO-34 calcined at 400 C°. 71 4.58 Composition of oils from 5 wt.% of antimony oxide on SAPO- -34 calcined at 700 C°. 71 4.59 XPS spectra of fresh and spent 7SbSAPO34 calcined at 700 °C. 72 4.60 Changes of Species and compositions of antimony oxides on 7 wt.% antimony oxide-doped SAPO-34 calcined at 400 °C. 73 4.61 Changes of Species and compositions of antimony oxides on 7 wt.% antimony oxide-doped SAPO-34 calcined at 700 °C. 73 4.62 Weight percentage of ethylene, propylene, cooking gas and butylenes from using 7 wt. % antimony oxide on SAPO-34 74 calcined at 400 C°(♦) and 700C°(■), respectively. 4.63 Petroleum fractions in oils from using 7 wt. % antimony oxidedoped SAPO-34 catalysts calcined at 400 °C (left) and 700 °C 75 (right). 4.64 Composition of oils from 7 wt.% of antimony oxide-loaded SAPO-34 calcined at 400 C°. 76 4.65 Composition of oils from 7 wt.% of antimony oxide-loaded SAPO-34 calcined at 700 C°. 76 D1 XRD Spectra of fresh and spent 5 wt% Tin Oxide-Doped SAPO-34 Calcined at temperature 400 °C as a function of time. 101 D2 XRD Spectra of fresh and spent 7 wt% Tin Oxide-Doped 101 SAPO-34 Calcined at temperature 400 °C as a function of time. D3 XRD Spectra of fresh and spent 5 wt% Antimony Oxide-Doped SAPO-34 Calcined at temperature 400 °C as a function of time. 102

FIGURE

FIGURE

.

D4	XRD Spectra of fresh and spent 7 wt% Antimony Oxide-Doped	
	SAPO-34 Calcined at temperature 400 °C as a function of time.	102
D5	XRD Spectra of fresh and spent 5 wt% Tin Oxide-Doped	
	SAPO-34 Calcined at temperature 700 °C as a function of time.	103
D6	XRD Spectra of fresh and spent 7 wt% Tin Oxide-Doped	
	SAPO-34 Calcined at temperature 700 °C as a function of time.	103
D7	XRD Spectra of fresh and spent 5 wt% Antimony Oxide-Doped	
	SAPO-34 Calcined at temperature 700 °C as a function of time.	104