CHAPTER 11

THEORETICAL CONSIDERATIONS
2.1 Basic Equations and General Solutions

The constitutive relation for a homogeneous
poroelastic material with compressible constituents can
be expressed with respect to the conventional cylindrical
coordinate system (r,0,z), shown in Fig. 1, by using the
standard indicial notation*12 as
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In the above equation, Cj is the total stress
component of the bulk material; B and  are the strain
component and the dilatation of the solid matrix,
respectively; p is defined as the excess pore fluid
pressure (suction is considered negative): n, V and wu
denote the shear modulus, drained and undrained Poisson’
ratios, respectively. In addition, B is Skempton's pore
pressure coefficient and Gj is the Kronecker delta.

It is noted that 0"B<l and v<vI<05 for all
poroelastic materials(l)). The limiting cases of a
poroelastic solid with incompressible constituents and a
dry elastic material are obtained when w=05 and B=lI,
and B—0, respectively. The excess pore fluid pressure
can be expressed as
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where C is the variation of fluid volume per unit
reference volume. Let ; and V\j denote the average
displacement of solid matrix and the fluid displacement

relative to the solid matrix, respectively, in the ¥
direction (i=r,0,z). Then,

Vi = fgit (2.3)

where ¢ is the fluid discharge in the * direction
defined as

g = -K-J = 1z (2.4)
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In addition, K is the coefficient of permeability
of the medium.

The quasi-static governing equations for a
poroelastic  medium  with  compressible  constituents,
expressed in terms of stresses and pore pressure as hasic
variables'12l, can be transformed into Navier equations
with coupling terms and a diffusion equation by treating
the displacements, vi, and the variation of fluid volume,
£1, as the basic unknowns asl
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It can be shownlll that the general solutions for
eqns  (2.6) - (2.9) can be derived by applying Fourier
expansion, Laplace and Hankel transforms with respect to
the circumferential, time and radial coordinates,
respectively.

The application of the Fourier expansion with
respect to the circumferential coordinate 0 for the
displacements and the variation of fluid volume results
in
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where
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In egns (2.13) and (2.14), {L and Cm are
symmetric components and lijn and are anti-symmetric
components corresponding to the m* harmonic. The term

f'(0) denotes the derivative of f(0) with respect to the
circumferential coordinate 0.

The m~-order Laplace-Hankel transform of a
function <>rzt) with respect to the variables t and r,
respectively, is defined by<B
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and the inverse relationship is given by
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In the above equations, Jn(fr) denotes the Bessel
function' of the first kind of order m and \ is the
Hankel transform parameter. It should be noted that Y is
greater than the real part of all singularities of

Hm{<P(rzt)} and 1=V,

The general solutions for the m* harmonic of

solid and fluid displacements, pore pressure and stresses



in the Laplace-Hankel transform space can he expressed in
the following matrix form(9
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Xfes) = (A. B, C, D, E, F, G, H_>T (2.30)

and the matrices Rfez,) and (C. ) in egqns (2.18) and
(2.19) are explicitly given by eqns (A-I) to (A-6) in
Appendix A. The arbitrary functions AmC ), Bm®* ),...,
Hm4,) appearing in X(Cs) are to be determined Dy
employing appropriate boundary and/or continuity
conditions.

2.2 Stiffness Matrix

A multilayered system with a total of N
poroelastic layers overlying a poroelastic half-space 1is
considered in this section. Layers and interfaces are
numbered as shown in Fig. 2. A subscript " " is used to

denote quantities associated with the I layer ( =

1,2,...,N). For the M layer, the following relationships
can he established by using eqns (2.18) and (2.19):
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From eqns (2.31) to (2.34), <) denotes a vector

of generalized displacement for the 1 layer whose
elements are related to the Laplace-Hankel transforms of

the m* Fourier harmonic of displacements and pore
pressure of the top and bottom surfaces of the * layer.

Similarly, F(n) denotes a generalized force vector whose
elements are related to the Laplace-Hankel transforms of

the m* harmonic of tractions and fluid displacement of
the top and bottom surfaces of the * layer,

The vectors v() and f(0) in eqns (2.33) and (2.34)
are identical to Vand f defined in eqns (2.20) and (2.21)
except that the material properties of the * layer are
employed in the definition and z=zo or zml. Equation

(2.31) can he inverted to express c@) in terms of (> and
substitution into eqn (2.32) yields

F() = K@Qu() (2.35)

where K(n) can be considered as an exact stiffness matrix
in the Laplace-Hankel transform space describing the
relationship between the generalized displacement vector
M and the generalized force vector F() for the *
layer.

In eqn (2.35), the Tlayer stiffness matrix K(n)is
an  8x8 symmetric matrix and its elements, kg, are



functions of layer thickness, h(n), layer material
properties and Laplace and Hankel transform parameters,
and &1 respectively. Only negative exponentials that
decrease rapidly with increasing £, and h(n) are
involved in Kjj.

For the underlying half-space, the stiffness
matrix for the bottom half-space can be expressed as

FINM) = K (M) (N (2.36)
where

(N = (v(>(*  B)T (2.37)

FING) = {-T(NMD(EZNEL )T (2.38)

Due to the regularity condition at z—»Q0Q the

matrix K(N> is a 4x4 symmetric matrix. It is noted that
exponential terms of £ and are not involved in the

expression of K(M) and its elements depend only on the
material properties of the underlying half-space and the
Laplace and Hankel transform parameters and 8

respectively. The elements of KN and K(N) are
explicitly given by Senjuntichai and Rajapakse(9).

2.3 Global Stiffness Matrix

The global stiffness matrix of a multilayered
half-space, shown in Fig. 2, is assemhbled by using layer
and half-space stiffness matrices together with the
continuity conditions of tractions and fluid flow at the
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layer interfaces. For example, the continuity conditions
at the M interface can be expressed as

(1)- ) = T0 (2.39)

where f(1) and f(0) are as defined in eqn (2.21) and

) _ <T,‘“’ T® T® Q:)>T (2.40)
in which
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where (i=r0z2) and denote the m* Fourier harmonic

of the tractions and fluid source applied at the *
interface, respectively.

Consideration of eqn (2.40) at each layer
interface together with the layer and bottom half-space
stiffness matrices defined in eqns (2.35) and (2.36)
results in the following global stiffness equation of
order 4(N+I)
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2.4 Variational Formulation

Consider a multilayered poroelastic half-space
with an embedded elastic bar as shown in Fig. 3. The bar
is subjected to an axial load V0 and is assumed to be
perfectly bonded to the surrounding medium along its
contact surface. since we are concerned with the
deformation of an elastic bar which has a large length-
to-radius ratio, it is well justified to assume one-
dimensional behavior ~for the Dbar(@. The state of
deformation of the bar represented by the one-dimensional
theory can be expressed in the form

(25) = X ak(t)e (kzho (2.46)

In the foregoing equation, ak(t) is the arbitrary
coefficients, K denotes the number of terms which are
used to represent the deformation of the bar and hb is
the total length of the bar. The displacement profile
along the bar in eqn (2.46) is indeterminate within the
arbitrary coefficients a,(t), a2(t),...., akK(t). By using
Laplace transformation, eqn (2.46) can bDbe transformed
into the Laplace domain and rewritten as

(z, ) = (1)e_(k.)2ho (2.47)
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where  (z,) and otk(s) are the displacement profile and a
set of the arbitrary coefficients in the Laplace domain,
respectively. The strain energy of the elastic bar
corresponding to the assumed displacement function in the
Laplace domain can be expressed as

c-ip K <K (2.48)
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D*

£ * = Eb-EX for i = 1,23,...,Nt  (2.50)

Dn = 0 (2.51)

where b denotes the strain energy functional of the

elastic bar, a is the radius of the bar, Eb and E" are
the moduli of elasticity of the elastic bar and the i*
layer of the multilayered half-space, respectively. In
addition, Nt is the total number of elements used for
discretizing the bar and At denotes the thickness of the

M element of the bar as shown in Fig. 4. The derivation
of DjKis explicitly shown in Appendix B.

The strain energy of the multilayered poroelastic
half-space due to the deformation imposed along the
contact surface can Dbe determined if the body forces
acting through the volume enclosed by the ~contact
surface, , are known as shown in Fig. 4. These body
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forces can be computed from the following flexibility
equations

Voij = oNtand k=K (2.52)
K). = (bU.. )l- (2.53)
Kll = (pKi, o P1d, "™ SPRNYST (2.54)
pk = 6-(kei)Vhb (2.55)

From eqns (2.52) to (2.55), fjj is the flexibility
matrix which can Dbe determined by solving the global
stiffness equation of the multilayered half-space defined
by eqn (2.45) and its elements, fy, denote the vertical
displacements at point on the contact surface,
due to a body force of unit intensity distributed through
the volume of the j* element. Vector Bf is defined as the
body force acting through the j* element which causes the
displacement . In addition, denotes  the
displacement corresponding to each term of eqn (2.47)

with cti(s), a2(s),...,aK(s) equal to unity.
By using the body force BH, obtained from eqgn

(2.52), the strain energy of the multilayered half-space
can finally be expressed as

Us o i1 cl( )ae( )jaz (€I2/MAl (2.56)



The potential energy of the axial load VO at the
top of the bar in Fig. 3 due to the assumed displacement
function in the Laplace transform space can be expressed
as

W = -voﬁ o (s) (2.57)

In view of eqns (2.48), (2.56) and (2.57), the
total potential energy functional of the bar-multilayered
media system, L, can be written as

UT = »+  -v,£ S (2.58)

The minimization of the total potential energy

functional given by eqn (2.58) (i.e., ai, ~Q and

k=12,..K) results in the following linear simultaneous
equations

| 5a(9{2Dm+] | = 0 (2.59)

and 1 = 12,..K

The above equation represents the equilibrium
equation of the bar-multilayered media system. The
solution of the system of simultaneous equations, eqgn
(2.59), results in the numerical values of the arbitrary

functions <Xi(s), <( ),..., ctK(s) in the Laplace transform
space. The inverse Laplace transformation is applied to
transform those arbitrary functions from the Laplace
domain to the time domain. Finally, back substitution of



a,(t), az2(t),...,aK({t) into eqn (2.46) results in the time
histories of displacement profiles of the bar.
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