CHAPTER 11
NUMERICAL SOLUTION SCHEME
3.1 Determination of Flexibility Matrix

The development of a numerical solution scheme to
determine quasi-static behavior of an axially loaded
elastic bar embedded in a multilayered poroelastic half-
space is considered in this chapter. Consider an elastic
bar as shown in Fig. 4. The bar is discretized into Nt
elements. Let fy denote the vertical displacement at a

point Pj*Zj) on the ‘interface due to body forces of
unit intensity distributed in the volume of the j*
element. The displacement fy can be determined by solving
the global equation system, eqn (2.45).

Since the global equations (2.45) are formulated
by considering the continuity conditions at layer
interfaces and the solutions of eqn (2.45) are obtained
at those interfaces. Therefore, in order to evaluate fy,

the thickness of the j"element, Atj, must be discretized
into a finite number of interfaces for placing an applied
vertical patch load of unit intensity along the thickness
Atj to represent the approximate action due to the body
forces of unit intensity acting through the whole volume
of the j* element. The numerical integration scheme,
namely the trapezoidal rule, is wused in this step to
accumulate the vertical displacements which obtain from
placing the vertical patch load at each interface along
Atj to obtain f]].



3.2 The Inverse Laplace-Hankel Integral Transform

The solutions of eqn (2.45) are the Laplace-
Hankel transforms of displacements and pore pressure at
layer interfaces for discrete values of 4 and s- The
time domain response of a multilayered half-space is
determined by numerically evaluating the inverse
relationship of the integral appearing in eqn (2.17). The
Laplace inversion is carried out numerically and the
inversion of the integral with respect to 4 in eqn
(2.17) is  numerically evaluated by employing the
trapezoidal rule.

There are two Laplace inversion methods which are
widely wused in poroelasticity problems@®'(5'(10)'<15). The
first one was proposed by Stehfest(l> and the other by
Schapery(17). The formula due to Stehfest<d is given by
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where f denotes the Laplace transform of f(t) and
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and N is even. It was found<®> that the accurate time-
domain solutions can be obtained from eqn (3.1) with
N>6 for general poroelasticity problems. It s
important to note that the Stehfest scheme<d is
computationally quite demanding although it is accurate.
A simpler and more computationally efficient scheme is
given by Schapery(l5) which can be expressed as



f(t) * [sf] =05/t

where f denotes the Laplace transform
the Laplace transform parameter.
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