CHAPTER IV
DISCUSSION OF NUMERICAL RESULTS
4.1 Convergence and Accuracy of Numerical Solutions

A computer program based on the numerical
solution schemes described in the pervious chapter was
developed to study load transfer from an axially loaded
elastic bar to a multilayered poroelastic half-space.
First of all, the convergence of solutions with respect
to the following parameters is investigated:

1. the number of alpha terms, K, wused in the
assumed displacement function, w(zt) in eqn (2.46)

2. the total number of elements, Nt used in the

discretization of the volume of the bar as shown in Fig.
4

3. the upper limit of Hankel transform parameter,
CL, used in the numerical integration of egn (2.17) to
determine the flexibility matrix of the multilayered
half-space.

Table 1 shows the convergence of
nondimensionalized axial displacement at the top of the
bar, AOEMA/V(, with respect to the number of alpha terms.
A0 is the axial displacement of the bar at z=0 due to the
axial load VO applied at the top of the bar as shown in
Fig. 5. In addition, A is the cross-sectional area of the
bar at z=0. It can be seen that the solutions have good
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convergence. Note that, when the ratio of ED/Eh is
greater than 1000, the solutions converge with a few
terms of alpha. This is due to the fact that the elastic
bar will hehave as a rigid bar for the higher value ED/Eh
and the assumed displacement function of the rigid bar
requires that K is equal to one.

Table 2 and Table 3 present the convergence of
nondimensionalized displacement, AOEPA/V(a, with respect
to Nt and CL, respectively. The solutions in both Tahle 2
and Table 3 show good convergence for increasing values
of Nt and CL. It should be noted that numerical solutions
presented hereafter will he evaluated with K, Nt and
being equal to 12,14 and 25 respectively.

Numerical solutions obtained from the  two
numerical Laplace inversion schemes, namely, Stehfest,
given by eqn (3.1), and Schapery, given by eqn (3.3), are
compared in Table 4. It is evident that the solutions
from both schemes agree very closely. However, Stehfest’
scheme requires more computational effort than Schapery’
scheme. In this thesis, the Laplace inversion is carried
out by using Schapery' scheme in order to determine
quasi-static behavior of the bar.

The literature review indicates that there are a
number of researchers in the past who studied the problem
of load transfer from a bar to a homogeneous medium,
Consider a bar-homogeneous half-space system as shown in
Fig. 5. The comparison between solutions from existing
studies and the present study is presented in Tables 5
and 6. Table 5 shows the comparison of numerical
solutions for nondimensionalized axial displacement cf an
elastic bar embedded in homogeneous ideal elastic medium
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obtained from present procedure and Selvadurai and
Rajapakse*3l. As evident from the table, the numerical
results from both schemes are in good agreement with only
about 7% maximum difference. The difference is due to the
fact that the flexibility matrix in the present study was
evaluated by wusing numerical methods (due to the
complexity of the integrals involved in the global
stiffness matrix of the multilayered medium). By
contrast, the flexibility matrix obtained from Selvadurai
and Rajapakse' approach*3 is in the form of Lipschitz-
Hankel integrals which can be expressed in terms of
complete elliptic integrals and computed accurately by
using a high-precision software [library for special
mathematical functions.

Table 6 presents final solutions for
nondimensionalized axial displacement of the Dbar-
homogeneous half-space system of Fig. 6. wusing the
present scheme and the scheme proposed by Niumpradit and
Karasudhi(4). It is evident that the trend of both
solutions is in good agreement, 1.e. nondimensionalized
axial displacement decreases with increasing values of
the ratio ED/Eh. In addition, the maximum difference
between both solutions is about 8%,

It should be noted that as time approaches
infinity pore pressure tends to zero and the medium
becomes an ideal elastic one. Compared with the solution
obtained by Selvadurai and Rajapakse*3 in Table 5, the
numerical solutions obtained from the present study show
smaller difference than those obtained from Niumpradit
and Karasudhi*4l., Therefore, it can be concluded that the
present solution scheme gives a better approximation than
the scheme proposed by Niumpradit and Karasudhi(4).
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4.2 Numerical Results for Bar-Multilayered System

The quasi-static behavior of an elastic bar
embedded in a multilayered poroelastic half-space is
investigated in this section. A layered system consisting
of two poroelastic layers bonded to an underlying
poroelastic half-space, as shown in Fig. 6, is considered
in the parametric study.

The properties of the first layer are B({)=10,
V=025 and v(n=050; for the second layer, B@Q)=080,
W)=025 and for the wunderlying half-space, S ===

—=o V@=030. In addition, k@/k@=050  These
properties are kept as constants throughout this section
while other properties are varied in order to investigate
their effects on time histories of the axial displacement
of the bar. The total length of the bar , unless
otherwise specified, is set to be 10a. A nondimensional
time, t=c@t/a2, in the range 105<t*<105 is considered in
the numerical study. Note that () is the consolidation
coefficient of the second layer given by eqn (2.12). The
time histories of nondimensionalized axial displacements
of the bar, AE"A/VB (in which A0, A and VO are as

defined in section 4.1 and E2 denotes the modulus of

elasticity of the second layer), are shown from Fig. 7 to
Fig. 12.

The influence of permeability on the
nondimensionalized displacement is demonstrated in Fig. 7

by setting the ratio of k(/k(@ equal to 0.001,0.01,0.1,1.0,10

and 100, respectively. The thickness of the first and
second layer is equal to 5a It is found that the ratio
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KIO/k@ has a significant influence nondimensionalized

axial displacement rate. The variation of K({/K{@ results
in the shift of nondimensionalized axial displacement
profile in the time scale. The earliest final
displacement is reached for the maximum value of K({/K@
and the latest for the minimum ratio of K()/k@. It should
be noted that the numerical results in Fig. 7 show
identical initial and final nondimensionalized axial
displacement of the bar. This is due to the fact that the
material properties, V, vuand (I and the thickness of the

two layers are the same for all values of K()/K(2).

The influence of layer thickness on
nondimensionalized axial displacement of the bar s
presented in Fig. 8 in view of the ratio h(})/h(2). Note
that the total thickness of the two layers is equal to 10a
and the ratio of K(/K@ is 0.001. It is evident that the
initial displacements of the bar for different values of
h()/h (@ are different and their order of magnitude s
identical to that of h(})/h(2). This is due to the fact that
the wundrained behavior of the bar-multilayered medium
system is mainly governed by undrained Poisson' ratio.
The higher value of ratio h(l)/h(@ means the lesser
undrained compressibility of the multilayered medium
since v({@)>v(@). It is also found that the time to reach the
final displacement increases with increasing the value of
h()/h(2). These features are due to the fact that the
multilayered medium becomes more impermeable for the
higher ratio of h(@)/h(2), since KO/KQ=000L The final
nondimensionalized axial displacements of the bar are
also identical for all values of h(l)/h(@ since the elastic
properties (drained) for different layers are identical.
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Fig. 9 shows the effect of drained Poisson's
ratio on nondimensionalized axial displacement of the
bar. The values of drained Poisson's ratio for the second

layer are set at v(@=020, 025 and 0.30. It is found that
the final displacement depends on drained Poisson's ratio
because at the final condition, i.e. time approaches
infinity, the water has already hbeen drained and excess
pore pressure becomes zero. The multilayered poroelastic
half-space tends to behave like a multilayered elastic
one. The lower value of drained Poisson's ratio means the
higher compressibility of that layer since its thickness
is kept constant. Note that the initial displacements are
identical since the undrained property of different

layers is identical for each value of

Fig. 10 shows the effect of shear modulus on
nondimensionalized axial displacement of the bar. The
different values of shear modulus are shown in the
figure. It is found that the higher value of shear
modulus causes the reduction in the bar displacement,
This feature can be explained by the fact that the
layered medium becomes more rigid when shear moduli of
one and/or more layers are increased.

The influence of the bar length is presented in
Fig. 11. The length of the bar is varied from 10a to 30a.
The thickness of the first and second layer is the same
and the total thickness of these two layers are equal to
the total length of the bar. It is found that the bar
displacement is decreased for increasing the bar length,
This is due to the fact that longer bar means the contact
surface between the bar and the medium is increased. This
implies that the Jlonger bar will have more resisting
force than the shorter one.
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Fig. 12 demonstrates the relationship between the

ratio ED/EW) and nondimensionalized axial displacement of
the bar. It is evident that the displacement decreases

with increasing EL/EW) increases. This is due to the fact
that the strain of the bar depends on Eb and the bar

which has higher ratio EDb/E@® will have less strain than
the lower one.

Fig. 13 shows the Dbar-multilayered system
modelled from the real system of a pile embedded in
surrounding soil. The properties and profiles of soil are
given in Fig.13. The radius and length of the pile is 025
m. and 3150 m., respectively. The time-histories behavior
of the pile is shown in Fig. 14 and 15.

Fig. 14 and 15 demonstrate the nondimensionalized
displacement and nondimensionalized axial stress of the
pile, respectively. The final displacement is occured
when the nondimansional time, t* reaches 103. It can be
seen that the maximum and minimum stress are occured at z
= 0 and z = hb, respectively. In addition, It is
difficult to identify the influence of individual
parameters (layer thickness, material properties, etc.)
separately on the displacement and axial stress of the
pile.

It should be noted that since the final behavior
of the pile occurs when the nondimensional time, t*

reaches 103 the time, t* can be converted to the real
time, t, from the vrelation given in section 4.2. The
consolidation coefficient, c(2), can he determined from eqn
(2.12) by using the properties of the second layer

(v =025 1i2=035 BQ=10, KQ2)=IxKru m4kg-sec,  =506x10



kg/m2). It can be shown that, for the pile-soil system as
shown in Fig. 13, the final displacement occurs when the
real time reaches 18 years and the final displacement of
the pile which is subjected to service load about 130 tons
is about 0007 meter.
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