DEVELOPMENT OF NATURAL RUBBER MATRIX USING IN ELECTRICAL STIMULI TRANSDERMAL DRUG DELIVERY APPLICATION

.

.

Sanchalit Choowongapichat

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan. The University of Oklahoma, and Case Western Reserve University

2015

0

o

Thesis Title:	Development of Natural Rubber Matrix using in Electrical	
	Stimuli Transdermal Drug Delivery Application	
By:	Sanchalit Choowongapichat	
Program:	Polymer Science	
Thesis Advisor: .	Prof. Anuvat Sirivat	

Accepted by The Petroleum and Petrochemical College. Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

..... College Dean (Asst. Prof. Pomthong Malakul)

Thesis Committee:

Anivationizal

(Prof. Anuvat Sirivat)

Ratana Rujirar and F

(Assoc. Prof. Ratana Rujiravanit)

Sumanman niamlang (Dr. Sumonman Niamlang)

ABSTRACT

5672022063: Polymer Science Program

Sanchalit Choowongapiichat: Development of Natural Rubber
Matrix using in Electrical Stimuli Transdermal Drug Delivery
Application.

Thesis Advisor: Prof. Anuvat Sirivat 156 pp.

Keywords: Drug delivery/ Natural rubber/ Ionic drug/ Electrical potential/ Plasticizer

The transdermal drug delivery system (TDDS) is a system to the transport the specific dose of drug into the blood system through the skin. TDDS has been continuously developed and improved for suing with a wide variety of drug molecules. In this work, the influence under effect of the electrical potential and plasticizers were studied for the drug delivery system. Indomethacin (IN), an antiinflammatory drug, was used as an inoinc drug model which added in plasticizers to develope the efficient drug transportation. The drug-loaded plasticizer was mixed with natural rubber latex (NR) to prepare a transdermal patch by UV-curing method. The permeation of indomethacin in phosphate-buffered saline (PBS) buffer (pH 7.4) through IN-loaded NR film was carrried out by a modified Franz diffusion cell at a control temperature at 37 °C. UV-visible spectrometer was used to determine the amount of drug permeation. The results confirmed that an electrical potential and plasticizer can develope the diffusion of drug from a patch through the skin by generating electro-repulsive force.

บทคัดย่อ

สรรชลิต ชูวงศ์อภิชาติ : การพัฒนาแผ่นบรรจุยาจากยางธรรมชาติ เพื่อประยุกต์ใช้ใน แผ่นนำส่งยาโคยควบคุมด้วยกระแสไฟฟ้า (Development of Natural Rubber Matrix using in Electrical Stimuli Transdermal Drug Delivery Application) อ. ที่ปรึกษา : ศ.ดร. อนุวัฒน์ ศิริวัฒน์ 156 หน้า

ระบบนำส่งยาผ่านทางผิวหนังถูกพัฒนาและเพื่อเพิ่มประสิทธิภาพของการรักษา โดย หลีกเลี่ยงการถูกทำลายของยาจากระบบทางเดินอาหาร หรือการเกิดเมตาบอลิซึมของยาที่ตับ นอกจากนี้ยังช่วยรักษาระดับปริมาณยาในเลือดให้คงที่ แต่เนื่องจากธรรมชาติของผิวหนังที่เป็น เยื่อเลือกผ่านจึงส่งผลเป็นข้อจำกัดในการแพร่ผ่านของยาจากชั้นผิวหนังไปยังอวัยวะเป้าหมายและ จำกัดประเภทของยา ซึ่งทำให้ประสิทธิภาพในการรักษาลดลง ดังนั้นจึงได้มีการใช้กระแสไฟฟ้า เพื่อลดข้อจำกัดดังกล่าว เป็นผลทำให้ระบบนี้สามารถใช้ได้กับยาหลากหลายชนิดและทำให้การ รักษามีประสิทธิภาพดีขึ้น งานวิจัยนี้ศึกษาการปลดปล่อยยาอินโดเมธาซินที่บรรจุในแผ่นยาง ธรรมชาติผสมพลาสติไซเซอร์ โดยใช้ Modified-Franz diffusion cell ในฟอสเฟตบัฟเฟอร์ ซาลีนที่ก่า พีเอช 7.4 อุณหภูมิ 37 องศาเซลเซียส ผลการทดลองพบว่าปริมาณการปลดปล่อยยาอิน โดเมธาซินเพิ่มขึ้นเมื่อเพิ่มปริมาณพลาสติไซเซอร์ และปริมาณความแรงของกระแสไฟฟ้าในแผ่น ยางธรรมชาติ เนื่องจากเกิดแรงผลักทางไฟฟ้าระหว่างประจุลบของยาและประจุลบบนขั้วไฟฟ้าที่ วางบนแผ่มยาง

ACKNOWLEDGEMENTS

Appreciation is expressed to those who have made contributions to this dissertation. The author would like to express sincere sincere gratitude to my advisor Prof. Anuvat Sirivat for his assistances. He has provided very useful guidance throughout this research.

I would like to thank The Petroleum and Petrochemical College, Chulalongkorn University where I have gained the invaluable knowledge in the polymer science and also greatly appreciate all professors, lecturers, and academic staffs who have tendered support during all these years spent M.S. Study.

Special thank goes to Conductive and Electroactive Polymers Research Unit of Chulalongkorn University, Thailand Research Fund (TRF-RTA), and Royal Thai Government.

Assoc. Prof. Ratana Rujiravanit and Dr. Sumonman Niamlang are further acknowledged for being on my thesis committee, making valuable comments and suggestions and her friends in Conductive and Electroactive Polymers Research Unit of Chulalongkorn University for their various suggestions and discussion on this work and the oral presentation.

I wish to express my deep gratitude to my family for their unconditioned love, understanding and very support during my stay in the college.

The author is grateful for the scholarship and funding of this thesis work provided by The Petroleum and Petrochemical College.

This research work was partially supported by the Ratchadapisek Sompoch Endowment Fund (2013), Chulalongkorn University (CU-56-900-FC) and Thailand Research Fund (IRG5780012).

Ø

TABLE OF CONTENTS

Title Page		i
Abstract (in English)	2. H 1: ¹¹	•iii
Abstract (in Thai)		iv
Acknowledgements		V
Table of Contents		vi
List of Tables		Х
List of Figures		XV
Abbreviations		XX
List of Symbols		xxi

CHAPTER

Ø

.

Ι	INTRODUCTION	1
II	LITERATURE REVIEW	3
	2.1 Transdermal Drug Delivery System	3
	2.2 Methods of Controlled Drug Release	4
	2.3 Natural Rubber	12
	2.4 UV Curing	19
	2.5 Anti-inflammatory Drugs	22
III	EXPERIMENTAL	25
	3.1 Materials	25
	3.2 Methodology	25
	3.2.1 Preparation of Deproteinized Natural Rubber	25
	3.2.2 Preparation of Drug-loaded Natural Rubber Films	26
	3.2.3 Preparation of Phosphate Buffered Saline (PBS buffer)	26
	3.2.4 Preparation of Pig Skin	27

CHAPTER

-

PAGE

61

	3.3 Ch	naracterizations	27
	3.3	3.1 Fourier Transforms Infrared Spectrometer, FT-IR	27
	3.3	3.2 Thermogravimetry Differential Thermal	
		Analyzer, TG-DTA	27
	3.3	3.3 Scanning Electron Microscope, SEM	27
	3.3	3.4 CHNS/O Elemental Analyzer	27
	3.3	3.5 UV-visible Spectrophotometer	28
	3.3	3.6 Crosslink Density of Natural Rubber Film	28
	3.4 Dr	ug Release Experiments	29
	3.4	4.1 Spectrophotometric Analysis of Model Drug	29
	3.4	4.2 Determination of Drug Content	29
	3.4	4.3 In vitro Drug Release Study	29
IV	DEVE	LOPMENT OF NATURAL RUBBER MATRIX	
	USING	G IN ELECTRICAL STIMULI TRANSDERMAL	
	DRUG	DELIVERY APPLICATION	30
	4.1 Ab	ostract	30
	4.2 Int	roduction	30
	4.3 Ex	perimental	32
	4.4 Re	sults and Discussion	36
	4.5 Co	onclusions	44
	4.6 Ac	knowledgements	45
	4.7 Re	ferences	45

V CONCLUSIONS

REFERENCES	62

APPENDICE	ES	68
Appendix A	Preparation of Natural Rubber Film	68
Appendix B	Preparation of Deproteinized Natural Rubber via	
	Saponification Method	85
Appendix C	Nitrogen Content of Deproteinized Natural Rubbe	r 87
Appendix D	Cytotoxicity Testing	91
Appendix E	Functional Groups of Transdermal Natural Rubber	r
	Patch	95
Appendix F	Thermal Properties of Transdermal Natural Rubbe	r
	Patch	99
Appendix G	Scanning Electron Microscope (SEM) Images	101
Appendix H	Indomethacin Characteristics	104
Appendix I	Determination of Actual Drug Content	107
Appendix J	Determination of the Crosslink Density of	
	Transdermal Natural Rubber Patch	110
Appendix K	Pig Skin Preparation	112
Appendix L	Release Kinetics of Model Drug from Natural	
	Rubber Patch	113
Appendix M	Determination of Amounts and Diffusion	
	Coefficient of IN Permeated from Natural Rubber	
	Patch with Various Types of Plasticizer in an	
	Absence of Electrical Potential	115
Appendix N	Determination of Amounts and Diffusion	
	Coefficient of IN Permeated from Natural Rubber	
	Patch with Various Amount of Plasticizer in an	
	Absence of Electrical Potential	122
Appendix O	Determination of Amounts and Diffusion	
	Coefficient of IN Permeated from	
	300IN-10EG_DCNR1 with Various Electrical	
	Potentials	130

CHAPTER

. .

Appendix P	Determination of Amounts and Diffusion	
	Coefficient of IN Permeated from	
	200IN-10EG_DCNR1 and 200IN-10EG_DPNR1	
	under an Electrical Potential (9 V)	140
Appendix Q	Determination of Amounts and Diffusion	
	Coefficient of IN Permeated from	
	200IN-10EG_DPNR1 with Various Electrical	
	Potentials	146

CURRICULUM VITAE 156

PAGE

.

LIST OF TABLES

TABL	TABLE	
4.1	Information of IN-loaded plastiizers_DCNR1 using crosslinking	
	agent of 0.3 %v/v and photoinitiator of 1 %wt of rubber content	57
	using initially 5 mL of rubber latex	
4.2	Crosslinking density and nitrogen content of DCNR1 and DPNR1	58
4.3	Release kinetic data	59
A1	Natural rubber film preparation at various amounts of crosslinking a	
	ethylene glycol (EG) 10 mL using initially 5 mL of DCNR	68
A2	Effect of types of plasticizer (10 mL) to prepare natural rubber film	
	by using crosslinking agent (CR) at 0.5 $%v/v$ and photoinitiator	
	(PhI) at 1.67 %wt of DRC using initially 5 mL of DCNR	69
A3	Natural rubber film preparation by using crosslinking agent (CR) at	
	0.5 %v/v and photoinitiator (PhI) 1.67 %wt of DRC with various	
	amounts of EG using initially 5 mL of DCNR	71
A4	Information of IN-loaded plastiizers_DCNR1 using crosslinking	
	agent (CR) at 0.5 %v/v and photoinitiator (PhI) at 1.67 %wt of	
	DRC using initially 5 mL of DCNR	72
A5	Deproteinized natural rubber film preparation by using crosslinking	
	agent at 0.5 $%v/v$ and photoinitiator at 1.67 %wt of DRC at various	
	amounts of NH3 using initially 5 mL of DPNR	73
A6	Deproteinized natural rubber film preparation by using crosslinking	
	agent at 0.5 $%v/v$ and photoinitiator at 1.67 %wt of DRC using	
	various of plasticizers using initially 5 mL of DPNR	·75
A7	Deproteinized natural rubber film preparation by using crosslinking	
	agent at 0.5 $%v/v$ and photoinitiator at 1.67 %wt of DRC using	
	various types and amounts of surfactant using initially amount of	
	EG 10 mL per 5 mL of DPNR	76

TABLE

A8	Deproteinized natural rubber film preparation by using	
	crosslinking agent at 0.5 $%v/v$ and photoinitiator at 1.67 $%wt$ of	
	DRC using various types and amounts of surfactant using	79
	initially amount of PG 10 mL per 5 mL of DPNR	
A9	Deproteinized natural rubber film preparation by using	
	crosslinking agent at 0.5 $%v/v$ and photoinitiator at 1.67 %wt of	
	DRC using various types and amounts of surfactant using	
	initially amount of GLY 10 mL per 5 mL of DPNR	80
A10	Deproteinized natural rubber film preparation by using	
	crosslinking agent at 0.5 $\%$ v/v and photoinitiator at 1.67 $\%$ wt of	
	DRC using various types and amounts of surfactant using	
	initially amount of DBP 10 mL per 5 mL of DPNR	82
A11	Dissolution of IN in PDMS by various types of surfactant using	
	initially amount of PDMS at 10 mL	83
B1	Condition of deproteinized natural rubber via saponification	
	method	86
C1	Amounts of nitrogen in deproteinized natural rubber latex	87
C2	Amounts of nitrogen in deproteinized natural rubber latex (various amount of SDS)	0
C3	Amounts of nitrogen in natural rubber latex before and after curing	89
C_{4}	Amount of nitrogen in deproteinized natural rubber film	90
	Percentages of cell viability of the samples (1 st test)	92
D1	Percentages of cell viability of the samples (2 nd test)	02
D2	Percentages of cell viability of the samples (2 rd test)	92
D4	Percentages of cell viability of the samples $(4^{\text{th}} \text{ test})$	94
FI	The characteristic neaks of natural rubber film	97
F2	Assignments of bands of indomethacin (Dupeyron <i>et al.</i> 2013)	97
F1	The decomposition temperature and weight loss $(\%)$ in TGA)1
I I	thermograms of natural rubber natch and indomethacin	100
	mermograms of natural rubber paten and mubinematin	100

σ

-

PAGE

ø

Hl	The absorbance of indomethacin at various concentrations at 324	
	nın	106
I1	The raw data of the determination of actual amount of IN in the	
	IN-loaded natural rubber films	107
J1	The crosslink density of natural rubber film with various types of	
	plasticizer after immersion in toluene for 5 days	111
Ml	The diffusion coefficients (D) of IN permeated from 100IN-	
	10PG_DCNR1, 100IN-10GLY_DCNR1, and 100IN-	
	10EG_DCNR1, pH 7.4 at 37 °C, E = 0 V	118
M2	The absorbance intensity and amount of IN permeated from	
	100IN-10EG_DCNR1 without electrical potential	119
M3	The absorbance intensity and amount of IN permeated from	
	100IN-10GLY_DCNR1 without electrical potential	120
M4	The absorbance intensity and amount of IN permeated from	
	100IN-10PG_DCNR1 without electrical potential	121
N1	The diffusion coefficients (D) of IN permeated from	
	100IN-5EG_DCNR1, 100IN-10EG_DCNR1, and	
	100IN-15EG_DCNR1 without electrical potential, pH 7.4 at 37 °C	126
N2	The absorbance intensity and amount of IN permeated from	
	100IN-5EG_DCNR1 without electrical potential	127
N3	The absorbance intensity and amount of IN permeated from	
	100IN-10EG_DCNR1 without electrical potential	128
N4	The absorbance intensity and amount of IN permeated from	
	100IN-15EG_DCNR1 without electrical potential	129
01	The diffusion coefficients (D) of IN permeated from	
	300IN-10EG_DCNR1 with various electrical potentials, pH 7.4	
	at 37 °C	134

-

02	The absorbance intensity and amount of IN permeated from	
	300IN-10EG_DCNR1 under an absence of electrical potential	
	(E = 0 V)	135
03	The absorbance intensity and amount of IN permeated from	
	$300IN-10EG_DCNR1$ under an electrical potential (E = 3 V)	136
04	The absorbance intensity and amount of IN permeated from	
	300IN-10EG_DCNR1 under an electrical potential ($E = 5 V$)	137
05	The absorbance intensity and amount of IN permeated from	
	$300IN-10EG_DCNR1$ under an electrical potential (E = 7 V)	138
06	The absorbance intensity and amount of IN permeated from	
	300IN-10EG_DCNR1 under an electrical potential ($E = 9 V$)	139
P1	The diffusion coefficients (D) of IN permeated from	
	200IN-10EG_DCNR1 and 200IN-10EG_DPNR1 under	143
	electrical potentials at 9 V (sample area 3.14 cm ²), pH 7.4, 37 $^{\circ}$ C	
P2	The absorbance intensity and amount of IN permeated from	
	200IN-10EG_DCNR1 under electrical potentials at 9 V	144
Р3	The absorbance intensity and amount of IN permeated from	
	200IN-10EG_DPNR1 under electrical potentials at 9 V	145
Q1	The diffusion coefficients (D) of IN permeated from the	
	200IN-10EG_DPNR1 with various electrical potentials, pH 7.4	
	at 37 °C	150
Q2	The absorbance intensity and amount of IN permeated from	
	2001N-10EG_DPNR1 under an absence of electrical potential	
	(E = 0 V)	151
Q3	The absorbance intensity and amount of IN permeated from	
	200IN-10EG_DPNR1 under an electrical potential ($E = 3 V$)	152
Q4	The absorbance intensity and amount of IN permeated from	
	200IN-10EG_DPNR1 under an electrical potential ($E = 5 V$)	153

TABLE

PAGE

Q5	The absorbance intensity and amount of IN permeated from	
	200IN-10EG_DPNR1 under an electrical potential ($E = 7 V$)	154
Q6	The absorbance intensity and amount of IN permeated from	
	200IN-10EG_DPNR1 under an electrical potential ($E = 9 V$)	155

-

LIST OF FIGURES

FIGURE		PAGE	
2.1	Drug concentrations at site of therapeutic action after delivery as		
	an injection (thin line) and as a temporal controlled release		
	system (bold line) (Uhrich, et al., 1999).	4	
2.2	Drug delivery from an ideal distribution controlled release		
	system. Bold line: Drug concentrations at site of therapeutic		
	action. Thin line: systemic levels-in which side effects occur		
	(Uhrich, et al., 1999).	5	
2.3	The structure of cis 1, 4-polyisoprene.	12	
2.4	The structure of some glucocorticoids.	22	
2.5	The structure of common NSAIDs.	23	
4.1	Transmittance infrared spectra of: a) IN; b) 10EG_DCNR1; c)		
	200IN-10EG_DPNR1.	51	
4.2	Plot of log M_t/M_∞ versus log time at various types of plasticizer		
	under an absence of electrical potential, pH 7.4, 37 °C.	52	
4.3	SEM micrograph of: (A) 10EG_DCNR1 and (B) 300IN-		
	10EG_DCNR1 (a and b: surface of rubber patch after permeation		
	test without and with apply electrical potential (9 V),		
	respectively, c and d: cross section of rubber patch after		
	permeation test without and with apply electrical potential (9 V),		
	respectively).	52	
4.4	Amount of IN permeated from IN loaded EG_DCNR1 at various		
	amount of EG versus time $t^{1/2}$ under an absence of electrical		
	potential, pH 7.4, 37 °C.	53	
4.5	Amount of IN permeated from 300IN-10EG_DCNR1 versus		
	time $t^{1/2}$ at various electrical potentials (0-9 V).	54	
4.6	Amount of IN permeated from 200IN-10EG_DCNR1, and		
	200IN-10EG_DPNR1 versus time t ^{1/2} under an electrical		
	potential (9 V) (sample area 3.14 cm ²), pH 7.4, 37 °C.	55	

.

FIGURE

~

PAGE

0

4.7	Amount of IN permeated from 200IN-10EG_DPNR1 versus	
	time $t^{1/2}$ at various electrical potentials (0-9 V).	56
Bl	Deproteinized natural rubber method via saponification method.	85
El	FT-IR spectra of DCNR1 patches.	95
E2	FT-IR spectra of DPNR1 patches	96
E3	FT-IR spectra of DCNR1 and DPNR1 patches.	98
F1	TGA thermograms of transdermal natural rubber patch.	99
Gl	SEM micrographs of: (a) 100IN-10EG_DCNR1 after the release	
	study in PBS buffer pH 7.4 for 48 h; (b) 100IN-10PG_DCNR1	
	after the release study in PBS buffer pH 7.4 for 48 h; and (c)	
	100IN-10GLY_DCNR1 after the release study in PBS buffer pH	
	7.4 for 48 hat magnification of 1200x.	101
G2	SEM micrographs of: (a) 300IN-10EG_DCNR1 before the	
	permeation study; (b) 300IN-10EG_DCNR1 under an absence of	
	electrical potential ($E = 0$ V); under electrical potential at (c) $E =$	
	3 V; (d) $E = 5$ V; (e) $E = 7$ V; and (f) $E = 9$ V at magnification of	
	50.	101
G3	SEM micrographs of: (a) 200IN-10EG_DPNR1 before the	
	permeation study; (b) 200IN-10EG_DPNR1 under an absence of	
	electrical potential ($E = 0$ V); under electrical potential at (c) $E =$	
	3 V; (d) $E = 5$ V; (e) $E = 7$ V; and (f) $E = 9$ V at magnification of	
	50.	102
G4	SEM micrograph of: (A) 10EG_DCNR1 and (B) 300IN-	
	10EG_DCNR1(a and b: surface of rubber patch after permeation	
	test without and with apply electrical potential (9 V),	
	respectively, c and d: cross section of rubber patch after	
	permeation test without and with apply electrical potential (9 V),	
	respectively).	103

xvi

HI	The UV-visible spectrum of IN.	104
FIGUI	RE	PAGE
H2	The calibration curve of indomethacin dissolved in PBS buffer at	
	324 nm.	105
K1	A pigskin membrane.	112
Ml	Amount of IN permeated from 100IN-10PG_DCNR1,	
	100IN-10GLY_DCNR1, and 100IN-10EG_DCNR1 at the	
	crosslink ratio at 0.3 $%v/v$ of DCNR versus time t under an	
	absence of electrical potential, pH 7.4, 37 °C.	115
M2	Plot of log M_t/M_{∞} versus log time from 100IN-10PG_DCNR1,	
	100IN-10GLY_DCNR1, and 100IN-10EG_DCNR1 at the	
	crosslink ratio of 0.3 %v/v of DCNR under an absence of	
	electrical potential, pH 7.4, 37 °C.	116
M3	Amounts of IN permeated from 100IN-10PG_DCNR1.	
	100IN-10GLY_DCNR1, and 100IN-10EG_DCNR1 at the	
	crosslink ratio of 0.5 %v/v of DCNR versus time $t^{1/2}$ under an	
	absence of electrical potential, pH 7.4, 37 °C.	117
NI	Amounts of IN permeated from natural rubber patches of various	
	plasticizer amounts versus time t under an absence of electrical	0
	potential, pH 7.4, 37 °C.	122
N2	Plot of log M_t/M_{∞} versus log time from 100IN-5EG_DCNR1,	
	100IN-10EG_DCNR1, and 100IN-15EG_DCNR1 at the	
	crosslink ratio of 0.3 $%v/v$ of DCNR under an absence of	
	electrical potential, pH 7.4, 37 °C.	123
N3	Amount of IN permeated from 100IN-5EG_DCNR1, 100IN-	
	10EG_DCNR1, and 100IN-15EG_DCNR1 at the crosslink ratio	
	of 0.5 %v/v of DCNR versus time $t^{1/2}$ under an absence of	
	electrical potential, pH 7.4, 37 °C.	124

σ

1

xvii

FIGURE

o

.

PAGE

N4	Diffusion coefficients (D) of IN permeated from 100IN-	•
	5EG_DCNR1, 100IN-10EG_DCNR1, and 100IN-	
	15EG_DCNR1 without electrical potential, pH 7.4, 37 °C.	125
01	Amount of IN permeated from 300IN-10EG_DCNR1 with	
	various electrical potentials, pH 7.4, 37 °C.	130
02	Plot of log M_t/M_c versus log time from 300IN-10EG_DCNR1 at	
	various electrical potentials (0-9 V) at the crosslink ratio of	
	0.3 %v/v of, pH 7.4, 37 °C.	131
03	Amount of IN permeated from 300IN-10EG_DCNR1 at the	
	crosslink ratio of 0.5 %v/v of DCNR versus time $t^{1/2}$ at various	
	electrical potentials (0-9 V).	132
04	Diffusion coefficient, D, of IN permeated from 300IN-	
	10EG_DCNR1 versus electrical potentials.	133
Pi	Amount of IN permeated from 200IN-10EG_DCNR1 and	
	200IN-10EG_DPNR1 under electrical potentials at 9 V (sample	
	area 3.14 cm ²), pH 7.4, 37 °C.	140
P2	Plot of log M_t/M_x versus log time from 200IN-10EG_DCNR1	
	and 200IN-10EG_DPNR1 under electrical potentials at 9 V	
	(sample area 3.14 cm ²), pH 7.4, 37 °C.	141
Р3	Amount of IN permeated from 200IN-10EG_DCNR1 and	
	200IN-10EG_DPNR1 under electrical potentials at 9 V (sample	
	area 3.14 cm ²), pH 7.4, 37 °C.	142
Q1	Amount of IN permeated from 200IN-10EG_DPNR1 with	
	various electrical potentials, pH 7.4, 37 °C.	146
Q2	Plot of log M_t/M_{∞} versus log time from 200IN-10EG_DPNR1 at	
	various electrical potentials (0-9 V) at the crosslink ratio of	
	0.3 %v/v, pH 7.4, 37 °C.	147

~

FIGURE		PAGE
Q3	Amount of IN permeated from 200IN-10EG_DPNR1 at the	
- 	crosslink ratio of 0.5 %v/v of DPNR versus time $t^{1/2}$ at various	
	electrical potentials (0-9 V).	148
Q4	Diffusion coefficient, D, of IN permeated from	
	200IN-10EG_DPNR1 versus electrical potentials.	149

ABBREVIATIONS

-

Avg	Average
DPNR .	Deproteinized Natural Rubber
DCNR	Double-centrifuged Natural Rubber
FTIR	Fourier Transform Infrared Spectromerter
IN	Indomethacin
PCz	Polycarbazole
SD	Standard deviation
SEM	Scanning Electron Microscope
TG-DTA	Thermogravimetry Differential Thermal Analyzer
TDDS	Transdermal Drug Delivery System
UV-visible	UV-visible spectrophotometer

LIST OF SYMBOLS

Ms	weight of the sample after submersed in the buffer solution (g)
M_d	weight of sample after submersed in the buffer solution (g)
Mi	initial weight of the sample (g)
Ve	the number of chains in a real network per unit volume
V_1	the molar volume of solvent
Vr	the polymer volume fraction in swollen state
χ	the Flory interaction parameter of natural rubber
А	the weight of sample measured in air (g),
В	the weight of sample measured in MeOH (g),
M _t	amounts of drug release at time (mg)
$M_{\alpha\gamma}$	amounts of drug release at time infinity (mg)
M_{t}/M_{∞}	fractional of drug release
k	kinetic constant (h ⁻ⁿ)
k _H	Higuchi kinetic constant (h ⁻ⁿ)
n	diffusion scaling exponent
Q	amount of material flowing through a unit cross-section of barrier
	(g/cm^2)
C ₀	initial drug concentration in the film (g/cm ³)
D	diffusion coefficient of a drug (cm^2/s)
t	time (h)

1.41