REFERENCES

- Abraham, E.K., and Ramesh, P. (2002) Natural rubber latex products: concerns in health care. <u>Journal of Macromolecular Science, Part C: Polymer Reviews</u>, 4(2), 185-234.
- Alexander, A., Dwivedi, S., Ajazuddin, Giri, T.K., Saraf, S., Saraf, S., and Tripathi, D.K. (2012) Approaches for breaking the barriers of drug permeation through transdermal drug delivery. <u>Journal of Controlled Release</u>. 164, 26– 40.
- Aw, M.S., Bariana, M., Yu, Y., Addai-Mensah, J., and Losic, D. (2012) Surface functionalized diatom microcapsules for drug delivery of water-insoluble drugs. Journal of Biomaterials Applications, 28(2), 163–174.
- Barry, B.W. (2001) Novel mechanisms and devices to enable successful transdermal drug delivery. <u>European Journal of Pharmaceutical Sciences</u>, 14, 101-114.
- Bisquert, J., and Compte, A. (2001) Theory of the electrochemical impedance of anomalous diffusion. Journal of Electroanalytical Chemistry, 499, 112–120.
- Cappel, M.J., and Kreuter, J. (1991) Effect of nonionic surfactants on transdermal drug delivery: I. Polysorbates. <u>International Journal of Pharmaceutics</u>, 69, 143-153.
- Chansai, P., Sirivat, A., Niamlang, S., Chotpattananont, D., and Viravaidya-Pasuwat,
 K. (2009) Controlled transdermal iontophoresis of sulfosalicylic acid from polypyrrole/poly(acrylic acid) hydrogel. <u>International Journal of</u> Pharmaceutics, 318, 25-33.
- Choi, S.S., Hong, J.P., Seo, Y.S., Chung, S.M., and Nah, C. (2006) Fabrication and Characterization of Electrospun Polybutadiene Fibers Crosslinked by UV Irradiation. Journal of Applied Polymer Science, 101, 2333–2337.
- Cormio, L., Turjanmaa, K., Talja, M., and Andersson, L.C. (1993) Toxieity and mmediate allergenieity of latex gloves. <u>Clinical & experimental allergy</u>, 23, 618-623.
- Denet, A., Vanbever, R., and Preat, V. (2004) Skin electroporation for transdermal and topical delivery. <u>Advanced Drug Delivery Reviews</u>, 56(5), 659-674.

÷

- Dupeyron, D., Kawakami, M., Ferreira, A.M., Caceres-Velez, P.R., Rieumont, J., Azevedo, R.B., and Carvalho, J.C. (2013) Design of indimethacin-loaded nanoparticles: effect of polymer matrix and surfactant. International journal of nanomedicine, 8, 3467-3477.
- Garelli, V., Di Cola, G., Guerrini, C., and Nannipieri, E. (1989) Drug release from silicone elastomer through controlled polymer cracking: an extension to macromolecular drugs. <u>International Journal of Pharmaceutics</u>, 50, 181-188.
- Ghafourian, T., Samaras, E.G., Brooks, J.D., Riviere, J.E. (2010) Validated models for predicting skin penetration from different vehicles. <u>European Journal of</u> <u>Pharmaceutical Sciences</u>, 41, 612-616.
- Golomb, G., Fisher, P., and Rahamim, E. (1990) The relationship between drug release, particle size and swelling of silicone matrices. <u>Journal of Controlled</u> <u>Release</u>, 12, 121-132.
- Gondaliya, D., and Pundarikakshudu, K. (2003) Studies in Formulation and Pharmacotechnical Evaluation of Controlled Release Transdermal Delivery System of Bupropion. <u>AAPS Pharmaceutical Science & Technology</u>. 4(1), Article 3.
- Haberl, S., Miklavcic, D., Sersa, G., Frey, W., and Rubinsky, B. (2013) Cell membrane electroporation Part 2: the applications. <u>IEEE Electrical</u> <u>Insulation Magazine</u>, 29, 29–37.
- Herculano, R.D., Queiroz, A.A.A.D., Kinoshita, A., Oliveira Jr., O.N., and Graeff, C.F.O. (2011) On the release of metronidazole from natural rubber latex membranes. <u>Materials Science and Engineering</u>, 31, 272–275.
- Herculano, R.D., Silva, C.P., Ereno, C., Guimaraes, S.A.C., Kinoshita, A., and Graeff, C.F.O. (2009) Natural Rubber Latex Used as Drug Delivery System in Guided Bone Regeneration (GBR). <u>Materials Research</u>, 12(2), 253-256.
- Higuchi, T. (1963) Mechanism of sustained-action medication: theoretical analysis of rater of release of solid drugs dispersed in solid matrices. <u>Journal of</u> <u>Pharmaceutical Science</u>, 2, 1145-1149.
- Juntanon, K., Niamlang, S., Rujiravanit, R., and Sirivat, A. (2008) Electrically controlled release of sulfosalicylic acid from crosslinked poly(vinyl alcohol) hydrogel. <u>International Journal of Pharmaceutics</u>, 356, 1–11.

- Kanjanathaworn, N., Polpanich, D., Jangpatarapongsa, K., and Tangboriboonrat, P.
 (2013) Reduction of cytotoxicity of natural rubber latex film by coating with PMMA-chitosan nanoparticles. <u>Carbohydrate Polymers</u>, 97, 52-58.
- Kawahara. S., Klinklai, W., Kuroda, H., and Isono, Y. (2004) Removal of proteins from natural rubber with urea. <u>Polymers for advanced technologies</u>, 15, 181-184.
- Kotnik, T., Kramar, P., Pucihar, G., Miklavcic, D., and Tarek, M. (2012) Cell membrane electroporation Part 1: the phenomenon. <u>IEEE Electrical</u> <u>Insulation Magazine</u>, 28, 14–23.
- Kumar, A., and Gupta, R.K. (1998) Fundamentals of Polymers. <u>McGraw-Hill</u> <u>Companies, Inc., USA.</u>
- Lee, S., Thiyagarajan, P., and Lee, M. (2008) Synthesis and characterization of strontium titanate powder via a simple polymer solution route. <u>Journal of</u> <u>Ceramic Processing Research</u>, 9(4), 385-388.
- Lowman, A.M., and Peppas, N.A. (2000) Molecular analysis of interpolymer complexation in graft copolymer networks. <u>Polymer</u>, 41, 73-80.
- Mahmoodi, M., Khosroshahi, M.E., and Atyabi, F. (2010) Laser thrombolysis and in vitro study of tPA release encapsulated by chitosan coated PLGA nanoparticles for AMI. <u>International Journal of Biology and Biomedical Engineering</u>, 4, 35-42.
- Meier, M.M., Kanis, L.A., and Soldi, V. (2004). Characterization and drugpermeation profiles of microporous and dense cellulose acetate membranes: influence of plasticizer and pore forming agent. <u>International Journal of</u> <u>Pharmaceutics</u>, 278, 99–110.
- Niamlang, S., and Sirivat, A. (2009) Electrically controlled release of salicylic acid from poly(p-phenylene vinylene)/polyacrylamide hydrogels. <u>International</u> <u>Journal of Pharmaceutics</u>, 371, 126–133.
- Novotný, J., Janůšová, B., Novotný, M., Hrabálek, A., and Vávrová, K. (2009) Short-chain ceramides cecrease skin barrier properties. <u>Skin pharmacology</u> <u>and physiology</u>, 22, 22-30.

- Paradee, N., and Sirivat, A. (2014) Electrically Controlled Release of Benzoic Acid from Poly(3,4-ethylenedioxythiophene)/Alginate Matrix: Effect of Conductive Poly(3,4-ethylenedioxythiophene) Morphology. <u>The journal of physical chemistry</u>, 118, 9263-9271.
- Paradee, N., Sirivat, A., Niamlang, S., and Prissanaroon-Ouajai, W. (2012) Effects of crosslinking ratio. model drugs, and electric field strength on electrically controlled release for alginate-based hydrogel. <u>Journal of Materials Science:</u> <u>Materials in Medicine</u>, 23, 999–1010.
- Pasparakis, G., and Bouropoulos, N. (2006) Swelling studied and in vitro release of verapamil from calcium alginate and calcium alginate-chitosan beads. <u>International Journal of Pharmaceutices</u>, 3323, 34-42.
- Patel, H.J., Patel, J.S., and Patel, K.D. (2009) Transdermal patch for ketotifen fumarate (KTF) as asthmatic drug. <u>International Journal of Pharmaceutical</u> <u>Technology Research</u>, 1(4), 1297-1304.
- Pichayakorna, W., Suksaereea, J., Boonmea, P., Amnuaikita, T., Taweepredab, W., and Ritthidej, G.C. (2012) Nicotine transdermal patches using polymeric natural rubber as the matrix controlling system: Effect of polymer and plasticizer blends. Journal of Membrane Science, 411–412, 81–90.
- Pradhan, R., Budhathoki, U., and Thapa, P. (2008) Formulation of once a day controlled release tablet of indomethacin based om HPMC-man-nitol. Journal of Science, Engineering and Technology, 1, 55-67.
- Prausnitz, M.R. (1999) A practical assessment of transdermal drug delivery by skin electroporation, <u>Advanced Drug Delivery Reviews</u>. 35, 61-76.
- Rao, P.R., and Diwan, P.V. (1997) Permeability studies of cellulose acetate free films for transdermal use: Influence of plasticizers. <u>Pharmaceutica Acta</u> <u>Helvetiae</u>, 72(1), 47-51.
- Riyajan, S.A., Sasithornsontia, Y., and Phinyocheep, P. (2012) Green natural rubberg-modified starch for controlling urea release. <u>Carbohydrate Polymers</u>, 89, 251–258.
- Serra, L., Domenech, J., and Peppas, N.A. (2006). Drug transport mechanisms and release kinetics from molecularly designed poly(acrylic acid-g-ethylene glycol) hydrogels. <u>Biomaterials</u>, 27, 5440–5451.

ø

- Sharma, K., Knutson, K., and Kim, S.W. (1988) Prednisolone release from copolyurethan monolithic devices. <u>Journal of Controlled Release</u>, 7, 197-205.
- Sintov, A., Scott, W., Dick, M., and Levy, R.J. (1988) Cardiac controlled release for arrhythmia therapy: lodocaine polyurethane matrix studies. <u>Journal of</u> Controlled Release, 8, 157-165.
- Soulas, D.N., and Papadokostaki, K.G. (2011) Regulation of proxyphylline's release from silicone rubber matrices by the use of osmotically active excipients and a multi-layer system. <u>International Journal of Pharmaceutics</u>, 408, 120– 129.
- Sriamornsak, P., Thirawong, N., and Korkerd, K. (2007) Swelling, erosion and release behavior of alginate-based matrix tablets. Eur. J. Pharm. <u>European</u> <u>Journal of Pharmaceutics and Biopharmaceutics</u>, 66(3), 435-450.
- Sruanganurak, A., Sanguansap, K., and Tangboriboonrat, P. (2006) Layer-by-layer assembled nanoparticles: A novel method for surface modification of natural rubber latex film. <u>Colloids and Surfaces A: Physicochemical and Engineering Aspects</u>, 289(1-3), 110-117.
- Suksaeree, J., Boonme, P., Taweepredab, W., Ritthidej, G.C., and Pichayakorn, W. (2012) Characterization, in vitro release and permeation studies of nicotine transdermal patches prepared from deproteinized natural rubber latex blends. <u>Chemical Engineering Research and Design</u>, 90, 906–914.
- Sussman, G.L., Beezhold, D.H., and Kurup, V.P. (2002) Allergens and natural rubber proteins. Journal of Allergy and Clinical Immunology, 33-39
- Suyatma, N.E., Tighzert, L., and Copinet, A. (2005) Effect of hydrophilic plasticizers
 on mechanical, thermal, and surface properties of chitosan films. Journal of
 <u>Agricultural and Food Chemistry</u>, 53, 3950-3957.
- Taoudi, H., Bernede, J.C., Del Valle, M.A., Bonnet, A., Molinie, P., Morsli, M., Diaz,
 F., Tregouet, Y., and Bareau, A. (2000) Polycarbazole obtained by electrochemical polymerization of monomers either in solution or in thin film form. Journal of Applied Polymer Science, Sci. 75(13), 1561-1568.

- Thorngkham, P., Paradee, N., Niamlang, S., and Sirivat, A. (2015) Permeation study of indomethacin from polycarbazole/natural rubber blend film for electric field controlled transdermal delivery. <u>Pharmaceutics, drugdelivery and</u> <u>pharmaceutical technology</u>, DOI 10.1002/jps.24414.
- Vanbever, R., and Preat, V. (1999) In vivo efficacy and safety of skin electroporation, Advanced Drug Delivery Reviews. 35, 77-88.
- Warshaw, E.M. (1991) Latex allergy. Journal of the American Academy of Dermatology, 39, 1-24.
- Weaver, J.C., Vaughan, T.E., and Chizmadzhev, Y. (1999) Theory of electrical creation of aqueous pathways across skin transport barriers. <u>Advance drug</u> <u>delivery Reviews</u>, 35(1), 21-39.
- Wypych, G. (2001) Handbook of solvent. pp 594-600. <u>Chemical Technology</u> <u>Publishing</u>.
- Yasin, T., Ahmed, S., Ahmed, M., and Yoshii, F. (2005) Effect of concentration of polyfunctional monomers on physical properties of acrylonitrile-butadiene rubber under electron-beam irradiation. <u>Radiation Physics and Chemistry</u>, 73, 155-158.
- Yip, S., Hickey, V., Wagner, B., Liss, G., Slater, J., Breiteneder, H., Sussman, G., and Beezhold, D. (2000) Skin prick test reactivity to recombinant latex allergens. <u>International Aechives of Allergy and Immunology</u>, 121, 292-299.

0

Zhang,H., Annichb, G.M., Miskulinb, J., Osterholzerc, K., Merzc, S.I., Bartlettb, R.H., and Meyerhoffa, M.E. (2002) Nitric oxide releasing silicone rubbers with improved blood compatibility: preparation, characterization, and in vivo evaluation. <u>Biomaterials</u>, 23 1485–1494.

APPENDICES

Appendix A Preparation of Natural Rubber Film

Natural rubber film was prepared by using UV irradiation method (UVcuring). TMPTMP as a photoinitiator and MMMP as a crosslinking agent were added into a plasticizer. Then, indomethacin (IN) as a drug was added into the solution and stirred at 70 °C for 30 min. The solution would be a yellow homogeneous solution. The yellow solution was added in the natural rubber latex which was continuously stirred, and stirring was continued for 1 min to obtain a homogeneous rubber. The natural rubber films were prepared at various crosslinking agent concentrations of 0, 0.5, and 0.83 %v/v of dry rubber content (DRC) (60 %v/v of latex and density of rubber = 0.94 g/cm³) by fixing the photoinitiator at 1.67 %wt of DRC. Then samples were inserted in the UV-curing machine for 10 min.

Effect of amount of crosslinking agent

Table A1 Natural rubber film preparation at various amounts of crosslinking agentwith ethylene glycol (EG) 10 mL using initially 5 mL of DCNR

Photo-	initiator	Crosslinking agent		Film	Film	Sample
%wt (DRC)	Content (g)	%v/v (DRC)	Content (mL)	characteristic	preparation	name
0	0	0	0	Jan Har, Chao	Separation of plasticizer and rubber	EG- DCNR1_0
1.67	0.047	0.5	0.015		Yes	EG- DCNR1_ 0.5

1.67	0.047	0.83	0.025	Land and a line south of EG as much	Yes	EG- DCNR1_ 0.83
------	-------	------	-------	--	-----	-----------------------

The natural rubber films were successfully prepared at the amount of crosslinking agent of 0.5 and 0.83 %v/v of DRC. In this work, the lowest amount of crosslinking agent (0.5 %v/v of DRC) was chosen and used to prepare the natural rubber films at various amounts of plasticizer.

Effect of types of plasticizer

.

There were many types of plasticizers to prepare the natural rubber film. Difference in plasticizers affected the quality of the film when mixed with the natural rubber latex.

Table A2 Effect of types of plasticizer (10 mL) to prepare natural rubber film by using crosslinking agent (CR) at 0.5 %v/v and photoinitiator (PhI) at 1.67 %wt of DRC using initially 5 mL of DCNR

Types of plasticizer	Amount of PhI (g)	Amount of CR (mL)	Film characteristic	Film preparation	Sample name
Propanol (PR)	0.047	0.015		Rubber agglomeration	10PR_ DCNR1
Tween20 (TW)	0.047	0.015	Тучиво	Rubber agglomeration	10TW_ DCNR1

	1	T		
Dibuthyl phthalate (DBP)	0.047	0.015	Rubber agglomeration	10DBP_ DCNR1
Ethylene glycol (EG)	0.047	0.015	Yes	10EG_ DCNR1
Propylene glycol (PG)	0.047	0.015	Yes	10PG_ DCNR1
Glycerol (GLY)	0.047	0.015	Yes	10GLY_ DCNR1

The plasticizers namely EG, PG, and GLY could be used to prepare the natural rubber film but the plasticizers namely propanol, tween80, and DBP could not be used to prepare the film because of the aggregation of the rubber.

σ

70

-

Effect of amounts of plasticizer (EG)

Table A3 Natural rubber film preparation by using crosslinking agent (CR) at 0.5%v/v and photoinitiator (PhI) 1.67 %wt of DRC with various amounts of EG usinginitially 5 mL of DCNR

Amount of EG (mL)	Amount of PhI (g)	Amount of CR (mL)	Film characteristic	Film preparation	Sample name
10	0.047	0.015		Yes	100IN- 10EG_ DCNR1
20	0.047	0.015		Separation of plasticizer and rubber	100IN- 20EG_ DCNR1
30	0.047	0.015		Separation of plasticizer and rubber	100IN- 30EG_ DCNR1
50	0.047	0.015		Separation of plasticizer and rubber	100IN- 50EG_ DCNR1
70	0.047	0.015	and the set of the set	Separation of plasticizer and rubber	100IN- 70EG_ DCNR1

The amount of plasticizer affected the quality of natural rubber film. The natural rubber could not be prepared when the amount of ethylene glycol was more than 20 ml due to the separation between the plasticizer and the rubber.

0

71

Conditions of natural rubber patches for testing

The conditions of natural rubber patch are shown in Table A4. The samples were prepared for the permeation study of IN through pig skin membrane under the effects of plasticizer type, amount of plasticizer, and electrical potential.

Table A4Information of IN-loaded plastiizers_DCNR using crosslinking agent(CR) at 0.5 %v/v and photoinitiator (PhI) at 1.67 %wt of DRC using initially 5 mL ofDCNR

Amount	Amount	Amount	Туре	Amount of	Sample name
of CR	of PhI	of IN	of	plasticizer	
(mL)	(g)	(mg)	plasticizer	(mL)	
			GLY	10	100IN- 10GLY_DCNR1
			PG	10	100IN- 10PG_DCNR1
	0.047	100	EG	5	100IN- 5EG_DCNR1
0.015				10	100IN- 10EG_DCNR1
				15	100IN- 15EG_DCNR1
		200		10	200IN- 10EG_DCCNR1
		300 (maximum)		10	300IN- 10EG_DCNR1

The initial amounts of IN in IN-GLY_NR2, IN-PG_NR2, IN-EG_NR1, IN-EG_NR2, IN-EG_NR3, and mIN-EG_NR2 (area 3.14 cm²) were 2.66, 3.88, 3.29, 3.24, 2.58, and 7.25 mg, respectively. IN-GLY_NR2, IN-PG_NR2, and IN-EG_NR2 were used for the permeation study of IN under the effect of plasticizer type. IN-EG_NR1, IN-EG_NR2, IN-EG_NR3 were used for the permeation study of IN under the effect of plasticizer amount and mIN-EG_NR2 was used for the permeation study of IN under the effect of electrical potential.

0

Preparation of deproteinized natural rubber patch

The deproteinized natural rubber latex (DPNR) was used to prepare the DPNR patch by using 0.5 %v/v crosslinking agent and 1.67 %wt of DRC and using EG as the plasticizer. The crosslinking agent and photoinitiator were dissolved in 10 mL of EG. Then, IN was added in the solution and stirring was kept at 70 °C for an hour to obtain a yellow homogeneous solution. Ammonia (NH₃) was added in the DPNR at various amounts of NH₃ of 1.0, 1.5, and 2.0 mL per 5 mL DPNR. The yellow homogeneous solution was then added into DPNR with and without NH₃. Then, the mixture solution was poured in a petri dish and inserted in the UV-curing machine for 10 min.

Effect of amounts of ammonia (NH₃)

0

Table A5 Deproteinized natural rubber film preparation by using crosslinking agent at 0.5 %v/v and photoinitiator at 1.67 %wt of DRC at various amounts of NH₃ using initially 5 mL of DPNR

Amount of IN (mg)	Amount of EG (mL)	Amount of NH ₃ (mL)	Film characteristic	Film preparation	Sample name
100	10	-		Rubber agglomeration	100IN- EG_ DPNR2
200	10	÷	Histor Projection	Rubber agglomeration	200IN- EG_ DPNR2
300	10	-		Rubber agglomeration	300IN- EG_ DPNR2

100	10	1.0	Rubber agglomeration	100IN- 1AEG_ DPNR
100	10	1.5	Rubber agglomeration	100IN- 1.5AEG_ DPNR
100	10	2.0	Yes	100IN- 2AEG_ DPNR
300	10	2.0	Yes	300IN- 2AEG_ DPNR

.

The DPNR was successfully used to prepare the DPNR film by adding NH_3 into the DPNR at 2.0 mL per 5 mL DPNR before pouring the yellow homogeneous solution into the DPNR. The DPNR film with the amount of NH_3 less than 2.0 mL could not be used to prepare the film because of the agglomeration of the rubber.

Effect of plasticizer

Table A6 Deproteinized natural rubber film preparation by using crosslinking agent at 0.5 %v/v and photoinitiator at 1.67 %wt of DRC using various of plasticizers using initially 5 mL of DPNR

Types of plasticizer	Amounts of plasticizer (mL)	Amount of IN (mg)	Film characteristic	Film preparation	Sample name
EG	5			Rubber agglomeration	100IN-EG_ DPNR1
PG	5	100		Rubber agglomeration	100IN-PG_ DPNR1
GLY	5	100	and the second s	Rubber agglomeration	100IN- GLY_ DPNR1
DBP	5			Rubber agglomeration	100IN- DBP_ DPNR1

The DPNR film could not be prepared by using four types of plasticizer namely EG, PG, GLY, and DBP due to the aggregation of the rubber when adding a mixture of plasticizer and IN into the DPNR. The amounts of EG, PG, GLY, and DBP that caused the agglomeration of rubber were 5mL.

Effect of amounts of surfactant

• Ethylene glycol (EG)

Table A7 Deproteinized natural rubber film preparation by using crosslinking agentat 0.5 %v/v and photoinitiator at 1.67 %wt of DRC using various types and amountsof surfactant using initially amount of EG 10 mL per 5 mL of DPNR

Types of surfactant	Amount surfactant (mg)	Amount of IN (mg)	Film characteristic	Film preparation	Sample name
	2.5		in a state in street	Rubber agglomeration	100IN- 2.5SEG_ DPNR
SDS	25	100	A rate in the second	Rubber agglomeration	100IN- 25SEG_ DPNR
	250			Rubber agglomeration	100IN- 250SEG_ DPNR
	2.5		Control 6	Rubber agglomeration	100IN- 2.5TEG_ DPNR
TWEEN20	25	100		Rubber agglomeration	100IN- 25TEG_ DPNR
	250		0	Yes	100IN- 250TEG_ DPNR

σ

0

		250	200	Rubber agglomeration	200IN- 250TEG_ DPNR
		250	300	Rubber agglomeration	300IN- 250TEG_ DPNR
		500	200	Yes	200IN- 10EG_ DPNR
	TWEEN20			Rubber agglomeration	300IN- 500TEG_ DPNR
		700		Rubber agglomeration	300IN- 700TEG_ DPNR
		800	300	Rubber agglomeration	300IN- 800TEG_ DPNR
		900		Rubber agglomeration	300IN- 900TEG_ DPNR
	СТАВ	1000		Separation of plasticizer and rubber	300IN- 1000TEG_ DPNR
1		2.5	100	Rubber agglomeration	100IN- 2.5CEG_ DPNR

			ANT STATISTICS		
	25	100		Rubber agglomeration	100IN- 25CEG_ DPNR
		100	Prope on g	Yes	100IN- 250CEG_ DPNR
	250	200		Rubber agglomeration	200IN- 250CEG_ DPNR
		300		Rubber agglomeration	300IN- 250CEG_ DPNR
СТАВ	500	200		Rubber agglomeration	200IN- 500CEG_ DPNR
	700			Rubber agglomeration	300IN- 700CEG_ DPNR
	800	300		Rubber agglomeration	300IN- 800CEG_ DPNR
	900		()	Rubber agglomeration	300IN- 900CEG_ DPNR
	1000			Rubber agglomeration	300IN- 1000CEG_ DPNR

Ø

The DNR film using EG as the plasticizer was successfully prepared by using TWEEN20 or CTAB as surfactants at 500 mg and 250 mg, respectively using initially 5 mL of DPNR. The maximum amounts of IN loaded in system of TWEEN20 and CTAB were 200 and 100 mg, respectively.

.

• Propylene glycol (PG)

Table A8 Deproteinized natural rubber film preparation by using crosslinking agent at 0.5 % v/v and photoinitiator at 1.67 %wt of DRC using various types and amounts of surfactant using initially amount of PG 10 mL per 5 mL of DPNR

Types of surfactant	Amount surfactant (mg)	Amount of IN (mg)	Film characteristic	Film preparation	Sample name
	2.5			Rubber agglomeration	100IN- 2.5SPG_ DPNR
SDS	25	100		Rubber agglomeration	100IN- 25SPG_ DPNR
c .	250			Rubber agglomeration	100IN- 250SPG_ DPNR
	2.5		Plast Play Draw	Rubber agglomeration	100IN- 2.5TPG_ DPNR
TWEEN20	25	100	APPER S	Rubber agglomeration	100IN- 25TPG_ DPNR

TWEEN20	250	100	Rubber agglomeration	100IN- 250TPG_ DPNR
	2.5		Rubber agglomeration	100IN- 2.5CPG_ DPNR
СТАВ	25	100	Rubber agglomeration	100IN- 25CPG_ DPNR
	250		Rubber agglomeration	100IN- 250CPG_ DPNR

The DPNR film could not be prepared in all of surfactant conditions by using PG as the plasticizer due to the agglomeration of DPNR.

• Glycerol (GLY)

Table A9 Deproteinized natural rubber film preparation by using crosslinking agent at 0.5 %v/v and photoinitiator at 1.67 %wt of DRC using various types and amounts of surfactant using initially amount of GLY 10 mL per 5 mL of DPNR

Types of surfactant	Amount surfactant (mg)	Amount of IN (mg)	Film characteristic	Film preparation	Sample name
SDS	2.5	100		Rubber agglomeration	100IN- 2.5SGLY_ DPNR

Ð		25			Rubber agglomeration	100IN- 25SGLY_ DPNR
	SDS	250	100	- 50 4.45	Rubber agglomeration	100IN- 250SGLY_ DPNR
		2.5			Rubber agglomeration	100IN- 2.5TGLY _DPNR
	TWEEN20	25	100	\mathcal{O}	Rubber agglomeration	100IN- 25TGLY_ DPNR
		250			Rubber agglomeration	100IN- 250TGLY_ DPNR
		2.5			Rubber agglomeration	- 100IN- 2.5CGLY_ DPNR
	СТАВ	25	100	ANTIN AN	Rubber agglomeration	100IN- 25CGLY_ DPNR
		250			Rubber agglomeration	100IN- 250CGLY_ DPNR

The DPNR film could not be prepared in all surfactant conditions by using GLY as the plasticizer due to the agglomeration of DPNR.

• Dibutyl phthalate (DBP)

Table A10 Deproteinized natural rubber film preparation by using crosslinkingagent at $0.5 \ \% v/v$ and photoinitiator at $1.67 \ \% wt$ of DRC using various types andamounts of surfactant using initially amount of DBP 10 mL per 5 mL of DPNR

Types of surfactant	Amount surfactant (mg)	Amount of IN (mg)	Film characteristic	Film preparation	Sample name
	2.5		- Do best e	Separation of plasticizer and rubber	100IN- 2.5SDBP_ DPNR
SDS	25	100	<u>بر</u>	Separation of plasticizer and rubber	100IN- 25SDBP_ DPNR
	250			Separation of plasticizer and rubber	100IN- 250SDBP_ DPNR
	2.5		i Petra senn	Separation of plasticizer and rubber	100IN- 2.5TDBP_ DPNR
TWEEN20	25	100		Separation of plasticizer and rubber	100IN- 25TDBP_ DPNR
	250		Den 1.02 Parts Totro, - 2.94	Separation of plasticizer and rubber	100IN- 250TDBP_ DPNR
СТАВ	2.5	100	Drus : Hyper the second	Separation of plasticizer and rubber	100IN- 2.5CDBP_ DPNR

Ø

	25		Separation of plasticizer and rubber	100IN- 25CDBP_ DPNR
СТАВ	250	100	Separation of plasticizer and rubber	100IN- 250CDBP_ DPNR

The DPNR film could not be prepared in all of surfactant condition by using DBP as the plasticizer due to the separation of DBP and DPNR.

• Polydimethylsiloxane (PDMS)

Table A11 Dissolution of IN in PDMS by various types of surfactant using initiallyamount of PDMS at 10 mL

Types of surfactant	Amount surfactant (mg)	Amount of IN (mg)	Film characteristic	Film preparation	Sample name
-	-			IN cannot dissolve in PDMS	100IN- PDMS
SDS	250	100		IN cannot dissolve in PDMS	100IN- 250SPDMS
TWEEN20	250	100		IN cannot dissolve in PDMS	100IN- 250TPDMS
СТАВ	250			IN cannot dissolve in PDMS	100IN- 250CPDMS

0

IN did not dissolve in PDMS even if the surfactants were added into the PDMS. Hence, PDMS could not be used as a plasticizer to prepare DPNR film.

ø

σ

.

Appendix B Preparation of Deproteinized Natural Rubber via Saponification Method

Figure B1 Deproteinized natural rubber method via saponification method.

The solution was prepared by mixing between sodium hydroxide (NaOH) or potassium hydroxide (KOH) (1.5, 3.0, 5.0, and 7.5 g per 100 ml DCNR) and surfactants namely SDS, DBSA, or CTAB (2 g per 100 ml DCNR). Furthermore, the amount of surfactant was varied between 1.5, 2.0, 2.5, and 3.0 g per 100 ml DCNR. The solution was continuously stirred at 60 °C for 3 h. Then, the distilled water was added into the solution at volume ratio of DCNR: water of 1:5 and stirred at room temperature for 30 min. Then, this solution was centrifuged at 8000 rpm for 60 min to separate rubber layer and water layer from each other. The rubber layer, namely deproteinized rubber (DPNR), was further investigated the nitrogen content by using a CHNS analyzer.

Types of	Amount of	Amount of NaOH	Amount of KOH
surfactant	surfactant	(g) per 100 ml	(g) per 100 ml
	(g) per 100 ml DCNR	DCNR	DCNR
SDS	2.0	1.5	
		3.0	
		5.0	_
	4	7.5	
			1.5
		_	3.0
			5.0
			7.5
DBSA	2.0	1.5	
		3.0	_
		5.0	
		7.5	
			1.5
		_	3.0
			5.0
			7.5
СТАВ	2.0	1.5	
		3.0	_
		5.0	
		7.5	
		-	1.5
		-	3.0
		X	5.0
			7.5

Table B1 Condition of deproteinized natural rubber via saponification method

Appendix C Nitrogen Content of Deproteinized Natural Rubber

Amount of nitrogen (% wt of nitrogen) in the deproteinized natural rubber (DCNR) was analyzed by a CHN analyzer (TruSpec Micro model of LECO company). The calibration curve was created by using ethylenediaminetetraacetic acid (EDTA) which had a certain amount of nitrogen. The calibration curve for determining amount of nitrogen in DPNR was considered and used at the least amount of nitrogen on the curve (at % nitrogen near zero) to receive the highest accuracy of the analysis because the DPNR had quite a low nitrogen content. Before analyzing the samples, the CHN analyzer was operated in air to eliminate air background (repeating no less than 10 times). The samples were wrapped with a foil cup before inserted into the analyzer. The samples were completely oxidized under oxygen atmosphere at 950 °C. The results were reported in % nitrogen by weight of the sample.

Types of	Amount of	Amount of	Amount of	Amount of
surfactant	surfactant	NaOH	КОН	nitrogen
	(g) per 100 ml	(g) per 100 ml	(g) per 100 ml	(% wt)
	DCNR	DCNR	DCNR	
SDS	2.0	1.5		0.01431
		3.0		0.01662
		5.0		0.03995
		7.5		0.03452
			1.5	0.06144
			3.0	0.08259
			5.0	0.06395
			7.5	0.05084

Table CT Amounts of mulogen in deproteinized natural lubber late	Table C	1 Amounts of	f nitrogen i	n deproteinized	natural rubber	latex
--	---------	--------------	--------------	-----------------	----------------	-------

DBSA	2.0	1.5		0.04139
		3.0	-	0.03911
		5.0		0.03338
		7.5	-	0.03444
			1.5	0.06109
			3.0	0.08170
		-	5.0	0.05316
			7.5	0.08167
CTAB	2.0	1.5		0.09233
		3.0		0.07225
		5.0	-	0.02639
		7.5	-	0.03545
			1.5	0.08550
			3.0	0.09215
		-	5.0	0.05764
			7.5	0.03830

Table C1 shows the amounts of nitrogen of DPNR via saponification method by fixing the amount of surfactant at 2 g per 100 ml DCNR and at various amounts of NaOH and KOH from 1.5 to 7.5 g per 100 ml DCNR. NaOH has a higher efficiency to reduce the nitrogen content than KOH in all conditions of the saponification method. The lowest nitrogen content as measured by CHN analyzer is shown to be at 0.0131 %wt by using the condition of 2 g SDS and 1.5 g NaOH per 100 mL DCNR. Hence, this condition was used further to study the amounts of nitrogen by varying the amount of surfactant (SDS) from 1.5 to 3.0 g per 100 mL DCNR.

Amount of NaOH (g) per 100 ml DCNR	Amount of SDS (g) per 100 ml DCNR	Amount of nitrogen
1.5	1.5	0.01686
	2.0	0.01531
	2.5	0.02835
	3.0	0.02942

 Table C2
 Amounts of nitrogen in deproteinized natural rubber latex (various amount of SDS)

Table C2 shows the amounts of nitrogen in DPNR by various amounts of surfactant (SDS) from 1.5 to 3.0 g by fixing the amount of NaOH at 1.5 g per 100 mL DCNR (the condition in Table C1 has the nitrogen content at 0.01031 %). The amount of nitrogen decreases with increasing amount of SDS from 1.5 to 2.0 g per 100 mL DCNR. However, the amount of nitrogen increases when increasing amount of SDS from 2.5 to 3.0 g per 100 mL DCNR.

 Table C3
 Amounts of nitrogen in DCNR before and after curing

. .

Materials	Amount of nitrogen (% wt)
Virgin DCNR	0.21748
UV cured DCNR	0.20573
10EG_DCNR	0.22036
10PG_DCNR	0.22056
10GLY_DCNR	0.21853
100IN-10EG_DCNR	0.23598
100IN-10PG_DCNR	0.24359
100IN-10GLY_DCNR	0.24853

Table C3 shows the amounts of nitrogen in virgin natural rubber (DCNR) before and after curing by UV radiation for studying the effect of UV radiation on

the nitrogen content in the rubber without the photoinitiator and crosslinking agents added. The results show no difference in the amounts of nitrogen before and after curing.

Materials	%wt of Nitrogen	
10EG_DPNR	0.01492	
(10 mL EG per 5 mL DPNR)		
200IN-10EG_DPNR	0.02547	
(200 mg IN, 500 mg TWEEN20 and 10 mL EG per 5 mL DPNR)		
100IN-0.25CEG_DPNR	0.02138	
(100 mg IN, 250 mg CTAB and 10 mL EG per 5 mL DPNR)	0.02100	
2AEG_DPNR2	0.15138	
(2 ml NH ₃ and 10 mL EG per 5 mL DPNR)		
IN3-2AEG_DPNR2	0.18520	
(300 mg IN, 2 mL NH ₃ and 10 mL EG per 5 mL DPNR)		

 Table C4
 Amount of nitrogen in deproteinized natural rubber film

Table C4 shows the amount of nitrogen in 2AEG-DPNR2 (5mL DPNR + 2mL ammonia + 10 mL EG) and IN3-2AEG-DPNR2 (5mL DPNR + 2mL ammonia + 10 mL EG + 300 mg IN). The result shows the increasing of nitrogen content from pure DPNR due to the nitrogen from ammonia and IN inside the DPNR film.

2

0

Appendix D Cytotoxicity Testing

Reference: Biological *In vitro* Testing for Biomaterial Service. MTEC, Thailand Cell suspension of 1×10^5 cells/ml L929 (Mouse Fibroblast Cells, ATCC CCL1, NCTC 929, of Strain L) in MEM completed medium was seeded into the 96well plate. It was incubated at 37 ± 1 °C, $5 \pm 0.1\%$ CO₂ and $95 \pm 5\%$ relative humidity for 24 ± 2 h to obtain confluent monolayers of cells prior to testing. The MEM completed medium was replaced with the extracts of:

- The blank (The media without test specimen)

- The negative control ('Thermanox' (Nunc) coverslip was used as a negative control material. The surface-are-to-volume extraction ratio of $6 \text{ cm}^2/\text{ml}$ was used)

- The positive control ('Polyurethane film containing 0.1% Zinc diethyldithiocarbamate (ZDEC): RM-A' was used as a positive control material. The surface-area-to-volume extraction ratio of $3 \text{ cm}^2/\text{ml}$ was used)

- The M1 100 tested specimen (The surface-area-to-volume extraction ratio of $3 \text{ cm}^2/\text{ml}$ was used)

*All of them were extracted at 37 ± 1 °C for 24 ± 2 h. All of the extracts were used without any manipulation.

The cells were incubated further for 24 ± 2 h. After incubation, the viable cells were stained with MTT (3-(4,5-dimethylthiosol-2-yl)-2,5-diphenyltetrazolium bromide) and incubated for further 2 h. Then MTT was removed and DMSO was added in each well. The absorbance was measured using Microplate reader at 570 nm. The %viability of cells was determined follow by:

%viability =
$$100 \times OD_{570c}/OD_{570b}$$

where OD_{570c} is the mean value of the measured optical density of the 100% extracted of the test samples.

 OD_{570b} is the mean value of the measured optical density of the 100% extracted of the blank.

*If viability was less than 70% of the blank, it had a cytotoxic potential.

Samples	The average of	
	OD 570 nm	% Viability
• Blank	1.032	100
Negative control	0.933	90
Positive control	0.008	1
Ibuprofen/NR	0.134	13
IN-NR/PEG	0.019	2
IN-Doped PCz/DCNR	0.662	64

 Table D1
 Percentages of cell viability of the samples (1st test)

Table D1 shows the percentages of cell viability of L929 cells from cytotoxicity test of Ibuprofen/NR, IN-NR/PEG, and IN-Doped PCz/DCNR. All of samples show the percent viability values less than 70% of the blank which can be referred to as cytotoxic samples.

 Table D2 Percentages of cell viability of the samples (2nd test)

Samples	Samples The average of	
	OD 570 nm	% Viability
Blank	0.859	100
Negative control	0.856	99
Positive control	0.001	0
NR/PCZ	0.475	55
NR/EG300	0.004	0
10%wt CaCl ₂ from eggshell (compliant electrode)	0.746	86
30 phr Ag (compliant electrode)	0.001	0
35% GP/NR (compliant electrode)	0.510	59
PW (PPV) dope Ibuprofen	0.237	27

-

Table D2 shows the percent viability values of L929 cells from cytotoxicity test of NR/PCZ, NR/EG300, PW dope ibuprofen, and compliant electrodes (10 wt % CaCl₂ from eggshell, 30 phr. Ag, and 35% GP/NR). All of samples show the percent viability values less than 70% of the blank except 10%wt CaCl₂ from eggshell (compliant electrode). Thus, CaCl₂ from eggshell (compliant electrode) has no cytotoxic potential.

Samples	The average of		
	OD 570 nm	% Viability	
Blank	0.902	100	
Negative control	0.837	93	
Positive control	0.003	0	
DCNR+SDS+NaOH (DPNR1_1)	1 043	116	
(2 g SDS and 1.5 g NaOH per 100 mL DCNR)			
DCNR+SDS+KOH (DPNR1_2)	1.068	118	
(2 g SDS and 7.5 g KOH per 100 mL DCNR)			
DCNR+DBSA+NaOH (DPNR1_3)	1 027 114		
(2 g DBSA and 5 g NaOH per 100 mL DCNR)	1.027		
DCNR+DBSA+KOH (DPNR1_4)	0.997 111	111	
(2 g DBSA and 5 g KOH per 100 mL DCNR)			

 Table D3 Percentages of cell viability of the samples (3rd test)

Table D3 shows percent viability values of L929 cells from cytotoxicity test of deproteinized natural rubber via saponification method at various conditions. From the results, all of the deproteinized natural rubbers show the percent viability values higher than 70% of the blank. Hence, they confirm that the deproteinized natural rubbers via saponification method have no cytotoxic potential.

The cytotoxicity of the natural rubber or the other samples is the most important problem in contact with the human skin which causes the skin allergenic response. The cytotoxicity was successfully passed in all of the deproteinized natural rubber via saponification method which yielded the percent viability values of L929 cells higher than 70% of the blank due to the reduction of protein in the natural rubber. Furthermore, CaCl2 from eggshell which was used to prepare the compliant electrode showed the percent viability of L929 cells higher than 70% of the blank.

Samples	The average of		
Samples	OD 570 nm	% Viability	
Blank	0.468	100	
Negative control	0.469	100	
Positive control	0.000	0	
10EG_DPNR1	0.001	0	
(10 ml EG per 5 ml DPNR1)	0.001	0	
0.5TEG_DPNR1	0.000	0	
(500 mg TWEEN20 and 10 ml EG per 5 ml DPNR1)			
0.25CEG_DPNR1	0.001	0	
(250 mg CTAB and 10 ml EG per 5 ml DPNR1)	0.001	Ū	
200IN-10EG_DPNR1			
(200 mg IN, 500 mg TWEEN20 and 10 ml EG per 5	0.000	0	
ml DPNR1)			
100IN-0.25CEG_DPNR1			
(100 mg IN, 250 mg CTAB and 10 ml EG per 5 ml	0.001	0	
DPNR1)			

 Table D4 Percentages of cell viability of the samples (4th test)

Appendix E Functional Groups of Transdermal Natural Rubber Patch

Transdermal natural rubber patch was prepared by mixing the natural rubber latex with a photoinitiator and a crosslinking agent and dissolved in ethylene glycol acting as a plasticizer, with indomethacin (IN) as a drug. The natural rubber latex solution was poured into the petri dish and inserted in the UV-curing machine for 10 min. The indomethacin, double-centrifuge natural rubber (DCNR1) with and without adding drug, deproteinized natural rubber (DPNR1) with and without adding drug, and IN were investigated for the functional groups using the FTIR spectrometer (Thermo Nicolet, Nexus 670) at 64 scans and resolution of 4 cm⁻¹.

Figure E1 FT-IR spectra of DCNR1 patches.

σ

The FT-IR spectrum of DCNR1 and DPNR1 with and without adding the drug show peaks of the aromatic ring at 754-840 and 1011-1014 cm⁻¹; the C-H stretching, C-H vibration and C_{sp3} -H vibration can be assigned to the peaks at 926-929 cm⁻¹, 1401 cm⁻¹ and 2919-2926 cm⁻¹, respectively. The other peaks can be observed at 1087-1089 cm⁻¹ (O-H stretching), 1222-1224 cm⁻¹ (C-CO-O vibration), 1310 cm⁻¹ (C-O vibration), 1375 cm⁻¹ (C-N vibration), 1650-1658 cm⁻¹ (N-H vibration), 1714 cm⁻¹ (C=O vibration), 1655 cm⁻¹ (C=C stretching) and 3356 cm⁻¹ (O-H vibration).

Wavenumber (cm ⁻¹)	Assignment	Reference
926-929	C-H stretching	Herculano et al., 2010;
1087-1089	O-H stretching	Pichayakorn <i>et al.</i> , 2012;
1222-1224	C-CO-O vibration	Taoudi <i>et al.</i> , 2000;
1310	C-O vibration	Dupeyron <i>et al.</i> , 2013
1375	C-N vibration	Kong and Yu, 2007
1401	C-H vibration	Junoi <i>et al.</i> , 2014
1650-1658	N-H vibration	
1655	C=C stretching	-
1714-1737	C=O stretching	-
2919-2926	C _{sp3} -H stretching	-
3295-3320	N-H stretching	1
3356	O-H stretching	

 Table E1
 The characteristic peaks of natural rubber film

 Table E2
 Assignments of bands of indomethacin (Dupeyron et al., 2013)

Wavenumber (cm ⁻¹)	Assignment
839, 832, 803, 752, 702 (s-m)	Aromatic ring
926, 905 (s)	ү СН
1086, 1067	ү О-Н
1189, 1148, 1028, 1012 (s)	Aromatic ring
1,233, 1,222 (s-m)	v C-CO-O
1,306, 1,291 (s)	ν C-O
1,372, 1,358 (m-w)	v C-N
1,428, 1,411, 1,396 (m-w)	ν C-H
1,712, 1,690 (s)	ν C=O
2,967, 2,928 (w)	ν C _{sp3} -H
3,370 (w)	ν О-Н

Figure E3 FT-IR spectra of DCNR1 and DPNR1 patches.

Figure E3 shows the FT-IR spectra of DCNR1 and DPNR1 patches with and without adding the drug. The FT-IR spectra of DPNR1 with and without adding drug show the decreases of the N-H vibration peak at 1650-1658 cm⁻¹ relative to the DCNR1; the peak can be assigned to the α -helix of protein (Kong and Yu, 2007). Hence, this result could confirm the decreases of protein amount present in DPNR1 and interaction between the drug and the protein in the natural rubber DPNR1 patch (Nowak *et al.*, 1992). In addition, the disappearance of the C=O stretching peak in pure DPNR1 at 1714-1737 cm⁻¹, relative to pure DCNR1, can be referred to the removal of phospholipid in rubber (Sansatsadeekul*et al.*, 2011 and Nawamawat *et al.*, 2010).

Appendix F Thermal Properties of Transdermal Natural Rubber Patch

The thermal behavior of transdermal natural rubber patch was determined by the thermogravimetric analyzer (Thermo, TGA Q 50). The sample was weighed in a range 4-10 mg and placed it in a ceramic pan, and then weighed sample was heated from 30 to 550 $^{\circ}$ C under nitrogen atmosphere with the heating rate 10 $^{\circ}$ C/min.

Figure F1 TGA thermograms of transdermal natural rubber patch.

The TGA thermogram of natural rubber patch shows two degradation steps at 104.86 and 370.51 °C for the degradation of moisture and the degradation of natural rubber backbone with the pyrolysis of plasticizer, respectively. The percent weight loss of the uncured 10EG_DCNR1 is less than the cured 10EG_DCNR1 and 300IN-10EG_DCNR1 at first degradation step because curing natural rubber may induce the higher amount of plasticizer inside the natural rubber patch as the plasticizer has a greater ability to exist inside the cured rubber patch.

Sample	T _d (°C)	Weight loss (%)			
Indomethacin	286.36	95.06			
Pure natural rubber	375.98	97.52			
Uncuring 10EG_DCNR1	107.82	31.69			
	374.25	66.14			
Curing 10EG_DCNR1	115.33	69.82			
	374.36	29.28			
300IN-10EG_DCNR1	104.86	42.12			
	370.51	55.87			

.

Table F1 The decomposition temperature and weight loss (%) in TGA thermogramsof natural rubber patch and indomethacin

Appendix G Scanning Electron Microscope (SEM) Images

Figure G1 SEM micrographs of: (a) 100IN-10EG_DCNR1 after the release study in PBS buffer pH 7.4 for 48 h; (b) 100IN-10PG_DCNR1 after the release study in PBS buffer pH 7.4 for 48 h; and (c) 100IN-10GLY_DCNR1 after the release study in PBS buffer pH 7.4 for 48 h at magnification of 1200x.

The surface morphology of 100IN-10EG_DCNR1, 100IN-10PG_DCNR1, and 100IN-10GLY_DCNR1 show roughness of surface because of the matrices erosion after the release study in PBS buffer pH 7.4 for 48 h.

Figure G2 SEM micrographs of: (a) 300IN-10EG_DCNR1 before the permeation study; (b) 300IN-10EG_DCNR1 under an absence of electrical potential (E = 0 V); under electrical potential at (c) E = 3 V; (d) E = 5 V; (e) E = 7 V; and (f) E = 9 V at magnification of 50.

Figure G3 SEM micrographs of: (a) 200IN-10EG_DPNR1 before the permeation study; (b) 200IN-10EG_DPNR1 under an absence of electrical potential (E = 0 V); under electrical potential at (c) E = 3 V; (d) E = 5 V; (e) E = 7 V: and (f) E = 9 V at magnification of 50.

The surface morphology of 300IN-10EG_DCNR1 (Figure G2) and 200IN-10EG_DPNR1 (Figure G3) after permeation study under various electrical potentials (0-9 V) shows roughness of surface because of the matrices erosion. The electrical potential generates the driving force of drug via electro-repulsive force. Hence, the roughness of surface increases with increasing the electrical potential.

Figure G4 SEM micrograph of: (A) 10EG_DCNR1 and (B) 300IN-10EG_DCNR1(a and b: surface of rubber patch after permeation test without and with apply electrical potential (9 V), respectively, c and d: cross section of rubber patch after permeation test without and with apply electrical potential (9 V), respectively).

Appendix H Indomethacin Characteristics

IN was investigated for the maximum wavelength (nm) using the UV-visible spectrometer (TECAN, Infinite M200) in the scanning mode. The indomethacin (0.0045 mg) was dissolved in MeOH (5 mL) followed with an addition of PBS buffer until a volume was 100 ml. The IN solution has the characteristic peaks at 266 nm and 324 nm

Figure H1 The UV-visible spectrum of IN.

The calibration curve of indomethacin was prepared by plotting the absorbance at 324 nm versus the concentration of IN (ppm). Preparation of IN solution, the IN was dissolved at certain weight of 45 mg (450 ppm) in 100 ml of PBS buffer at pH 7.4. The solution was diluted with the PBS buffer to produce the solutions at 15-150 ppm of IN.

Figure H2 The calibration curve of indomethacin dissolved in PBS buffer at 324 nm.

Concentration of IN (ppm)	Absorbance	Avg	SD
	0.0000		
0	0.0000	0.0000	0.0000
	0.0000		
	0.3909		
15	0.3778	0.3874	0.0085
	0.3936		
	0.6373		
30	0.7038	0.6720	0.0333
- 1-	0.6748		
	1.0109		
50	0.9891	1.0052	0.0142
	1.0157		
	1.3307		
60	1.3084	1.3307	0.0223
	1.3530		
	1.7312		
75	1.7032	1.7219	0.0162
	1.7312		
	2.0331		
90	2.0944	2.0649	0.0307
	2.0673		
м. -	2.1380		
100	1.7768	2.0403	0.2307
	2.2060		
	2.5584		
120	2.6226	2.6071	0.0431
	2.6402		
	2.8492		
135	2.8840	2.8803	0.0294
	2.9076		
	3.0850		
150	2.5632	2.8062	0.2627
-	2.7703		

 Table H1
 The absorbance of indomethacin at various concentrations at 324 nm

Appendix I Determination of Actual Drug Content

The actual amounts of indomethacin in natural rubber films were measured by dissolving a piece of film (area of 3.14 cm² of DCNR film and 12.56 cm² of DPNR film) in 100 mL of hexane. The 0.3 mL solution was quantified by using the UV-visible spectrophotometer at a wavelength of 324 nm. Then, the absorbance amount of the solution was determined by the calibration curve of indomethacin. The initial drug concentration in the film, C₀, was calculated from an actual amount of IN in the film (g) divided by a volume of the film (cm³) in which the thickness (cm) of natural rubber films was 0.25 cm.

Sample	Actual amo the film ar	ount of IN in rea 3.14 cm ²	Volume	C ₀
-	ppm	mg	$(\pi r^{-}h, cm^{-})$	(mg/cm [*])
100IN-10GLY_DCNR1_1	26.86	2.27		2.89
100IN10-GLY_DCNR1_2	26.72	2.67		3.40
100IN10-GLY_DCNR1_3	26.15	2.61		3.32
Avg	26.57	2.66	-	• 3.21
SD	0.37	0.04		0.27
100IN-10PG_DCNR1_1	38.91	3.89		4.96
100IN-10PG_DCNR1_2	38.87	3.89		4.96
100IN-10PG_DCNR1_3	38.49	3.85	0.785	4.90
Avg	38.76	3.88		4.94
SD	0.23	0.02	-	0.03
100IN-5EG_DCNR1_1	32.59	3.26		4.15
100IN-5EG_DCNR1_2	32.34	3.23		4.11
100IN-5EG_DCNR1_3	33.75	3.38		4.31
Avg	32.90	3.29		4.19
SD	0.75	0.08		0.10

Table I1 The raw data of the determination of actual amount of IN in the IN-loaded natural rubber films

Sample	Actual amo the film are	unt of IN in ea 3.14 cm ²	Volume	C_0
	ppm	mg	$(\pi \mathbf{r} \mathbf{n}, \mathbf{cm})$	(mg/cm)
100IN-10EG_DCNR1_1	33.16	3.32		4.23
100IN-10EG_DCNR1_2	31.10	3.11		3.96
100IN-10EG_DCNR1_3	33.20	3.23		4.11
Avg	32.49	3.24		4.14
SD	1.20	0.12		0.13
100IN-15EG_DCNR1_1	26.68	2.67	-	3.40
100IN-15EG_DCNR1_2	24.80	2.48		3.16
100IN-15EG_DCNR1_3	26.02	2.60	-	3.31
Avg	25.83	2.58	-	3.29
SD	0.96	0.10		0.12
200IN-10EG_DCNR1_1	40.53	4.05		5.16
200IN-10EG_DCNR1_2	43.71	4.37	0.785	5.57
200IN-10EG_DCNR1_3	42.87	4.29		5.46
Avg	42.37	4.23		5.40
SD	1.65	0.16		0.21
300IN-10EG_DCNR1_1	75.52	7.55		9.62
300IN-10EG_DCNR1_2	79.81	7.98		10.17
300IN-10EG_DCNR1_3	61.98 •	6.20		7.90
Avg	72.44	7.24		9.22
SD	9.31	0.93		1.18
200IN-10EG_DPNR1_1	35.32	3.53		4.50
200IN-10EG_DPNR1_2	32.71	3.27		4.17
200IN-10EG_DPNR1_3	36.34	3.63		4.63
Avg	34.79	3.48		4.43
SD	1.87	0.19		0.24

Ø

Sample	Actual amo the film are	ount of IN in ea 12.56 cm ²	Volume	C_0
	ppm	mg		(mg/cm)
IN3-2AEG_2DPNR1_1	157.74	15.17		. 4.83
IN3-2AEG_2DPNR1_2	151.65	15.17		4.83
IN3-2AEG_2DPNR1_3	150.96	15.10	-	4.80
Avg	151.45	15.11		4.82
SD	0.43	0.043		0.01
200IN-10EG_DPNR1_1	142.30	14.23		4.53
200IN-10EG_DPNR1_2	139.98	14.00		4.45
200IN-10EG_DPNR1_3	140.65	14.07	3.143	4.48
Avg	140.98	14.10		4.49
SD	1.20	0.12		0.04
IN1-3CEG_2DPNR1_1	126.14	12.61		4.01
IN1-3CEG_2DPNR1_2	127.81	12.78		4.07
IN1-3CEG_2DPNR1_3	123.67	12.37		3.94
Avg	125.87	12.6		4.00
SD	2.08	0.21	7	0.07

0

-

-

Appendix J Determination of the Crosslink Density of Transdermal Natural Rubber Patch

The crosslink density of films was calculated following a procedure of ATSM6814-02. The films (1 cm^2) were weighed in air and methanol (MeOH) before and after leaving them to obtain the equilibrium swelling state in toluene for 5 days. A crosslink density was calculated using Eq. (J1) (Flory-Rehner equation).

$$v_{\rm e} = \frac{-[\ln(1-V_{\rm r})+V_{\rm r}+\chi_1 V_{\rm r}^2]}{[V_1(V_{\rm r}^{1/3}-V_{\rm r})/2]}....(J1)$$

where: the number of chains in a real network per unit volume, Ve = V_1 molar volume of tolune (106.29 = the mL/mol), Vr the crosslinked DCNR volume fraction in swollen state, = the Flory interaction parameter of cis-1,4-polyisoprene in = χ toluene (0.391).

V_t can be calculated following Eq. (J2);

$$V_{r} = \frac{\text{Weight of dry rubber / Density of dry rubber}}{\left(\frac{\text{Weight of dry rubber}}{\text{Density of dry rubber}}\right) + \left(\frac{\text{Weight of toluene absorbed by sample}}{\text{Density of toluene}}\right) \dots (J2)$$

in which the density of the dry rubber can be computed by using the Eq. (J3)

Density at 23 ± 2 °C (g/mL) = 0.7913 ×
$$\frac{A}{A-B}$$
(J3)

where: A = the weight of dried film measured in air (g), B = the weight of dried film measured in MeOH (g), 0.7913 = the density of MeOH at $23 \pm 2 \degree C (g/mL)$.

· · · · · · · · · · · · · · · · · · ·	W	Vi	Ws		Wd			C
Sample	Air	MeOH	Air	МеОН	Air	MeO H	Ve	sweining ratio (%)
DCNR1_1	0.063	0.060	0.998	0.982	0.055	0.054	5.37E-06	1594.1
DCNR1_2	0.072	0.071	0.936	0.892	0.055	0.053	7.29E-06	1296.4
DCNR1 3	0.071	0.069	0.982	0.953	0.049	0.047	7.61E-06	1386.7
		_	Avg				6.75E-06	1425.7
			SD				1.21E-06	152.6
PG_DCNR1_1	0.045	0.043	0.429	0.417	0.035	0.033	1.82E-05	961.0
PG_DCNR1_2	0.047	0.045	0.437	0.426	0.035	0.035	3.36E-06	931.1
PG_DCNR1_3	0.042	0.040	0.418	0.407	0.033	0.032	7.02E-06	995.2
			Avg				9.52E-06	962.5
			SD				7.71E-06	32.1
EG_DCNR1_1	0.037	0.035	0.442	0.421	0.023	0.020	2.45E-05	1194.9
EG_DCNR1_2	0.037	0.035	0.407	0.398	0.023	0.022	1.06E-05	1111.4
EG DCNR1 3	0.035	0.034	0.406	0.397	0.020	0.019	7.89E-06	1146.3
			Avg				1.43E-05	1150.9
			SD				8.89E-06	41.9
GLY_DCNR1_1	0.047	0.046	0.436	0.419	0.037	0.035	1.62E-05	922.9
GLY_DCNR1_2	0.047	0.045	0.450	0.440	0.035	0.034	8.15E-06	961.8
GLY DCNR1_3	0.047	0.046	0.424	0.411	0.036	0.035	9.59E-06	894.7
			Avg				1.13E-05	926.5
			SD				4.29E-06	33.7
DPNR1_1	0.084	0.079	1.068	0.995	0.075	0.073	6.80E-06	1271.4
DPNR1_2	0.087	0.084	1.101	1.035	0.079	0.076	9.94E-06	1265.5
DPNR1_3	0.078	0.076	1.083	1.016	0.073	0.069	1.34E-05	1388.5
			Avg				1.01E-05	1308.5
			SD				3.32E-06	69.3
EG_DPNR1_1	0.042	0.040	0.492	0.487	0.035	0.033	1.49E-05	1171.4
EG_DPNR1_2	0.044	0.039	0.471	0.468	0.038	0.034	3.17E-05	1070.5
EG_DPNR1_3	0.043	0.040	0.453	0.450	0.039	0.036	2.48E-05	1053.5
			Avg	-			2.38E-05	1098.5
			SD				8.46E-06	63.8

Table J1 The crosslink density of natural rubber film with various types ofplasticizer after immersion in toluene for 5 days

Appendix K Pig Skin Preparation

A pig skin (abdominal part) was washed with normal saline. Then, the hair and subcutaneous fat on the pig skin surface were removed by using a sharp razor blade until the thickness of the skin was 0.2 cm. The prepared pig skin was cut to circle shape (diameter of 2 cm) and immersed in a PBS buffer at pH of 7.4 at room temperature for 24 h before using it as a membrane in the permeation testing.

Figure K1 A pigskin membrane.

o

Appendix L Release Kinetics of Model Drug from Natural Rubber Patch

The one step IN permeation from all natural rubber patches was investigated to determine the transport behavior using the Korsmeyer-Peppas equation:

$$\frac{M_t}{M_{\infty}} = kt^n.$$
 (L1)

where	M_{t} and M_{∞}	=	the amount of drug released from DCNR film at time t
			and the total amount of drug release, respectively (mg),
	k	=	the kinetic constant (h ⁻ⁿ),
	t	=	time (h),
	n	=	the diffusion scaling exponent.

Then, the log value of M_t/M_∞ was plotted against log time to calculate the release exponent n according to Eq. (L2)

$$\log(\frac{M_t}{M_{\infty}}) = \log k + n \log t^{-1}$$
(L2)

The data were then force-fitted to the Higuchi equation (n = 0.5) and then the diffusion coefficient of IN from a natural rubber patch was calculated by Eq. (L3), Eq. (L4), and Eq. (L5):

.

$$\frac{M_t}{M_{\infty}} = kt^{1/2}$$
(L3)

$$Q = \frac{M_{t}}{A} = 2C_{0}(\frac{Dt}{\pi})^{1/2}.$$
 (L4)

$$M_t = k_H M_{\infty} t^{1/2} = 2C_0 \left(\frac{D^{1/2}}{\pi^{1/2}}\right) A t^{1/2}$$
 (L5)

where	$M_{t}/M_{\rm co}$	=	the fractional drug release	
	k _H	=	the Higuchi kinetic constant (with the unit of t ⁻ⁿ)	
	t	the release time		
	Q	=	the amount of material flowing through a unit cross section o	of
			barrier (g/cm ²) in unit time, t (s)	
	C ₀	=	the initial drug concentration in the film (g/cm^3)	
	D	=	the diffusion coefficient of a drug (cm^2/s)	

The diffusion coefficient was calculated from the slope of the plot of the amounts of IN permeated from IN-loaded DCNR at time t versus square root of time.

0

-

.

0

Appendix M Determination of Amounts and Diffusion Coefficient of IN Permeated from Natural Rubber Patch with Various Types of Plasticizer in an Absence of Electrical Potential

Figure M1 Amount of IN permeated from 100IN-10PG_DCNR1, 100IN-10GLY_DCNR1, and 100IN-10EG_DCNR1 at the crosslink ratio at 0.3 %v/v of DCNR versus time t under an absence of electrical potential, pH 7.4, 37 °C.

The total amounts of IN permeated from 3.14 cm² of 100IN-10PG_DCNR1, 100IN-10GLY_DCNR1, and 100IN-10EG_DCNR1 are 15 % (0.52 mg), 12% (0.31 mg), and 20 % (0.65 mg), respectively. The amount of IN permeation depends on the plasticizer type which is ranked as follow: EG > PG > GLY. The time to obtain permeation equilibrium of 100IN-10PG_DCNR1, 100IN-10GLY_DCNR1, and 100IN-10EG_DCNR1 were 7.5, 6, and 6 hours, respectively.

The diffusion from each plasticizer had one diffusion stage. The diffusion scaling exponents (n) were equal to 0.66, 0.78, and 0.90 for 100IN-10GLY_DCNR1, 100IN-10PG_DCNR1, and 100IN-10EG_DCNR1, respectively. The result indicates

that the drug transport behavior of all plasticizer systems can be considered as the anomalous transport resulting from the pure Fickian diffusion and the matrix swelling.

Figure M2 Plot of log M_t/M_{∞} versus log time from 100IN-10PG_DCNR1, 100IN-10GLY_DCNR1, and 100IN-10EG_DCNR1 at the crosslink ratio of 0.3 %v/v of DCNR under an absence of electrical potential, pH 7.4, 37 °C.

Figure M3 Amounts of IN permeated from 100IN-10PG_DCNR1, 100IN-10GLY_DCNR1, and 100IN-10EG_DCNR1 at the crosslink ratio of 0.5 %v/v of DCNR versus time $t^{1/2}$ under an absence of electrical potential, pH 7.4, 37 °C.

Table M1 The diffusion coefficients (D) of IN permeated from 100IN-10PG_DCNR1, 100IN-10GLY_DCNR1, and 100IN-10EG_DCNR1, pH 7.4 at 37 $^{\circ}$ C, E = 0 V

Sample	slope	M _∞ (mg)	C_0	\mathbf{D}
100IN 10GLV DONR1	0 3 8 1	0.300	(mg/cm)	0.54058E.08
	0.381	0.309	5.21	9.34030E-00
	0.304	0.317	3.21	6.39254E-08
	0.359	0.310	3.21	8.52551E-08
Avg	0.348			8.15288E-08
SD	0.040			1.60676E-08
100IN-10PG_DCNR1	0.470	0.461	4.94	2.09983E-07
	0.362	0.567	4.94	1.88438E-07
	0.370	0.546	4.94	1.82547E-07
Avg	0.401			1.93656E-07
SD	0.060			1.44429E-08
100IN-10EG_DCNR1	0.340	0.638	4.14	2.51138E-07
	0.452	0.654	4.14	4.66385E-07
	0.421	0.663	4.14	4.15818E-07
Avg	0.404			3.7778E-07
SD	0.058			1.12553E-07

•

118

Time	Absorbance			e Absorbance Amount of drug permeated (d (mg)
(h)	1	2	3	1	2	3	Avg	SD	
0.0833	0.0348	0.0353	0.0344	0.0201	0.0205	0.0199	0.0202	0.0003	
0.1667	0.0200	0.0256	0.0264	0.0318	0.0353	0.0352	0.0341	0.0020	
0.25	0.0340	0.0357	0.0348	0.0515	0.0560	0.0554	0.0543	0.0024	
0.3333	0.0478	0.0077	0.0088	0.0792	0.0605	0.0605	0.0667	0.0108	
0.4167	0.0313	0.0820	0.0811	0.0974	0.1080	0.1075	0.1043	0.0060	
0.5	0.0264	0.0256	0.0271	0.1127	0.1228	0.1232	0.1196	0.0060	
0.6667	0.0420	0.0126	0.0119	0.1370	0.1301	0.1301	0.1324	0.0040	
0.8333	0.0483	0.0486	0.0501	0.1650	0.1583	0.1592	0.1608	0.0036	
1	0.0448	0.0642	0.0633	0.1910	0.1955	0.1959	0.1941	0.0027	
1.25	0.0473	0.0074	0.0081	0.2184	0.1998	0.2006	0.2063	0.0105	
1.5	0.1256	0.0254	0.0242	0.2913	0.2146	0.2146	0.2402	0.0443	
1.75	0.1137	0.0141	0.0148	0.3572	0.2227	0.2232	0.2677	0.0775	
2	0.1431	0.2043	0.2035	0.4401	0.3412	0.3412	0.3741	0.0571	
2.5	0.0557	0.1295	0.1310	0.4724	0.4162	0.4171	0.4353	0.0322	
3	0.0538	0.0318	0.0307	0.5036	0.4347	0.4349	0.4577	0.0397	
3.5	0.0680	0.0396	0.0409	0.5430	0.4576	0.4586	0.4864	0.0490	
4	0.0379	0.0625	0.0616	0.5650	0.4939	0.4943	0.5177	0.0409	
5	0.0277	0.0408	0.0419	0.5811	0.5175	0.5186	0.5391	0.0364	
6	0.0154	0.0409	0.0401	0.5900	0.5412	0.5419	0.5577	0.0280	
7	0.0165	0.0541	0.0550	0.5996	0.5726	0.5738	0.5820	0.0153	
8	0.0168	0.0702	0.0694	0.6093	0.6133	0.6140	0.6122	0.0025	
12	0.0131	0.0009	0.0016	0.6169	0.6138	0.6149	0.6152	0.0016	
16	0.0008	0.0085	0.0077	0.6173	0.6187	0.6194	0.6185	0.0011	
20	0.0044	0.0169	0.0180	0.6199	0.6285	0.6298	0.6261	0.0054	
24	0.0099	0.0030	0.0020	0.6256	0.6303	0.6310	0.6289	0.0029	
28	0.0205	0.0106	0.0118	0.6375	0.6364	0.6378	0.6372	0.0007	
32	0.0073	0.0010	0.0009	0.6418	0.6370	0.6383	0.6390	0.0025	
40	0.0036	0.0006	0.0004	0.6438	0.6373	0.6386	0.6399	0.0034	
48	0.0002	0.0456	0.0449	0.6440	0.6638	0.6646	0.6575	0.0117	

σ

-

Table M2 The absorbance intensity and amount of IN permeated from 100IN-10EG_DCNR1 without electrical potential

Time	Absorbance				Amoun	t of drug	permeated	l (mg)
(h)	1	2	3.	1	2	3	Avg	SD
0.0833	0.0297	0.0223	0.0325	0.0172	0.0129	0.0188	0.0163	0.0031
0.1667	0.0069	0.0160	0.0248	0.0212	0.0222	0.0332	0.0255	0.0067
0.25	0.0428	0.0393	0.0290	0.0460	0.0450	0.0500	0.0470	0.0026
0.3333	0.0003	0.0163	0.0109	0.0462	0.0544	0.0563	0.0523	0.0054
0.4167	0.0120	0.0062	0.0207	0.0532	0.0580	0.0683	0.0598	0.0077
0.5	0.0203	0.0201	0.0141	0.0649	0.0697	0.0765	0.0704	0.0058
0.6667	0.0154	0.0007	0.0005	0.0739	0.0701	0.0768	0.0736	0.0034
0.8333	0.0118	0.0175	0.0109	0.0807	0.0802	0.0831	0.0813	0.0016
1	0.0205	0.0133	0.0024	0.0926	0.0879	0.0845	0.0883	0.0041
1.25	0.0130	0.0175	0.0002	0.1001	0.0981	0.0831	0.0938	0.0093
1.5	0.0278	0.0196	0.0150	0.1162	0.1095	0.0918	0.1058	0.0126
1.75	0.0060	0.0096	0.0006	0.1197	0.1150	0.0878	0.1075	0.0172
2	0.0505	0.0410	0.0804	0.1489	0.1388	0.1344	0.1407	0.0074
2.5	0.0165	0.0229	0.0330	0.1585	0.1521	0.1535	0.1547	0.0034
3	0.0289	0.0266	0.0255	0.1752	0.1675	0.1683	0.1703	0.0042
3.5	0.0161	0.0212	0.0304	0.1846	0.1798	0.1859	0.1834	0.0032
4	0.0253	0.0193	0.0309	0.1992	0.1910	0.2038	0.1980	0.0065
5	0.0066	0.0025	0.0002	0.2030	0.1924	0.2027	0.1994	0.0060
6	0.0297	0.0259	0.0086	0.2202	0.2074	0.2077	0.2118	0.0073
7	0.0069	0.0119	0.0179	0.2242	0.2143	0.2181	0.2189	0.0050
8	0.0216	0.0166	0.0333	0.2368	0.2239	0.2374	0.2327	0.0076
12	0.0468	0.0660	0.0299	0.2639	0.2622	0.2547	0.2603	0.0049
16	0.0170	0.0015	0.0145	0.2738	0.2631	0.2631	0.2667	0.0062
20	0.0167	0.0253	0.0111	0.2834	0.2777	0.2696	0.2769	0.0069
24	0.0167	0.0058	0.0571	0.2931	0.2811	0.3027	0.2923	0.0108
28	0.0053	0.0110	0.0188	0.2962	0.2875	0.3136	0.2991	0.0133
32	0.0109	0.0237	0.0044	0.3025	0.3012	0.3161	0.3066	0.0083
40	0.0063	0.0121	0.0021	0.3062	0.3082	0.3173	0.3106	0.0059
48	0.0204	0.0129	0.0029	0.3180	0.3157	0.3190	0.3176	0.0017

-

÷

Ø

Table M3The absorbance intensity and amount of IN permeated from 100IN-10GLY_DCNR1 without electrical potential

T .									
lime	Absorbance Amount of C				t of drug	permeated	I (mg)		
(h)	1	2	3	1	2	3	Avg	SD	
0.0833	0.0316	0.0382	0.0370	0.0183	0.0221	0.0214	0.0206	0.0020	
0.1667	0.0838	0.0505	0.0203	0.0669	0.0514	0.0332	0.0505	0.0169	
0.25	0.0448	0.0371	0.0359	0.0929	0.0729	0.0540	0.0733	0.0194	
0.3333	0.0134	0.0123	0.0155	0.1006	0.0801	0.0630	0.0812	0.0188	
0.4167	0.0426	0.0190	0.0291	0.1253	0.0911	0.0799	0.0988	0.0237	
0.5	0.0261	0.0495	0.0211	0.1405	0.1198	0.0921	0.1175	0.0243	
0.6667	0.0676	0.0213	0.0104	0.1797	0.1321	0.0981	0.1366	0.0409	
0.8333	0.0576	0.0273	0.0182	0.2130	0.1479	0.1087	0.1566	0.0527	
1	0.0578	0.0205	0.0152	0.2466	0.1598	0.1175	0.1746	0.0658	
1.25	0.0685	0.0207	0.0073	0.2863	0.1718	0.1217	0.1933	0.0843	
1.5	0.0659	0.0226	0.1247	0.3245	0.1849	0.1940	0.2345	0.0781	
1.75	0.0482	0.0143	0.1061	0.3524	0.1932	0.2555	0.2671	0.0802	
2	0.0253	0.0524	0.0724	0.3671	0.2236	0.2975	0.2961	0.0718	
2.5	0.0301	0.0358	0.1158	0.3845	0.2444	0.3646	0.3312	0.0758	
3	0.0288	0.1112	0.0199	0.4012	0.3088	0.3762	0.3621	0.0478	
3.5	0.0154	0.0462	0.0176	0.4102	0.3356	0.3864	0.3774	0.0381	
4	0.0063	0.0433	0.0220	0.4138	0.3607	0.3991	0.3912	0.0274	
5	0.0031	0.0660	0.0364	0.4156	0.3990	0.4202	0.4116	0.0112	
6	0.0093	0.0392	0.0392	0.4210	0.4217	0.4430	0.4286	0.0125	
7	0.0011	0.0286	0.0286	0.4216	0.4383	0.4595	0.4398	0.0190	
8	0.0064	0.0388	0.0388	0.4253	0.4608	0.4820	0.4560	0.0286	
12	0.0082	0.0385	0.0385	0.4301	0.4831	0.5044	0.4725	0.0382	
16	9.0066	0.0365	0.0365	0.4339	0.5042	0.5255	0.4879	0.0479	
20	0.0013	0.0214	0.0214	0.4347	0.5166	0.5379	0.4964	0.0545	
24	0.0160	0.0160	0.0160	0.4440	0.5259	0.5472	0.5057	0.0545	
28	0.0123	0.0123	0.0123	0.4511	0.5331	0.5543	0.5128	0.0545	
32	0.0145	0.0145	0.0145	0.4595	0.5415	0.5627	0.5212	0.0545	
40	0.0085	0.0085	0.0085	0.4644	0.5464	0.5677	0.5262	0.0545	
48	0.0065	0.0065	0.0065	0.4682	0.5502	0.5714	0.5299	0.0545	

Table M4 The absorbance intensity and amount of IN permeated from 100IN-10PG_DCNR1 without electrical potential

Appendix N Determination of Amounts and Diffusion Coefficient of IN Permeated from Natural Rubber Patch with Various Amount of Plasticizer in an Absence of Electrical Potential

Figure N1 Amounts of IN permeated from natural rubber patches of various plasticizer amounts versus time t under an absence of electrical potential, pH 7.4, 37 °C.

The total amounts of IN permeated from 3.14 cm² of 100IN-5EG_DCNR1, 100IN-10EG_DCNR1, and 100IN-15EG_DCNR1 having the amounts of EG at 5, 10, and 15 mL using initially 5 mL of DCNR are 15 % (0.49 mg), 23 % (0.65 mg), and 20 % (0.60 mg), respectively. The amount of IN permeation is affected by the amount of plasticizer and initial amount of drug in the samples. The plasticizer in the natural rubber patch acts as the drug carrier pathway which increases the amount of IN permeation with increasing the amount of plasticizer in the cases of 100IN-5EG_DCNR1 and 100IN-10EG_DCNR1. The times to permeation equilibrium of 100IN-5EG_DCNR1, 100IN-10EG_DCNR1, and 100IN-15EG_DCNR1 were 10. 6.

and 7.5 hours, respectively.

The diffusion from each plasticizer has one diffusion stage. The n values were equal to 0.60, 0.90, and 0.85 for 100IN-5EG_DCNR1, 100IN-10EG_DCNR1, and 100IN-15EG_DCNR1, respectively. The result indicates that the drug transport behavior can be considered to be the anomalous transport which results from the pure diffusion and the matrix swelling.

Figure N2 Plot of log M_t/M_{∞} versus log time from 100IN-5EG_DCNR1, 100IN-10EG_DCNR1, and 100IN-15EG_DCNR1 at the crosslink ratio of 0.3 %v/v of DCNR under an absence of electrical potential, pH 7.4, 37 °C.

Figure N3 Amount of IN permeated from 100IN-5EG_DCNR1, 100IN-10EG_DCNR1, and 100IN-15EG_DCNR1 at the crosslink ratio of 0.5 %v/v of DCNR versus time t^{1/2} under an absence of electrical potential, pH 7.4, 37 °C.

Figure N4 Diffusion coefficients (D) of IN permeated from 100IN-5EG_DCNR1, 100IN-10EG_DCNR1, and 100IN-15EG_DCNR1 without electrical potential, pH 7.4, 37 °C.

o

Table N1The diffusion coefficients (D) of IN permeated from 100IN-5EG_DCNR1, 100IN-10EG_DCNR1, and 100IN-15EG_DCNR1 without electricalpotential, pH 7.4 at 37 °C

Sample	slope	M _{.o} (mg)	$\frac{C_0}{(mg/cm^3)}$	D (cm ² /s)	•
100IN-5EG_DCNR1	0.277	0.495	4.19	9.91445E-08	
	0.284	0.484	4.19	9.96383E-08	
	0.298	0.484	4.19	1.09704E-07	
Avg	0.286			1.02829E-07	
SD	0.011			5.95904E-09	
100IN-10EG_DCNR1	0.340	0.638	4.14	2.51138E-07	
	0.452	0.654	4.14	4.66385E-07	
	0.421	0.663	4.14	4.15818E-07	
Avg	0.404			3.7778E-07	
SD	0.058			1.12553E-07	
100IN-15EG_DCNR1	0.321	0.585	3.29	2.36831E-07	
	0.348	0.604	3.29	2.96722E-07	
	0.381	0.596	3.29	3.46306E-07	
Avg	0.350			2.93286E-07	
SD	0.030			5.4818E-08	

0

4

σ

126

	Time	Absorbance			Amount of drug permeated (mg)					
	(h)	1	2	3	1	2	3	Avg	SD	
	0.0833	0.0420	0.0388	0.0378	0.0243	0.0225	0.0219	0.0229	0.0013	
	0.1667	0.0213	0.0176	0.0186	0.0367	0.0327	0.0327	0.0340	0.0023	
	0.25	0.0364	0.0311	0.0293	0.0578	0.0507	0.0497	0.0527	0.0044	
	0.3333	0.0089	0.0102	0.0113	0.0630	0.0566	0.0562	0.0586	0.0038	
	0.4167	0.0167	0.0144	0.0135	0.0726	0.0650	0.0641	0.0672	0.0047	
	0.5	0.0272	0.0305	0.0317	0.0884	0.0827	0.0824	0.0845	0.0034	
	0.6667	0.0123	0.0129	0.0118	0.0955	0.0901	0.0893	0.0917	0.0034	
	0.8333	0.0161	0.0176	0.0191	0.1049	0.1004	0.1004	0.1019	0.0026	
	1	0.0212	0.0228	0.0219	0.1172	0.1136	0.1130	0.1146	0.0022	
	1.25	0.0170	0.0083	0.0092	0.1270	0.1184	0.1184	0.1213	0.0050	
	1.5	0.0178	0.0202	0.0193	0.1373	0.1301	0.1296	0.1323	0.0043	
	1.75	0.0090	0.0102	0.0125	0.1426	0.1360	0.1368	0.1385	0.0036	
	2	0.0548	0.0812	0.0722	0.1743	0.1831	0.1787	0.1787	0.0044	
	2.5	0.0370	0.0893	0.1023	0.1958	0.2348	0.2380	0.2229	0.0235	
	3	0.0174	0.0297	0.0290	0.2059	0.2521	0.2548	0.2376	0.0275	
	3.5	0.0562	0.0511	0.0631	0.2384	0.2817	0.2914	0.2705	0.0282	
	4	0.0205	0.0360	0.0351	0.2503	0.3026	0.3117	0.2882	0.0331	
	5	0.0667	0.0257	0.0264	0.2890	0.3175	0.3270	0.3112	0.0198	
	6	0.0295	0.0477	0.0429	0.3061	0.3451	0.3519	0.3344	0.0247	
	7	0.0569	0.0661	0.0731	0.3391	0.3834	0.3942	0.3723	0.0292	
	8	0.0502	0.0252	0.0245	0.3682	0.3980	0.4084	0.3916	0.0209	
	12	0.0487	0.0440	0.0452	0.3964	0.4235	0.4346	0.4182	0.0197	
	16	° 0.0836	0.0421	0.0408	0.4449	0.4480	0.4583	0.4504	0.0070	
	20	0.0528	0.0288	0.0300	0.4755	0.4646	0.4757	0.4719	0.0063	
	24	0.0140	0.0140	0.0128	0.4836	0.4728	0.4831	0.4798	0.0061	
	28	0.0106	0.0106	0.0121	0.4898	0.4789	0.4901	0.4863	0.0064	
	32	0.0136	0.0136	0.0126	0.4976	0.4868	0.4974	0.4940	0.0062	
ĺ	40	0.0052	0.0052	0.0058	0.5006	0.4898	0.5008	0.4971	0.0063	
.,	48	0.0010	0.0010	0.0014	0.5012	0.4904	0.5016	0.4977	0.0064	

-

Table N2 The absorbance intensity and amount of IN permeated from 100IN-5EG_DCNR1 without electrical potential

Time	Absorbance				Amount of drug permeated (mg)					
(h)	1	2	3	1	2	3	Avg	SD		
0.0833	0.0348	0.0353	0.0344	0.0201	0.0205	0.0199	0.0202	0.0003		
0.1667	0.0200	0.0256	0.0264	0.0318	0.0353	0.0352	0.0341	0.0020		
0.25	0.0340	0.0357	0.0348	0.0515	0.0560	0.0554	0.0543	0.0024		
0.3333	0.0478	0.0077	0.0088	0.0792	0.0605	0.0605	0.0667	0.0108		
0.4167	0.0313	0.0820	0.0811	0.0974	0.1080	0.1075	0.1043	0.0060		
0.5	0.0264	0.0256	0.0271	0.1127	0.1228	0.1232	0.1196	0.0060		
0.6667	0.0420	0.0126	0.0119	0.1370	0.1301	0.1301	0.1324	0.0040		
0.8333	0.0483	0.0486	0.0501	0.1650	0.1583	0.1592	0.1608	0.0036		
1	0.0448	0.0642	0.0633	0.1910	0.1955	0.1959	0.1941	0.0027		
1.25	0.0473	0.0074	0.0081	0.2184	0.1998	0.2006	0.2063	0.0105		
1.5	0.1256	0.0254	0.0242	0.2913	0.2146	0.2146	0.2402	0.0443		
1.75	0.1137	0.0141	0.0148	0.3572	0.2227	0.2232	0.2677	0.0775		
2	0.1431	0.2043	0.2035	0.4401	0.3412	0.3412	0.3741	0.0571		
2.5	0.0557	0.1295	0.1310	0.4724	0.4162	0.4171	0.4353	0.0322		
3	0.0538	0.0318	0.0307	0.5036	0.4347	0.4349	0.4577	0.0397		
3.5	0.0680	0.0396	0.0409	0.5430	0.4576	0.4586	0.4864	0.0490		
4	0.0379	0.0625	0.0616	0.5650	0.4939	0.4943	0.5177	0.0409		
5	0.0277	0.0408	0.0419	0.5811	0.5175	0.5186	0.5391	0.0364		
6	0.0154	0.0409	0.0401	0.5900	0.5412	0.5419	0.5577	0.0280		
7	0.0165	0.0541	0.0550	0.5996	0.5726	0.5738	0.5820	0.0153		
8	0.0168	0.0702	0.0694	0.6093	0.6133	0.6140	0.6122	0.0025		
12	0.0131	0.0009	0.0016	0.6169	0.6138	0.6149	0.6152	0.0016		
16	0.0008	0.0085	0.0077	0.6173	0.6187	0.6194	0.6185	0.0011		
20	0.0044	0.0169	0.0180	0.6199	0.6285	0.6298	0.6261	0.0054		
24	0.0099	0.0030	0.0020	0.6256	0.6303	0.6310	0.6289	0.0029		
28	0.0205	0.0106	0.0118	0.6375	0.6364	0.6378	0.6372	0.0007		
32	0.0073	0.0010	0.0009	0.6418	0.6370	0.6383	0.6390	0.0025		
40	0.0036	0.0006	0.0004	0.6438	0.6373	0.6386	0.6399	0.0034		
48	0.0002	0.0456	0.0449	0.6440	0.6638	0.6646	0.6575	0.0117		

Table N3 The absorbance intensity and amount of IN permeated from 100IN-10EG_DCNR1 without electrical potential

Time	Absorbance			Amount of drug permeated (mg)					
(h)	1	2	3	1	2	3	Avg	SD	
0.0833	0.0341	0.0320	0.0313	0.0198	0.0186	0.0181	0.0188	0.0008	
0.1667	0.0429	0.0269	0.0450	0.0446	0.0341	0.0442	0.0410	0.0059	
0.25	0.0360	0.0203	0.0280	0.0655	0.0459	0.0605	0.0573	0.0102	
0.3333	0.0124	0.0280	0.0325	0.0727	0.0621	0.0793	0.0714	0.0087	
0.4167	0.0177	0.0238	0.0198	0.0830	0.0759	0.0908	0.0832	0.0074	
0.5	0.0356	0.0214	0.0322	0.1036	0.0883	0.1095	0.1005	0.0109	
0.6667	0.0139	0.0243	0.0231	0.1117	0.1024	0.1228	0.1123	0.0102	
0.8333	0.0187	0.0268	0.0565	0.1225	0.1180	0.1556	0.1320	0.0205	
1	0.0230	0.0423	0.0559	0.1358	0.1425	0.1880	0.1554	0.0284	
1.25	0.0090	0.0390	0.0668	0.1410	0.1651	0.2267	0.1776	0.0442	
1.5	0.0215	0.0510	0.0401	0.1535	0.1947	0.2500	0.1994	0.0484	
1.75	0.0705	0.0696	0.0745	0.1944	0.2350	0.2932	0.2409	0.0497	
2	0.1178	0.1779	0.0506	0.2627	0.3382	0.3225	0.3078	0.0398	
2.5	0.0528	0.0823	0.0578	0.2933	0.3859	0.3560	0.3451	0.0473	
3	0.0524	0.0462	0.0971	0.3237	0.4126	0.4123	0.3829	0.0513	
3.5	0.0411	0.0259	0.0403	0.3475	0.4277	0.4357	0.4036	0.0488	
4	0.0625	0.0275	0.0381	0.3837	0.4436	0.4577	0.4284	0.0393	
5	0.1294	0.0300	0.0178	0.4587	0.4610	0.4681	0.4626	0.0049	
6	0.0401	0.0406	0.0172	0.4820	0.4845	0.4780	0.4815	0.0033	
7	0.0363	0.0329	0.0233	0.5030	0.5036	0.4915	0.4994	0.0068	
8	0.0125	0.0399	0.0404	0.5103	0.5267	0.5150	0.5173	0.0085	
12	0.0431	0.0373	0.0181	0.5353	0.5484	0.5255	0.5364	0.0115	
16	0.0285	0.0418	0.0712	0.5518	0.5726	0.5667	0.5637	0.0107	
20	0.0207	0.0178	0.0138	0.5638	0.5829	0.5747	0.5738	0.0096	
24	0.0130	0.0061	0.0061	0.5713	0.5864	0.5783	0.5787	0.0076	
28	0.0122	0.0125	0.0125	0.5784	0.5937	0.5855	0.5859	0.0077	
32	0.0158	0.0209	0.0209	0.5875	0.6058	0.5976	0.5970	0.0091	
40	0.0083	0.0123	0.0123	0.5924	0.6129	0.6048	0.6034	0.0104	
48	0.0046	0.0130	0.0130	0.5950	0.6205	0.6123	0.6093	0.0130	

Table N4The absorbance intensity and amount of IN permeated from 100IN-15EG_DCNR1 without electrical potential

Figure O1 Amount of IN permeated from 300IN-10EG_DCNR1 with various electrical potentials, pH 7.4, 37 °C.

The total amounts of IN permeated from 3.14 cm^2 of 300IN-10EG DCNR1 at E = 0, 0.1, 1, 3, 5, 7, and 9 V are 28 % (2.03 mg), 29 % (2.10 mg), 36 % (2.59 mg), 43 % (3.11 mg), and 55 % (3.97 mg), respectively. The amount of IN permeation depends on electrical potential. The driving force of the drug transportation is generated by the electro-repulsive force between a negatively charge of the anionic drug and the negatively charged cathode. Thus, the increase in electric field strength influences the driving force which promotes the diffusion of IN from the 300IN-10EG DCNR1. The times to permeation equilibrium of 300IN-10EG DCNR1 under applied electrical potential at 0, 3, 5, 7, and 9 were equal to 2.8, 2.8, 2.4, 2.4, and 2.2 hours, respectively.

The diffusion from each plasticizer has one diffusion stage. The n values

Ø

were equal to 1.42, 1.35, 1.27, 1.43, and 1.59 for 300IN-10EG_DCNR1 at E = 0, 3, 5, 7, and 9 V, respectively. The result indicates that the drug transport behavior can be considered as the Super Case II transport which results from the relaxation of polymer and the erosion mechanism (Sriamornsak *et al.*, 2007).

Figure O2 Plot of log M_t/M_{∞} versus log time from 300IN-10EG_DCNR1 at various electrical potentials (0-9 V) at the crosslink ratio of 0.3 %v/v of, pH 7.4, 37 °C.

Figure O3 Amount of IN permeated from 300IN-10EG_DCNR1 at the crosslink ratio of 0.5 %v/v of DCNR versus time $t^{1/2}$ at various electrical potentials (0-9 V).

Figure O4 Diffusion coefficient, D, of IN permeated from 300IN-10EG_DCNR1 versus electrical potentials.
Sampla	glono	M _{co}	C ₀	D
Sample	slope	(mg)	(mg/cm^3)	(cm^2/s)
$0^{\circ}V$	0.871	2.045	9.22	7.60335E-06
	0.883	2.036	9.22	7.74567E-06
	0.794	2.007	9.22	6.0858E-06
Avg	0.849			7.14494E-06
SD	0.048			9.19997E-07
3 V	0.820	2.089	9.22	7.03212E-06
	0.871	2.133	9.22	8.2718E-06
	0.813	2.091	9.22	6.92582E-06
Avg	0.835			7.40991E-06
SD	0.032			7.48304E-07
5 V	0.763	2.563	9.22	9.16491E-06
	0.717	2.555	9.22	8.0427E-06
	0.718	2.649	9.22	8.66951E-06
Avg	0.733			8.62571E-06
SD	0.026			5.62384E-07
7 V	0.763	3.077	9.22	1.32095E-05
	0.813	3.095	9.22	1.51735E-05
	0.813	3.163	9.22	1.58475E-05
Avg	0.796			1.47435E-05
SD	0.029			1.37057E-06
9 V	0.642	3.898	9.22	1.50084E-05
	0.610	3.914	9.22	1.3661E-05
	0.677	4.105	9.22	1.85091E-05
Avg	0.643			1.57262E-05
SD	0.034			2.50247E-06

Table O1The diffusion coefficients (D) of IN permeated from 300IN-10EG_DCNR1 with various electrical potentials, pH 7.4 at 37 °C

Time		Absort	oance	Amount of drug permeated (mg)						
(h)	1	2	3	1	2	3	Avg	SD		
0.0833	0.0300	0.0422	0.0394	0.0174	0.0245	0.0228	0.0216	0.0037		
0.1667	0.0592	0.0664	0.0525	0.0517	0.0630	0.0533	0.0560	0.0061		
0.25	0.0483	0.0479	0.0547	0.0797	0.0907	0.0850	0.0851	0.0055		
0.3333	0.0324	0.0390	0.0270	0.0985	0.1133	0.1006	0.1042	0.0080		
0.4167	0.0360	0.0554	0.0425	0.1194	0.1455	0.1253	0.1300	0.0137		
0.5	0.3147	0.1162	0.2930	0.3018	0.2128	0.2951	0.2699	0.0496		
0.6667	0.2985	0.0614	0.3174	0.4749	0.2484	0.4791	0.4008	0.1320		
0.8333	0.1418	0.2296	0.1081	0.5571	0.3815	0.5418	0.4935	0.0972		
1	0.1210	0.2991	0.1459	0.6272	0.5549	0.6264	0.6028	0.0415		
1.25	0.4693	0.4971	0.4429	0.8993	0.8431	0.8832	0.8752	0.0289		
1.5	0.5560	0.5095	0.5577	1.2216	1.1385	1.2065	1.1888	0.0443		
1.75	0.5696	0.3950	0.5515	1.5518	1.3675	1.5262	1.4818	0.0999		
2	0.2280	0.1311	0.2399	1.6840	1.4435	1.6653	1.5976	0.1338		
2.5	0.0591	0.1750	0.0481	1.7182	1.5449	1.6931	1.6521	0.0937		
3	0.0618	0.2428	0.0668	1.7541	1.6857	1.7319	1.7239	0.0349		
3.5	0.0422	0.2301	0.0330	1.7785	1.8191	1.7510	1.7829	0.0342		
4	0.0398	0.0091	0.0569	1.8016	1.8243	1.7840	1.8033	0.0202		
5	0.0424	0.0440	0.0410	1.8262	1.8498	1.8078	1.8279	0.0211		
6	0.0484	0.0264	0.0574	1.8542	1.8651	1.8410	1.8535	0.0121		
7	0.0433	0.0250	0.0411	1.8793	1.8796	1.8649	1.8746	0.0085		
8	0.0471	0.0368	0.0492	1.9067	1.9010	1.8934	1.9003	0.0067		
12	0.0384	0.0591	0.0365	1.9289	1.9352	1.9145	1.9262	0.0106		
16	0.0703	0.0240	0.0756	1.9697	1.9491	1.9584	1.9591	0.0103		
20	0.0452	0.0246	0.0383	1.9959	1.9634	1.9806	1.9799	0.0162		
24	0.0351	0.0313	0.0379	2.0162	1.9816	2.0025	2.0001	0.0175		
28	0.0223	0.0212	0.0261	2.0291	1.9938	2.0177	2.0136	0.0180		
32	0.0343	0.0352	0.0244	2.0490	2.0142	2.0318	2.0317	0.0174		
40	0.0562	0.0478	0.0663	2.0816	2.0420	2.0703	2.0646	0.0204		
48	0.0333	0.0162	0.0303	2.1009	2.0514	2.0878	2.0800	0.0257		

Table O2 The absorbance intensity and amount of IN permeated from 300IN- $10EG_DCNR1$ under an absence of electrical potential (E = 0 V)

Time		Absort	ance		Amount o	f drug per	meated (ng)
(h)	1	2	3	1	2	3	Avg	SD
0.0833	0.0325	0.0255	0.0345	0.0188	0.0148	0.0200	0.0179	0.0027
0.1667	0.0350	0.0732	0.0332	0.0391	0.0572	0.0392	0.0452	0.0104
0.25	0.0477	0.0096	0.0500	0.0668	0.0628	0.0682	0.0659	0.0028
0.3333	0.0506	0.1325	0.0488	0.0961	0.1396	0.0965	0.1107	0.0250
0.4167	0.1096	0.2408	0.1146	0.1597	0.2792	0.1630	0.2006	0.0681
0.5	0.1541	0.3467	0.1580	0.2490	0.4802	0.2546	0.3279	0.1319
0.6667	0.1846	0.3636	0.1767	0.3560	0.6910	0.3570	0.4680	0.1931
0.8333	0.2285	0.1575	0.2330	0.4885	0.7823	0.4921	0.5876	0.1686
1	0.3035	0.2215	0.3014	0.6644	0.9107	0.6668	0.7473	0.1415
1.25	0.3513	0.2401	0.3591	0.8681	1.0499	0.8750	0.9310	0.1030
1.5	0.6001	0.3294	0.5933	1.2160	1.2408	1.2189	1.2252	0.0136
1.75	0.6695	0.6661	0.6754	1.6041	1.6270	1.6105	1.6139	0.0118
2	0.1314	0.1303	0.1284	1.6803	1.7025	1.6849	1.6892	0.0117
2.5	0.1616	0.0042	0.1662	1.7740	1.7050	1.7813	1.7534	0.0421
3	0.0498	0.0749	0.0456	1.8028	1.7484	1.8077	1.7863	0.0329
3.5	0.0473	0.0802	0.0547	1.8302	1.7949	1.8394	1.8215	0.0235
4	0.0373	0.1335	0.0458	1.8519	1.8723	1.8660	1.8634	0.0104
5	0.0692	0.0012	0.0628	1.8920	1.8730	1.9024	1.8891	0.0149
6	0.0272	0.1016	0.0436	1.9078	1.9319	1.9276	1.9224	0.0129
7	0.0322	0.0330	0.0285	1.9264	1.9510	1.9442	1.9405	0.0127
8	0.0340	0.0435	0.0356	1.9461	1.9762	1.9648	1.9624	0.0152
12	0.0547	0.0442	0.0507	1.9778	2.0018	1.9942	1.9913	0.0123
16	0.0345	0.0850	0.0370	1.9978	2.0511	2.0156	2.0215	0.0271
20	0.0176	0.1258	0.0155	2.0080	2.1240	2.0246	2.0522	0.0627
24	0.0668	0.0853	0.0687	2.0468	2.1735	2.0645	2.0949	0.0686
28	0.0820	0.0071	0.0700	2.0943	2.1776	2.1050	2.1257	0.0453
32	0.1022	0.0005	0.1162	2.1536	2.1779	2.1724	2.1680	0.0128
40	0.0788	0.0099	0.0768	2.1992	2.1836	2.2169	2.1999	0.0166
48	0.0618	0.0103	0.0868	2.2351	2.1896	2.2672	2.2306	0.0390.

Table O3 The absorbance intensity and amount of IN permeated from 300IN-10EG_DCNR1 under an electrical potential (E = 3 V)

σ

Time		Absorl	oance		Amount o	f drug pei	meated (1	 mg)
(h)	1	2	3	1	2	3	Avg	SD
0.0833	0.0597	0.1664	0.0656	0.0346	0.0965	0.0380	0.0564	0.0348
0.1667	0.0741	0.1387	0.0696	0.0776	0.1769	0.0784	0.1109	0.0571
0.25	0.1143	0.1406	0.1513	0.1438	0.2584	0.1661	0.1894	0.0607
0.3333	0.1329	0.1423	0.1159	0.2209	0.3409	0.2333	0.2650	0.0660
0.4167	0.1505	0.6012	0.1635	0.3081	0.6894	0.3281	0.4419	0.2146
0.5	0.1949	0.1563	0.1669	0.4211	0.7800	0.4248	0.5420	0.2062
0.6667	6.2031	0.0830	0.2231	0.5389	0.8281	0.5542	0.6404	0.1628
0.8333	0.2751	0.3278	0.2601	0.6983	1.0182	0.7049	0.8071	0.1828
1	0.3024	0.2740	0.3234	0.8736	1.1770	0.8924	0.9810	0.1700
1.25	0.5116	0.2515	0.4876	1.1702	1.3228	1.1751	1.2227	0.0867
1.5	0.5034	0.3105	0.5424	1.4621	1.5028	1.4895	1.4848	0.0208
1.75	0.5997	0.2457	0.5667	1.8097	1.6453	1.8181	1.7577	0.0975
2	0.2330	0.1121	0.1080	1.9448	1.7102	1.8807	1.8452	0.1212
2.5	0.1435	0.0305	0.0624	2.0280	1.7279	1.9169	1.8909	0.1517
3	0.0781	0.1385	0.0911	2.0733	1.8082	1.9697	1.9504	0.1336
3.5	0.0609	0.1485	0.0578	2.1086	1.8943	2.0032	2.0020	0.1071
4	0.0428	0.2028	0.0442	2.1334	2.0119	2.0288	2,0580	0.0658
5	0.0703	0.0693	0.0655	2.1741	2.0520	2.0668	2.0977	0.0666
6	0.0599	0.1738	0.0636	2.2089	2.1528	2.1037	2.1551	0.0526
7	0.0930	0.1003	0.0837	2.2628	2.2109	2.1522	2.2086	0.0553
8	0.0867	0.1145	0.0954	2.3130	2.2773	2.2075	2.2660	0.0537
12	0.0682	0.0798	0.0630	2.3526	2.3236	2.2440	2.3067	0.0562
16	0.0828	0.0883	0.0952	2.4006	2.3748	2.2992	2.3582	0.0527
20	0.0704	0.1841	0.0638	2.4414	2.4815	2.3362	2.4197	0.0751
24	0.0755	0.1000	0.0799	2.4852	2.5395	2.3825	2.4690	0.0797
28	0.0542	0.0936	0.0529	2.5166	2.5937	2.4132	2.5078	0.0906
32	0.1420	0.0602	0.1474	2.5989	2.6286	2.4986	2.5754	0.0681
40	0.1437	0.0793	0.1376	2.6822	2.6746	2.5784	2.6451	0.0579
48	0.1315	0.0787	0.1343	2.7584	2,7202	2.6562	2.7116	0.0516

σ

Table O4 The absorbance intensity and amount of IN permeated from 300IN- $10EG_DCNR1$ under an electrical potential (E = 5 V)

Time		Absort	oance	Amount of drug permeated (mg)						
(h)	1	2	. 3	1	2	3	Avg	SD		
0.0833	0.0755	0.0319	0.0794	0.0438	0.0185	0.0460	0.0361	0.0153		
0.1667	0.0848	0.0242	0.0770	0.0929	0.0325	0.0907	0.0720	0.0342		
0.25	0.0860	0.0255	0.0883	0.1428	0.0473	0.1419	0.1106	0.0549		
0.3333	0.0791	0.0581	0.0662	0.1886	0.0810	0.1802	0.1500	0.0599		
0.4167	0.1934	0.1291	0.2005	0.3008	0.1558	0.2965	0.2510	0.0825		
0.5	0.1661	0.1027	0.1479	0.3971	0.2154	0.3822	0.3315	0.1009		
0.6667	0.2004	0.2372	0.2224	0.5132	0.3529	0.5111	0.4591	0.0920		
0.8333	0.2316	0.5524	0.2226	0.6475	0.6731	0.6402	0.6536	0.0173		
1	0.2863	0.4133	0.2874	0.8135	0.9127	0.8068	0.8443	0.0593		
1.25	0.5206	0.3385	0.5170	1.1153	1.1090	1.1065	1.1102	0.0045		
1.5	0.4892	0.4747	0.4962	1.3989	1.3841	1.3942	1.3924	0.0075		
1.75	0.5640	1.1429	0.5594	1.7258	2.0467	1.7185	1.8303	0.1874		
2	0.5795	0.1428	0.5874	2.0618	2.1295	2.0590	2.0834	0.0399		
2.5	0.5387	0.0815	0.5315	2.3741	2.1767	2.3671	2.3060	0.1120		
3	0.5201	0.1639	0.5261	2.6756	2.2718	2.6721	2.5398	0.2322		
3.5	0.2117	0.1491	0.2059	2.7983	2.3582	2.7915	2.6493	0.2522		
4	0.2293	0.2075	0.2408	2.9313	2.4785	2.9311	2.7803	0.2614		
5	0.1088	0.0695	0.1046	2.9943	2.5188	2.9917	2.8349	0.2738		
6	0.0105	0.1642	0.0184	3.0004	2.6140	3.0024	2.8723	0.2237		
7	0.0498	0.1018	0.0405	3.0293	2.6730	3.0259	2.9094	0.2047		
8	0.0381	0.1120	0.0429	3.0514	2.7379	3.0507	2.9467	0.1808		
12	0.0178	0.1239	0.0167	3.0617	2.8097	3.0604	2.9773	0.1451		
16	0.0179	0.1264	0.0229	3.0721	2.8830	3.0737	3.0096	0.1096		
20	0.0386	0.1480	0.0367	3.0944	2.9688	3.0950	3.0527	0.0727		
24	0.0501	0.1240	0.0605	3.1235	3.0407	3.1300	3.0981	0.0498		
28	0.0507	0.1343	0.0431	3.1529	3.1186	3.1550	3.1422	0.0205		
32	0.0473	0.0925	0.0529	3.1803	3.1722	3.1857	3.1794	0.0068		
40	0.0499	0.0880	0.1409	3.2092	3.2232	3.2674	3.2333	0.0304		
48	0.0562	0.1059	0.0628	3.2418	3.2846	3.3038	3.2767	0.0317		

Table O5 The absorbance intensity and amount of IN permeated from 300IN- $10EG_DCNR1$ under an electrical potential (E = 7 V)

Ø

Time		Absor	·bance	Amount of drug permeated (mg)						
(h)	1	2	3	1	2	3	Avg	SD		
0.0833	0.0688	0.0403	0.0697	0.0399	0.0234	0.0404	0.0346	0.0097		
0.1667	0.0764	0.1020	0.0755	0.0842	0.0825	0.0842	0.0836	0.0010		
0.25	0.1108	0.1326	0.1207	0.1484	0.1594	0.1541	0.1540	0.0055		
0.3333	0.1095	0.0708	0.0951	0.2119	0.2004	0.2093	0.2072	0.0060		
0.4167	0.1440	0.0611	0.1538	0.2954	0.2358	0.2984	0.2765	0.0353		
0.5	0.2478	0.2199	0.2257	0.4390	0.3633	0.4293	0.4105	0.0412		
0.6667	1.0738	0.6456	1.0768	1.0615	0.7376	1.0535	0.9509	0.1848		
0.8333	0.7441	0.4213	0.7282	1.4929	0.9818	1.4757	1.3168	0.2902		
1	0.5547	0.8048	0.5652	1.8145	1.4484	1.8033	1.6887	0.2082		
1.25	0.9613	0.8356	0.9504	2.3718	1.9328	2.3543	2.2196	0.2486		
1.5	0.5833	0.9246	0.5887	2.7099	2.4688	2.6956	2.6248	0.1353		
1.75	0.9698	1.0359	0.9645	3.2721	3.0693	3.2547	3.1987	0.1124		
2	0.2369	0.0885	0.2373	3.4095	3.1207	3.3923	3.3075	0.1620		
2.5	0.1793	0.0428	0.1646	3.5134	3.1455	3.4877	3.3822	0.2054		
3	0.0688	0.1246	0.0724	3.5533	3.2177	3.5297	3.4336	0.1873		
3.5	0.0707	0.1078	0.0660	3.5943	3.2802	3.5680	3.4808	0.1742		
4	0.0612	0.1547	0.0649	3.6298	3.3699	3.6056	3.5351	0.1436		
5	0.0974	0.1470	0.0898	3.6862	3.4551	3.6576	3.5997	0.1260		
6	0.0798	0.2058	0.0916	3.7325	3.5744	3.7108	3.6725	0.0857		
7	0.0907	0.0665	0.0867	3.7851	3.6130	3.7610	3.7197	0.0932		
8	0.1007	0.1023	0.1146	3.8435	3.6723	3.8275	3.7811	0.0946		
12	0.1003	0.1031	0.0901	3.9016	3.7320	3.8797	3.8378	0.0922		
16	° 0.1128	0.1121	0.1294	3.9670	3.7970	3.9547	3.9062	0.0948		
20	0.0716	0.1183	0.0615	4.0085	3.8656	3.9904	3.9548	0.0778		
24	0.0728	0.1248	0.0790	4.0507	3.9379	4.0362	4.0083	0.0613		
28	0.0849	0.1566	0.0824	4.0999	4.0287	4.0839	4.0709	0.0373		
32	0.0749	0.1290	0.0798	4.1433	4.1035	4.1302	4.1257	0.0203		
40	0.0818	0.1493	0.0755	4.1908	4.1901	4.1740	4.1849	0.0095		
48	0.0664	0.0222	0.0788	4.2293	4.2029	4.2196	4.2173	0.0133		

2.11

Table O6 The absorbance intensity and amount of IN permeated from 300IN- $10EG_DCNR1$ under an electrical potential (E = 9 V)

1.1

Appendix P Determination of Amounts and Diffusion Coefficient of IN Permeated from 200IN-10EG_DCNR1 and 200IN-10EG_DPNR1 under an Electrical Potential (9 V)

Figure P1 Amount of IN permeated from 200IN-10EG_DCNR1_and 200IN-10EG_DPNR1 under electrical potentials at 9 V (sample area 3.14 cm²), pH 7.4, 37 °C.

The total amounts of IN permeated from 3.14 cm^2 of 200IN-10EG_DCNR1 and 200IN-10EG_DPNR1 at E = 9 V are 47 % (1.98 mg) and 77 % (2.69 mg), respectively. The amount of IN permeation depends on types of rubber matrix. The driving force of the drug transportation is generated by the electro-repulsive force between a negatively charge of the anionic drug and the negatively charged cathode. The times to permeation equilibrium of 200IN-10EG_DCNR1 and 200IN-10EG_DCNR1 and 200IN-10EG_DPNR1 under applied electrical potential at 9 V were equal to 6 and 8.5 hour, respectively.

The diffusion has one diffusion stage. The n values were equal to 1.32 and 0.68 for 200IN-10EG_DCNR1 and 200IN-10EG_DPNR1, respectively at E = V.

The result indicates that the drug transport behavior of 200IN-10EG_DCNR1 and 200IN-10EG_DPNR1 can be considered as the Super Case II transport which results from the relaxation of polymer and the erosion mechanism (Sriamornsak *et al.*, 2007) and the anomalous transport resulting from the pure Fickian diffusion and the matrix swelling.

Figure P2 Plot of log M_t/M_{∞} versus log time from 200IN-10EG_DCNR1 and 200IN-10EG_DPNR1 under electrical potentials at 9 V (sample area 3.14 cm²), pH 7.4, 37 °C.

Figure P3 Amount of IN permeated from 200IN-10EG_DCNR1 and 200IN-10EG_DPNR1 under electrical potentials at 9 V (sample area 3.14 cm²), pH 7.4, 37 °C.

U

Table P1The diffusion coefficients (D) of IN permeated from 200IN-10EG_DCNR1 and 200IN-10EG_DPNR1 under electrical potentials at 9 V (samplearea 3.14 cm²), pH 7.4, 37 °C

Sample	slope	M _{so} (mg)	$C_0(mg/cm^3)$	$D(cm^2/s)$
200IN-10EG_DCNR1	0.436	1.910	5.40	2.83765E-06
	0.452	1.911	5.40	3.05293E-06
	0.469	1.974	5.40	3.50719E-06
Avg	0.452			3.13259E-06
SD	0.017			3.41803E-07
200IN-10EG_DPNR1	0.530	2.822	4.33	1.11591E-05
	0.508	2.681	4.33	9.25093E-06
	0.488	2.575	4.33	7.87778E-06
Avg	0.509			9.42926E-06
SD	0.021			1.64791E-06

σ

.

0

144

Time	Α	bsorban	ce	Amount of drug permeated (mg)						
(h)	1	2	3	1	2	3	Avg .	SD		
0.0833	0.0950	0.1044	0.0941	0.0538	0.0592	0.0533	0.0555	0.0032		
0.1667	0.0978	0.1462	0.1506	0.1093	0.1420	0.1387	0.1300	0.0180		
0.25	0.1337	0.1564	0.1439	0.1851	0.2307	0.2203	0.2120	0.0239		
0.3333	0.1830	0.1874	0.1669	0.2888	0.3369	0.3149	0.3135	0.0241		
0.4167	0.1717	0.1482	0.1493	0.3861	0.4209	0.3995	0.4022	0.0176		
0.5	0.1852	0.1352	0.1815	0.4911	0.4976	0.5024	0.4970	0.0057		
0.6667	0.1006	0.1712	0.2116	0.5481	0.5946	0.6223	0.5883	0.0375		
0.8333	0.1609	0.1858	0.1517	0.6393	0.6999	0.7083	0.6825	0.0376		
1	0.2367	0.1463	0.1769	0.7735	0.7828	0.8086	0.7883	0.0182		
1.25	0.1848	0.1818	0.1314	0.8782	0.8859	0.8830	0.8824	0.0039		
1.5	0.1053	0.2033	0.1516	0.9379	1.0011	0.9690	0.9693	0.0316		
1.75	0.1782	0.1466	0.1756	1.0389	1.0842	1.0685	1.0639	0.0230		
2	0.1223	0.1360	0.1652	1.1082	1.1613	1.1622	1.1439	0.0309		
2.5	0.0637	0.1300	0.1115	1.1444	1.2350	1.2254	1.2016	0.0498		
3	0.0786	0.1571	0.1488	1.1889	1.3240	1.3097	1.2742	0.0742		
3.5	0.1613	0.1216	0.1447	1.2803	1.3930	1.3917	1.3550	0.0647		
4	0.1223	0.1747	0.1692	1.3497	1.4920	1.4876	1.4431	0.0809		
5	0.1602	0.1574	0.1281	1.4405	1.5812	1.5602	1.5273	0.0759		
6	0.1067	0.1114	0.0951	1.5009	1.6443	1.6141	1.5865	0.0756		
7	0.1570	0.1054	0.1161	1.5899	1.7041	1.6799	1.6580	0.0602		
8	0.1003	0.0597	0.0659	1.6468	1.7379	1.7173	1.7007	0.0478		
12	0.0678	0.0502	0.0603	16852	1.7664	1.7515	1.7344	0.0432		
16	0.0702	0.0363	0.0704	1.7250	1.7870	1.7914	1.7678	0.0371		
20	0.0606	0.0641	0.0737	1.7594	1.8233	1.8331	1.8053	0.0401		
24	0.0674	0.0206	0.0735	1.7976	1.8350	1.8748	1.8358	0.0386		
28	0.0593	0.0285	0.0578	1.8312	1.8511	1.9076	1.8633	0.0396		
32	0.0590	0.0537	0.0623	1.8646	1.8816	1.9429	1.8964	0.0412		
40	0.0898	0.0531	0.0523	1.9155	1.9117	1.9725	1.9332	0.0341		
48	0.0622	0.0509	0.0610	1.9508	1.9405	2.0071	1.9661	0.0359		

σ

Table P2The absorbance intensity and amount of IN permeated from 200IN-10EG_DCNR1 under electrical potentials at 9 V

				T				
Time	A	bsorban	ce	A	mount of	drug peri	neated (m	ig)
(h)	1	2	3	.1	2	3	Avg	SD
0.0833	0.0957	0.0986	0.0955	0.0631	0.0650	0.0629	0.0637	0.0011
0.1667	0.1724	0.1673	0.1757	0.1767	0.1752	0.1787	0.1769	0.0018
0.25	0.1945	0.1636	0.1759	0.3048	0.2830	0.2946	0.2942	0.0109
0.3333	0.0570	0.1826	0.1743	0.3424	0.4033	0.4095	0.3851	0.0371
0.4167	0.1622	0.1817	0.1663	0.4493	0.5231	0.5191	0.4972	0.0415
0.5	0.2683	0.1653	0.1501	0.6261	0.6320	0.6180	0.6254	0.0070
0.6667	0.1809	0.1808	0.1785	0.7453	0.7512	0.7356	0.7440	0.0078
0.8333	0.2130	0.1721	0.1877	0.8857	0.8646	0.8593	0.8699	0.0140
1	0.2041	0.2126	0.2044	1.0202	1.0047	0.9940	1.0063	0.0132
1.25	0.1453	0.1967	0.1760	1.1159	1.1343	1.1100	1.1201	0.0127
1.5	0.2777	0.1945	0.1620	1.2989	1.2625	1.2168	1.2594	0.0412
1.75	0.3459	0.1733	0.1670	1.5269	1.3767	1.3268	1.4101	0.1041
2	0.1100	0.1772	0.1807	1.5994	1.4934	1.4459	1.5129	0.0786
2.5	0.2574	0.1821	0.1728	1.7690	1.6134	1.5598	1.6474	0.1087
3	0.1513	0.1780	0.1740	1.8687	1.7307	1.6744	1.7579	0.1000
3.5	0.1050	0.1827	0.1988	1.9379	1.8511	1.8054	1.8648	0.0673
4	0.2080	0.1741	0.1727	2.0749	1.9659	1.9192	1.9867	0.0799
5	0.0766	0.1837	0.1780	2.1254	2.0869	2.0365	2.0830	0.0446
6	0.1923	0.2054	0.1624	2.2522	2.2223	2.1436	2.2060	0.0561
7	0.1688	0.1709	0.1798	2.3634	2.3349	2.2620	2.3201	0.0523
8	0.0852	0.1551	0.1614	2.4195	2.4371	2.3684	2.4083	0.0357
12	0.1198	0.1248	0.1337	2.4985	2.5193	2.4565	2.4914	0.0320
16	0.1424	0.0471	0.0287	2.5923	2.5504	2.4754	2.5394	0.0592
20	0.0720	0.0535	0.0358	2.6398	2.5856	2.4990	2.5748	0.0710
24	0.0511	0.0349	0.0271	2.6734	2.6086	2.5169	2.5996	0.0787
28	0.0658	0.0485	0.0366	2.7168	2.6406	2.5410	2.6328	0.0882
32	0.1126	0.0339	0.0238	2.7910	2.6629	2.5567	2.6702	0.1173
40	0.0483	0.0261	0.0323	2.8228	2.6801	2.5780	2.6936	0.1230
48	0.0453	0.0294	0.0202	2.8527	2.6995	2.5913	2.7145	0.1314

~

Table P3 The absorbance intensity and amount of IN permeated from 200IN-10EG_DPNR1 under electrical potentials at 9 V

Figure Q1 Amount of IN permeated from 200IN-10EG_DPNR1 with various electrical potentials, pH 7.4, 37 °C.

The total amounts of IN permeated from 12.56 cm² of 200IN-10EG_DPNR1 at E = 0, 3, 5, 7, and 9 V are 37 % (5.22 mg), 50 % (7.07 mg), 59 % (8.38 mg), 76 % (10.73 mg), and 86 % (12.19 mg), respectively. The amount of IN permeation depends on electrical potential. The driving force of the drug transportation is generated by the electro-repulsive force between a negatively charge of the anionic drug and the negatively charged cathode. Thus, the increase in electric field strength influences the driving force which promotes the diffusion of IN from the 200IN-10EG_DPNR1. The times to permeation equilibrium of 200IN-10EG_DPNR1 at all applied electrical potential conditions were equal to 10 hours.

The diffusion has one diffusion stage. The n values were equal to 0.62, 0.54, 0.65, 0.67, and 0.70 for 200IN-10EG_DPNR1 at E = 0, 3, 5, 7, and 9 V, respectively. The result indicates that the drug transport behavior of all plasticizer systems can be

considered as the anomalous transport resulting from the pure Fickian diffusion and the matrix swelling.

Figure Q2 Plot of log M_t/M_{∞} versus log time from 200IN-10EG_DPNR1 at various electrical potentials (0-9 V) at the crosslink ratio of 0.3 %v/v, pH 7.4, 37 °C.

Figure Q3 Amount of IN permeated from 200IN-10EG_DPNR1 at the crosslink ratio of 0.5 %v/v of DPNR1 versus time $t^{1/2}$ at various electrical potentials (0-9 V).

Ø

Figure Q4 Diffusion coefficient, D, of IN permeated from 200IN-10EG_DPNR1 versus electrical potentials.

ο

0

•

Sample	slope	M _{so} (mg)	C ₀ (mg/cm ³)	D(cm ² /s)
0 V	0.312:	5.097	4.49	1.24453E-05
	0.333	5.058	4.49	1.39609E-05
	0.313	5.498	4.49	1.45735E-05
Avg	0.319			1.36599E-05
SD	0.012			1.09558E-06
3 V	0.313	7.032	4.49	2.38404E-05
	0.345	6.994	4.49	2.86521E-05
	0.323	7.197	4.49	2.65934E-05
Avg	0.327			2.6362E-05
SD	0.016			2.41419E-06
5 V	0.435	8.417	4.49	6.59720E-05
	0.455	8.180	4.49	6.81704E-05
	0.476	8.552	4.49	8.15485E-05
Avg	0.455			7.1897E-05
SD	0.021			8.43042E-06
7 V	0.400	11.024	4.49	9.56896E-05
	0.408	10.569	4.49	9.15071E-05
	0.417	10.611	4.49	9.63499E-05
Avg	0.408			9.45155E-05
SD	0.009]		2.62624E-06
9 V	0.333	12.515	4.49	8.54706E-05
	0.370	12.496	4.49	0.000105199
	0.375	1 1 .554	4.49	9.23834E-05
Avg	0.359			9.4351E-05
SD	0.023			1.00104E-05

σ

Table Q1 The diffusion coefficients (D) of IN permeated from the 200IN-10EG_DPNR1 with various electrical potentials, pH 7.4 at 37 °C

Time	A	bsorbanc	e	Am	nount of d	lrug peri	neated (r	ng)
(h)	1	2	3	1	2	3	Avg	SD
0.0833	0.0357	0.0013	0.0512	0.2797	0.0102	0.4011	0.2303	0.2001
0.1667	0.0074	0.0038	0.0138	0.3376	0.0400	0.5092	0.2956	0.2374
0.25	0.0163	0.0121	0.0034	0.4653	0.1347	0.5359	0.3786	0.2141
0.3333	0.0032	0.0435	0.0367	0.4904	0.4755	0.8234	0.5964	0.1967
0.4167	0.0027	0.0037	0.0357	0.5116	0.5045	1.1030	0.7064	0.3435
0.5	0.0173	0.0257	0.0057	0.6471	0.7059	1.1477	0.8335	0.2736
0.6667	0.0099	0.0303	0.0099	0.7247	0.9432	1.2253	0.9644	0.2510
0.8333	0.0051	0.0030	0.0024	0.7646	0.9667	1.2441	0.9918	0.2407
1	0.0120	0.0085	0.0147	0.8586	1.0333	1.3592	1.0837	0.2541
1.25	0.0100	0.0127	0.0200	0.9370	1.1328	1.5159	1.1952	0.2945
1.5	0.0047	0.0041	0.0246	0.9738	1.1649	1.7086	1.2824	0.3813
1.75	0.0148	0.0120	0.0295	1.0897	1.2589	1.9397	1.4295	0.4499
2	0.0164	0.0061	0.0379	1.2182	1.3067	2.2366	1.5872	0.5642
2.5	0.0268	0.0285	0.0209	1.4282	1.5300	2.4004	1.7862	0.5343
3	0.0338	0.0103	0.0096	1.6929	1.6107	2.4756	1.9264	0.4774
3.5	0.0147	0.0201	0.0389	1.8081	1.7682	2.7803	2.1189	0.5732
4	0.0442	0.0239	0.0640	2.1544	1.9554	3.2817	2.4638	0.7153
5	0.0564	0.0850	0.0252	2.5962	2.6213	3.4791	2.8989	0.5027
6	0.0767	0.0574	0.0205	3.1971	3.0710	3.6397	3.3026	0.2987
7	0.1074	0.0526	0.0630	4.0385	3.4830	4.1333	3.8849	0.3513
8	0.0479	0.0437	0.0752	4.4137	3.8254	4.7224	4.3205	0.4557
12	0.0158	0.0348	0.0261	4.5375	4.0980	4.9269	4.5208	0.4147
o 16	0.0062	0.0203	0.0137	4.5861	4.2571	5.0342	4.6258	0.3901
20	0.0187	0.0167	0.0191	4.7326	4.3879	5.1838	4.7681	0.3992
24	0.0137	0.0226	0.0189	4.8399	4.5649	5.3319	4.9122	0.3886
28	0.0059	0.0299	0.0173	4.8861	4.7992	5.4674	5.0509	0.3633
32	0.0147	0.0088	0.0009	5.0013	4.8681	5.4745	5.1146	0.3187
40	0.0124	0.0251	0.0019	5.0984	5.0647	5.4894	5.2175	0.2360
48	0.0120	0.0227	0.0051	5.1924	5.2426	5.5293	5.3214	0.1818

Table Q2 The absorbance intensity and amount of IN permeated from 200IN- $10EG_DPNR1$ under an absence of electrical potential (E = 0 V)

Time	A	bsorbanc	e ·	Am	ount of d	lrug perr	neated (1	ng)
(h) .	1	2	3	1	2	3	Avg	SD
0.0833	0.0699	0.0728	0.0246	0.5476	0.5703	0.1927	0.4369	0.2118
0.1667	0.0280	0.0234	0.0457	0.7670	0.7536	0.5507	0.6904	0.1212
0.25	0.0162	0.0279	0.0340	0.8939	0.9722	0.8171	0.8944	0.0776
0.3333	0.0166	0.0326	0.0144	1.0239	1.2276	0.9299	1.0605	0.1522
0.4167	0.0143	0.0001	0.0225	1.1359	1.2284	1.1062	1.1568	0.0637
0.5	0.0090	0.0161	0.0288	1.2065	1.3545	1.3318	1.2976	0.0797
0.6667	0.0190	0.0169	0.0210	1.3553	1.4869	1.4963	1.4462	0.0788
0.8333	0.0137	0.0025	0.0302	1.4626	1.5065	1.7329	1.5673	0.1450
1	0.0125	0.0249	0.0077	1.5606	1.7016	1.7932	1.6851	0.1172
1.25	0.0356	0.0104	0.0100	1.8394	1.7830	1.8716	1.8314	0.0448
1.5	0.0142	0.0215	0.0199	1.9507	1.9515	2.0275	1.9765	0.0441
1.75	0.0425	0.0143	0.0096	2.2836	2.0635	2.1027	2.1499	0.1174
2	0.0287	0.0416	0.0060	2.5085	2.3894	2.1497	2.3492	0.1828
2.5	0.0806	0.0371	0.0118	3.1399	2.6800	2.2421	2.6874	0.4489
3	0.0150	0.0793	0.0657	3.2574	3.3013	2.7568	3.1052	0.3025
3.5	0.0319	0.0991	0.0775	3.5073	4.0776	3.3640	3.6496	0.3775
4	0.0384	0.0500	0.0654	3.8082	4.4694	3.8763	4.0513	0.3637
5	0.0732	0.0602	0.0596	4.3816	4.9410	4.3432	4.5553	0.3346
6	0.0936	0.0608	0.0503	5.1149	5.4173	4.7373	5.0898	0.3407
7	0.0594	0.0326	0.0951	5.5802	5.6727	5.4823	5.5784	0.0952
8	0.0548	0.0512	0.0469	6.0095	6.0738	5.8497	5.9777	0.1154
12	0.0446	0.0265	0.0304	6.3589	6.2814	6.0879	6.2427	0.1396
16	0.0240	0.0133	0.0212	6.5470	6.3856	6.2540	6.3955	0.1467
20	0.0093	0.0202	0.0180	6.6198	6.5438	6.3950	6.5195	0.1144
24	0.0247	0.0208	0.0276	6.8133	6.7068	6.6112	6.7104	0.1011
28	0.0181	0.0103	0.0242	6.9551	6.7875	6.8008	6.8478	0.0932
32	0.0214	0.0185	0.0153	7.1228	6.9324	6.9206	6.9919	0.1135
40	0.0076	0.0079	0.0118	7.1823	6.9943	7.0131	7.0632	0.1036
48	0.0131	0.0077	0.0192	7.2849	7.0546	7.1635	7.1677	0.1152

Table Q3 The absorbance intensity and amount of IN permeated from 200IN- $10EG_DPNR1$ under an electrical potential (E = 3 V)

Time	Absorbance			Amount of drug permeated (mg)				
(h)	1	2	3	1	2	3	Avg	SD
0.0833	0.0607	0.0430	0.0505	0.4755	0.3369	0.3956	0.4027	0.0696
0.1667	0.0146	0.0203	0.0317	0.5899	0.4959	0.6440	0.5766	0.0749
0.25	0.0161	0.0466	0.0170	0.7160	0.8610	0.7771	0.7847	0.0728
0.3333	0.0155	0.0437	0.0276	0.8375	1.2033	0.9934	1.0114	0.1836
0.4167	0.0201	0.0220	0.0298	0.9949	1.3757	1.2268	1.1991	0.1919
0.5	0.0269	0.0255	0.0128	1.2057	1.5754	1.3271	1.3694	0.1885
0.6667	0.0344	0.0309	0.0316	1.4752	1.8175	1.5747	1.6224	0.1761
0.8333	0.0283	0.0190	0.0346	1.6969	1.9664	1.8457	1.8363	0.1350
1	0.0373	0.0462	0.0170	1.9891	2.3283	1.9789	2.0988	0.1989
1.25	0.0178	0.0479	0.0154	2.1285	2.7035	2.0995	2.3105	0.3407
1.5	0.0251	0.0266	0.0216	2.3252	2.9119	2.2688	2.5020	0.3562
1.75	0.0512	0.0277	0.0524	2.7263	3.1289	2.6793	2.8448	0.2472
2	0.0494	0.0226	0.0298	3.1133	3.3060	2.9127	3.1107	0.1966
2.5	0.0546	0.0381	0.0519	3.5410	3.6045	3.3193	3.4883	0.1497
3	0.0643	0.0344	0.0530	4.0447	3.8740	3.7345	3.8844	0.1554
3.5	0.0663	0.0325	0.0614	4.5641	4.1286	4.2155	4.3027	0.2305
4	0.0706	0.0536	0.0883	5.1172	4.5485	4.9073	4.8577	0.2876
5	0.0844	0.0518	0.1442	5.7784	4.9543	6.0370	5.5899	0.5654
6	0.0938	0.0749	0.0470	6.5133	5.5411	6.4052	6.1532	0.5328
7	0.0818	0.1039	0.0327	7.1541	6.3550	6.6613	6.7235	0.4031
8	0.0365	0.0468	0.0346	7.4400	6.7217	6.9324	7.0314	0.3693
12	0.0221	0.0299	0.0211	7.6132	6.9559	7.0977	7.2223	0.3459
16	0.0286	0.0352	0.0395	7.8372	7.2317	7.4071	7.4920	0.3116
20	0.0310	0.0299	0.0412	8.0801	7.4659	7.7299	7.7586	0.3081
24	0.0162	0.0202	0.0444	8.2070	7.6241	8.0777	7.9696	0.3061
28	0.0179	0.0289	0.0079	8.3472	7.8506	8.1398	8.1125	0.2495
32	0.0082	0.0155	0.0258	8.4115	7.9720	8.3419	8.2418	0.2362
40	0.0177	0.0350	0.0074	8.5501	8.2462	8.3999	8.3987	0.1520
48	0.0183	0.0097	0.0139	8.6935	8.3222	8.5088	8.5081	0.1857

Table Q4 The absorbance intensity and amount of IN permeated from 200IN- $10EG_DPNR1$ under an electrical potential (E = 5 V)

Time	Absorbance			Amount of drug permeated (mg)				
(h)	1	2	3	1	2	3	Avg	SD
0.0833	0.0475	0.0621	0.0459	0.3721	0.4865	0.3596	0.4061	0.0699
0.1667	0.0235	0.0338	0.0409	0.5562	0.7513	0.6800	0.6625	0.0987
0.25	0.0164	0.0379	0.0616	0.6847	1.0482	1.1626	0.9652	0.2495
0.3333	0.0169	0.0320	0.0915	0.8171	1.2989	1.8794	1.3318	0.5319
0.4167	0.0164	0.0539	0.0635	0.9456	1.7212	2.3769	1.6812	0.7165
0.5	0.0273	0.0290	0.0247	1.1594	1.9483	2.5704	1.8927	0.7071
0.6667	0.0291	0.0355	0.0222	1.3874	2.2265	2.7443	2.1194	0.6847
0.8333	0.0353	0.0479	0.0237	1.6640	2.6017	2.9300	2.3985	0.6570
1	0.0365	0.0585	0.0168	1.9499	3.0600	3.0616	2.6905	0.6414
1.25	0.0544	0.0444	0.0122	2.3761	3.4078	3.1571	2.9804	0.5381
1.5	0.0369	0.0389	0.0261	2.6652	3.7126	3.3616	3.2465	0.5331
1.75	0.0454	0.0384	0.0877	3.0208	4.0134	4.0487	3.6943	0.5835
2	0.0485	0.0583	0.0497	3.4008	4.4701	4.4380	4.1030	0.6083
2.5	0.0534	0.0426	0.0400	3.8191	4.8039	4.7514	4.4581	0.5540
3	0.0620	0.0763	0.1485	4.3048	5.4016	5.9147	5.2071	0.8224
3.5	0.0833	0.0590	0.0996	4.9574	5.8638	6.6950	5.8388	0.8691
4	0.0597	0.0664	0.0261	5.4251	6.3840	6.8995	6.2362	0.7482
5	0.1066	0.0583	0.1455	6.2602	6.8407	8.0394	7.0468	0.9073
6	0.1300	0.0683	0.0817	7.2787	7.3758	8.6794	7.7780	0.7822
7	0.1001	0.0799	0.0754	8.0629	8.0018	9.2701	8.4449	0.7153
8	0.0533	0.0564	0.0408	8.4804	8.4436	9.5897	8.8379	0.6513
12	0.0604	0.0369	0.0154	8.9536	8.7327	9.7104	9.1322	0.5127
16	0.0386	0.0374	0.0412	9.2560	9.0257	10.033	9.4383	0.5279
20	0.0514	0.0470	0.0199	9.6587	9.3939	10.189	9.7472	0.4049
24	0.0546	0.0348	0.0381	10.086	9.6665	10.488	10.080	0.4105
28	0.0191	0.0476	0.0294	10.236	10.039	10.718	10.331	0.3491
32	0.0296	0.0420	0.0272	10.468	10.368	10.931	10.589	0.3002
40	0.0219	0.0240	0.0091	10.640	10.557	11.002	10.733	0.2371
48	0.0109	0.0288	0.0176	10.725	10.782	11.140	10.882	0.2250

Table Q5 The absorbance intensity and amount of IN permeated from 200IN- $10EG_DPNR1$ under an electrical potential (E = 7 V)

ø

Time	Absorbance			An	Amount of drug permeated (mg)			
(h)	1	2	3	1	2	3.	Avg	SD
0.0833	0.0611	0.0724	0.0456	0.4787	0.5672	0.3572	0.4677	0.1054
0.1667	0.0597	0.0749	0.0412	0.9464	1.1540	0.6800	0.9268	0.2376
0.25	0.0273	0.0304	0.0396	1.1602	1.3921	0.9902	1.1809	0.2017
0.3333	0.0272	0.0324	0.0269	1.3733	1.6459	1.2010	1.4067	0.2244
0.4167	0.0212	0.0345	0.0337	1.5394	1.9162	1.4650	1.6402	0.2419
0.5	0.0264	0.0273	0.0445	1.7462	2.1301	1.8136	1.8966	0.2050
0.6667	0.0427	0.0170	0.0385	2.0807	2.2633	2.1152	2.1531	0.0970
0.8333	0.0328	0.0334	0.0353	2.3377	2.5249	2.3918	2.4181	0.0964
1	0.0366	0.0165	0.0496	2.6244	2.6542	2.7803	2.6863	0.0828
1.25	0.0431	0.0099	0.0759	2.9621	2.7318	3.3749	3.0229	0.3259
1.5	0.0469	0.0566	0.0667	3.3295	3.1752	3.8975	3.4674	0.3804
1.75	0.0542	0.0751	0.0666	3.7541	3.7635	4.4192	3.9789	0.3813
2	0.0570	0.1036	0.0732	4.2006	4.5751	4.9927	4.5895	0.3962
2.5	0.0688	0.0736	0.0823	4.7396	5.1517	5.6374	5.1763	0.4494
3	0.0899	0.1166	0.0940	5.4439	6.0652	6.3738	5.9610	0.4736
3.5	0.0509	0.1702	0.0720	5.8427	7.3985	6.9379	6.7264	0.7992
4	0.1355	0.1106	0.1384	6.9042	8.2650	8.0221	7.7304	0.7258
5	0.0800	0.1601	0.0742	7.5309	9.5192	8.6034	8.5512	0.9952
6	0.2078	0.1344	0.1152	9.1588	10.572	9.5059	9.7456	0.7365
7	0.1086	0.0715	0.0926	10.001	11.132	10.231	10.458	0.5946
8	0.0279	0.0426	0.0627	10.228	11.466	10.723	10.806	0.6231
12	0.0181	0.0125	0.0523	10.370	11.564	11.132	11.022	0.6045
16	0.0105	0.0310	0.0713	10.452	11.807	11.691	11.317	0.7508
20	0.0314	0.0243	0.0332	10.698	11.997	11.951	11.549	0.7369
24	0.0274	0.0264	0.0152	10.913	12.204	12.070	11.729	0.7099
28	0.0248	0.0174	0.0257	11.107	12.340.	12.271	11.906	0.6929
32	0.0312	0.0085	0.0262	11.352	12.407	12.477	12.078	0.6303
40	0.0305	0.0080	0.0021	11.591	12.470	12.493	12.184	0.5144
48	0.0166	0.0181	0.0105	11.721	12.611	12.575	12.302	0.5042

0

Table Q6 The absorbance intensity and amount of IN permeated from 2001N- $10EG_DPNR1$ under an electrical potential (E = 9 V)

CURRICULUM VITAE

Name:	Mr. Sanchalit Choowongapichat
Date of Birth:	January 4, 1991
Nationality:	Thai

University Education:

2009–2012 Bachelor Degree of Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakornprathom, Thailand

Proceedings:

 Choowongapichat, S.; and Sirivat, A. (2015, April 21) Development of Natural Rubber Matrix using in Electrical Stimuli Transdermal Drug Delivery Application. Proceedings of <u>the 6th Research Symposium on Petrochemical and</u> <u>Materials Technology and the 21st PPC Symposium on Petroleum,</u> <u>Petrochemicals, and Polvmers</u>, Bangkok, Thailand.

Presentations:

0

- Choowongapichat, S.; and Sirivat, A. (2015, April 21) Development of Natural Rubber Matrix using in Electrical Stimuli Transdermal Drug Delivery Application. Paper presented at <u>the 6th Research Symposium on Petrochemical</u> <u>and Materials Technology and the 21st PPC Symposium on Petroleum,</u> <u>Petrochemicals, and Polymers, Bangkok</u>, Thailand.
- Choowongapichat, S.; and Sirivat, A. (2015, May 20) Development of Natural Rubber Matrix using in Electrical Stimuli Transdermal Drug Delivery Application. Paper presented at <u>the 4th International Symposium Frontiers in</u> <u>Polymer Science in Association with the Journal Polymer</u>, Riva del Grada, Italy.